Skip to main content

Abstract

This section gathers the descriptions of all test cases concerning internal flows, as well as the most important results obtained by the participants in the IDIHOM project. The test cases comprise a transonic compressor (NASA Rotor 37), a subsonic nozzle (JEAN), low pressure turbine cascades in turbulent (T106A) and transitional conditions (T106C) and finally 2 validation cases, namely a bump flow from the DESIDER project, and the periodic flow over a 2D hill from the ERCOFTAC QNET CFD database. Depending on the test case, RANS, LES and even DNS computations were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reid, L., Moore, R.D.: Design and overall performance of four highly loaded, high-speed inlet stages for an advanced high-pressure-ratio core compressor. NASA TP 1337 (1978)

    Google Scholar 

  2. ASME Turbomachinery Committee, CFD Code Assessment in Turbomachinery - Author’s Information Package (June 1993)

    Google Scholar 

  3. Shabbir, A., Celestina, M.L., Adamczyk, J.J., Strazisar, A.J.: The effect of hub leakage on two high speed axial flow compressor rotors. ASME Paper 97-GT-346 (1997)

    Google Scholar 

  4. AGARD Advisory Report 355, CFD Validation for Propulsion System Components, Report of the Propulsion and Energetics Panel Working Group 26 (1998)

    Google Scholar 

  5. Home page of the European FP5 research project JEAN (Jet Exhaust Aerodynamics and Noise), http://www.ist-world.org/ProjectDetails.aspx?ProjectId=14e67d914b3141cabcf1b1499e404a0a

  6. JEAN project page on the web site of the X-Noise project, http://www.xnoise.eu/index.php?id=162

  7. Jordan, P., Gervais, Y., Valire, J.-C., Foulon, H.: Final results from single point measurements, Project deliverable D3.4. JEAN EU 5th Framework Programme, G4RD-CT-2000-00313 (2002)

    Google Scholar 

  8. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1, 5–21 (1994)

    Google Scholar 

  9. Andersson, N., Eriksson, L.-E., Davidson, L.: Large-Eddy Simulation of a Mach 0.75 Jet, AIAA paper 2003-3312. In: 9th AIAA/CEAS Aeroacoustics Conference (2003)

    Google Scholar 

  10. Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), 1309–1331 (2009)

    Google Scholar 

  11. Hillewaert, K., Carton de Wiart, C., Verheylewegen, G., Arts, T.: Assessment of a high-order discontinuous Galerkin method for the direct numerical simulation of transition at low Reynolds number in the T106C high-lift low pressure turbine cascade. In: Proceedings of the ASME Turbine Technical Conference and Exhibition, Number GT2014-26739. ASME Turbo Expo (2014)

    Google Scholar 

  12. Second International Workshop on High-Order CFD Methods, Cologne, Germany, May 27-28 (2013), http://www.dlr.de/as/desktopdefault.aspx/tabid-8170/13999_read-35550/

  13. Haase, W., Braza, M., Revell, A.: DESider – A European Effort on Hybrid RANS-LES Modelling. NNFM, vol. 103, pp. 2004–2007. Springer, Heidelberg (2009)

    Google Scholar 

  14. Aupoix, B., Barricau, P., Egorov, Y., Geiler, C., Gilliot, A., Menter, F.R., Monnier, J.-C., Pailhas, G., Perret, L., Stanislas, M., Touvet, Y.: The DESider Bump Experiment. In: Proc. 7th Int. ERCOFTAC Symp. Eng. Turb, Turkey, June 4-6 (2008)

    Google Scholar 

  15. http://cfd.mace.manchester.ac.uk/desider/

  16. Almeida, G.P., Durao, D.F., Heitor, M.V.: Wake flows behind two dimensional model hills. Experimental Thermal and Fluid Science 7, 87–101 (1993)

    Google Scholar 

  17. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills - Numerical and experimental study in a wide range of Reynolds numbers. Computers & Fluids 38(2), 433–457 (2009)

    Google Scholar 

  18. Benocci, C., Pinelli, A.: The role of the forcing term in the large eddy simulation of equilibrium channel flow. In: Proceedings of the International Symposium on Engineering, Turbulence Modelling, and Measurements, Yugoslavia (1999)

    Google Scholar 

  19. Chaouat, B.: Subfilter-Scale Transport Model for Hybrid RANS/LES Simulations Applied to a Complex Bounded Flow. Journal of Turbulence 11(51), 1–30 (2010)

    Google Scholar 

  20. Chaouat, B., Schiestel, R.: Hybrid RANS-LES Simulations of the Turbulent Flow over Periodic Hills at High Reynolds Number. Computers & Fluids 84, 279–300 (2013)

    Google Scholar 

  21. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. Journal of Fluid Mechanics 526, 19–66 (2005)

    Google Scholar 

  22. Hillewaert, K., Carton de Wiart, C., Bricteux, L.: DNS and LES of the flow over a 2D periodic hill (Test case 3.6). In: 2nd International Workshop on High-order CFD Methods, Köln (May 2013), http://www.dlr.de/as/desktopdefault.aspx/tabid-8170/13999_read-35550/

  23. Mellen, C.P., Fröhlich, J., Rodi, W.: Large-eddy simulation of the flow over periodic hills. In: Deville, M., Owens, R. (eds.) Proceedings of the IMACS World Congress, Lausanne (2000)

    Google Scholar 

  24. Rapp, C.: Experimentelle Studie der turbulenten Strömung über periodische Hegel. Mitteilungen, Nr. 75, Fachgebiet Hydromechanik, TUM (2009)

    Google Scholar 

  25. Rodi, W., Bonnin, J.C., Buchal, T. (eds.): Proceedings of the ERCOFTAC Workshop on Data Bases and Testing of Calculation Methods for Turbulent Flows, in association with 4th ERCOFTAC/IAHR Workshop on Refined Flow Modeling, April 3-7. University of Karlsruhe, Germany (1995)

    Google Scholar 

  26. ERCOFTAC QNET-CFD wiki, Test case UFR 3-30: 2D periodic hill flow, http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR3-30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hillewaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hillewaert, K., Garcia-Uceda, A., Hirsch, C., Kok, J., de la Llave Plata, M., Renac, F. (2015). Internal Aerodynamic Test Cases. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds) IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-12886-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12886-3_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12885-6

  • Online ISBN: 978-3-319-12886-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics