Skip to main content

GRP78-targeting Sensitizes Cancer Cells to Cytotoxic Effects of Photodynamic Therapy

  • Chapter
  • First Online:
Resistance to Photodynamic Therapy in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 5))

  • 916 Accesses

Abstract

Photodynamic therapy (PDT) induces cytotoxic effects against tumor cells by triggering photochemical reactions leading to the production of singlet oxygen and reactive oxygen species. Intracellular proteins have been shown to undergo oxidation-related damage in response to PDT. A number of cytoprotective mechanisms have been demonstrated to relay on mechanisms associated with removal or re-folding of these proteins or leading to the induction of unfolded protein response. The latter is regulated by GRP78, a member of the heat shock protein family that undergoes up-regulation in tumor cells in response to PDT. The most selective GRP78-targeting compound is subtilase cytotoxin (SubAB) originally isolated from Shiga toxigenic Escherichia coli strains. We observed that a fusion protein consisting of the cytotoxin catalytic A subunit (SubA) with a human epidermal growth factor (EGF) designed to selectively target EGFR-positive tumor cells increases the cytotoxic effects of PDT. Although the combination treatment activated apoptotic pathways, tumor cell death occurred in cells resistant to apoptosis and was not inhibited by inhibitors of necrotic cell death or autophagy-associated death pathways. Instead, tumor cells undergo an atypical form of cell death, which is characterized by cellular vacuolization originating from the endoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun. 2003;305:761–70.

    Article  CAS  PubMed  Google Scholar 

  2. Szokalska A, Makowski M, Nowis D, Wilczynski GM, Kujawa M, Wojcik C, Mlynarczuk-Bialy I, Salwa P, Bil J, Janowska S, Agostinis P, Verfaillie T, Bugajski M, Gietka J, Issat T, Glodkowska E, Mrowka P, Stoklosa T, Hamblin MR, Mroz P, Jakobisiak M, Golab J. Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res. 2009;69:4235–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wang HP, Hanlon JG, Rainbow AJ, Espiritu M, Singh G. Up-regulation of Hsp27 plays a role in the resistance of human colon carcinoma HT29 cells to photooxidative stress. Photochem Photobiol. 2002;76:98–104.

    Article  CAS  PubMed  Google Scholar 

  4. Hanlon JG, Adams K, Rainbow AJ, Gupta RS, Singh G. Induction of Hsp60 by Photofrin-mediated photodynamic therapy. J Photochem Photobiol. 2001;64:55–61.

    Article  CAS  Google Scholar 

  5. Nonaka M, Ikeda H, Inokuchi T. Inhibitory effect of heat shock protein 70 on apoptosis induced by photodynamic therapy in vitro. Photochem Photobiol. 2004;79:94–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ferrario A, Rucker N, Wong S, Luna M, Gomer CJ. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res. 2007;67:4989–95.

    Article  CAS  PubMed  Google Scholar 

  7. Brodsky JL, Chiosis G. Hsp70 molecular chaperones: emerging roles in human disease and identification of small molecule modulators. Curr Top Med Chem. 2006;6:1215–25.

    Article  CAS  PubMed  Google Scholar 

  8. Takayama S, Reed JC, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene. 2003;22:9041–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2:326–32.

    Article  CAS  PubMed  Google Scholar 

  10. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 2002;514:122–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15:481–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hiramatsu N, Messah C, Han J, Lavail MM, Kaufman RJ, Lin JH. Translational and posttranslational regulation of XIAP by eIF2alpha and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell. 2014;25:1411–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem. 2003;278:20915–24.

    Article  CAS  PubMed  Google Scholar 

  14. Fu Y, Li J, Lee AS. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 2007;67:3734–40.

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med. 2006;6:45–54.

    Article  CAS  PubMed  Google Scholar 

  16. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 2004;64:5943–7.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang LH, Zhang X. Roles of GRP78 in physiology and cancer. J Cell Biochem. 2010;110:1299–1305.

    Article  CAS  PubMed  Google Scholar 

  18. Chiu CC, Lin CY, Lee LY, Chen YJ, Kuo TF, Chang JT, Liao CT, Wang HM, Yen TC, Shen CR, Liao SK, Cheng AJ. Glucose-regulated protein 78 regulates multiple malignant phenotypes in head and neck cancer and may serve as a molecular target of therapeutic intervention. Mol Cancer Ther. 2008;7:2788–97.

    Article  CAS  PubMed  Google Scholar 

  19. Dong D, Ko B, Baumeister P, Swenson S, Costa F, Markland F, Stiles C, Patterson JB, Bates SE, Lee AS. Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res. 2005;65:5785–91.

    Article  CAS  PubMed  Google Scholar 

  20. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 2006;66:7849–53.

    Article  CAS  PubMed  Google Scholar 

  21. Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 2007;67:9809–16.

    Article  CAS  PubMed  Google Scholar 

  22. Virrey JJ, Dong D, Stiles C, Patterson JB, Pen L, Ni M, Schonthal AH, Chen TC, Hofman FM, Lee AS. Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Mol Cancer Res. 2008;6:1268–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jalili A, Makowski M, Switaj T, Nowis D, Wilczynski GM, Wilczek E, Chorazy-Massalska M, Radzikowska A, Maslinski W, Bialy L, Sienko J, Sieron A, Adamek M, Basak G, Mroz P, Krasnodebski IW, Jakobisiak M, Golab J. Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res. 2004;10:4498–508.

