Skip to main content

Mechanisms of Tumor Cell Resistance to ALA-PDT

  • Chapter
  • First Online:
Resistance to Photodynamic Therapy in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 5))

  • 953 Accesses

Abstract

Cancer cells are considered to express primary drug resistance, yet chemotherapeutics are the front line of cancer treatments and have achieved great successes. In time, most neoplastic cells develop secondary resistance to chemotherapy, which remains the major obstacle to cancer treatment. Progressive multi-drug resistance develops by upregulation of a large family of drug ABC transporters, such as the P-glycoprotein.

ALA-PDT is a non-invasive cancer therapy that is limited to organs that are accessible to light and it is dependent on the biosynthesis of the natural photosensitizer PpIX, largely detached of sensitizer efflux by transporters. The action mechanism of ALA-PDT starts by light irradiation and production of singlet oxygen as the toxic molecule, which hits the tumor at many subcellular targets and induces both necrosis and apoptosis, the Achilles heel of a tumor. Recently, it was suggested that PDT, based on multifunctional ALA-prodrugs, may overcome drug resistance of tumors.

Multifunctional acyloxyalkyl ester prodrugs induce efficient PpIX synthesis due to upregulated PpIX biosynthesis and efficient photodynamic killing of cancer cells. One of these prodrugs, AlaAcBu, releases three active products: ALA, acetaldehyde and butyric acid. They stimulate independent pathways through activation of specific biochemical routes; ALA stimulates PpIX synthesis and PDT, acetaldehyde endorses dark-tumor cytotoxicity and butyric acid inhibits histone deacetylase, leading to gene