    Article  CAS  PubMed  Google Scholar 

  24. Mak NK, Li KM, Leung WN, Wong RN, Huang DP, Lung ML, Lau YK, Chang CK. Involvement of both endoplasmic reticulum and mitochondria in photokilling of nasopharyngeal carcinoma cells by the photosensitizer Zn-BC-AM. Biochem Pharmacol. 2004;68:2387–96.

    Article  CAS  PubMed  Google Scholar 

  25. Marchal S, Francois A, Dumas D, Guillemin F, Bezdetnaya L. Relationship between subcellular localisation of Foscan and caspase activation in photosensitised MCF-7 cells. Br J Cancer. 2007;96:944–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wong S, Luna M, Ferrario A, Gomer CJ. CHOP activation by photodynamic therapy increases treatment induced photosensitization. Lasers Surg Med. 2004;35:336–41.

    Article  PubMed  Google Scholar 

  27. Gomer CJ, Ferrario A, Rucker N, Wong S, Lee AS. Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization. Cancer Res. 1991;51:6574–9.

    CAS  PubMed  Google Scholar 

  28. Morgan J, Whitaker JE, Oseroff AR. GRP78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye victoria blue BO. Photochem Photobiol. 1998;67:155–64.

    CAS  PubMed  Google Scholar 

  29. Xue LY, Agarwal ML, Varnes ME. Elevation of GRP-78 and loss of HSP-70 following photodynamic treatment of V79 cells: sensitization by nigericin. Photochem Photobiol. 1995;62:135–43.

    Article  CAS  PubMed  Google Scholar 

  30. Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med. 2004;200:35–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Byres E, Paton AW, Paton JC, Lofling JC, Smith DF, Wilce MC, Talbot UM, Chong DC, Yu H, Huang S, Chen X, Varki NM, Varki A, Rossjohn J, Beddoe T. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature. 2008;456:648–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MC, Rossjohn J, Talbot UM, Paton JC. AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature. 2006;443:548–52.

    Article  CAS  PubMed  Google Scholar 

  33. Wolfson JJ, May KL, Thorpe CM, Jandhyala DM, Paton JC, Paton AW. Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways. Cell Microbiol. 2008;10:1775–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006;439:865–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M, Ogata R, Huang T, Nakajima S, Yao J, Paton AW, Paton JC, Kitamura M. Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J Immunol. 2009;183:1480–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhao Y, Tian T, Huang T, Nakajima S, Saito Y, Takahashi S, Yao J, Paton AW, Paton JC, Kitamura M. Subtilase cytotoxin activates MAP kinases through PERK and IRE1 branches of the unfolded protein response. Toxicol Sci. 2011;120:79–86.

    Article  CAS  PubMed  Google Scholar 

  37. Yahiro K, Morinaga N, Moss J, Noda M. Subtilase cytotoxin induces apoptosis in HeLa cells by mitochondrial permeabilization via activation of Bax/Bak, independent of C/EBF-homologue protein (CHOP), Ire1alpha or JNK signaling. Microb Pathog. 2010;49:153–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lass A, Kujawa M, McConnell E, Paton AW, Paton JC, Wojcik C. Decreased ER-associated degradation of alpha-TCR induced by Grp78 depletion with the SubAB cytotoxin. Int J Biochem Cell Biol. 2008;40:2865–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Matsuura G, Morinaga N, Yahiro K, Komine R, Moss J, Yoshida H, Noda M. Novel subtilase cytotoxin produced by Shiga-toxigenic Escherichia coli induces apoptosis in vero cells via mitochondrial membrane damage. Infect Immun. 2009;77:2919–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Oh S, Stish BJ, Vickers SM, Buchsbaum DJ, Saluja AK, Vallera DA. A new drug delivery method of bispecific ligand-directed toxins, which reduces toxicity and promotes efficacy in a model of orthotopic pancreatic cancer. Pancreas. 2010;39:913–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Backer JM, Krivoshein AV, Hamby CV, Pizzonia J, Gilbert KS, Ray YS, Brand H, Paton AW, Paton JC, Backer MV. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia. 2009;11:1165–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Firczuk M, Gabrysiak M, Barankiewicz J, Domagala A, Nowis D, Kujawa M, Jankowska-Steifer E, Wachowska M, Glodkowska-Mrowka E, Korsak B, Winiarska M, Golab J. GRP78-targeting subtilase cytotoxin sensitizes cancer cells to photodynamic therapy. Cell Death Dis. 2013;4:e741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Polish Ministry of Science grant DI2011 021141, and the European Commission 7th Framework Programme FP7-REGPOT-2012-CT2012-316254-BASTION. Figures were produced using Servier Medical Art (www.servier.com) for which the authors would like to acknowledge Servier. We would also like to thank members of our team participating in studies on the effects of EGF-SubA in combination with PDT: Joanna Barankiewicz, Antoni Domagala, Dominika Nowis, Marek Kujawa, Ewa Jankowska-Steifer, Malgorzata Wachowska, Eliza Glodkowska-Mrowka, Barbara Korsak, and Magdalena Winiarska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Golab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Firczuk, M., Gabrysiak, M., Golab, J. (2015). GRP78-targeting Sensitizes Cancer Cells to Cytotoxic Effects of Photodynamic Therapy. In: Rapozzi, V., Jori, G. (eds) Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12730-9_6

Download citation

Publish with us

Policies and ethics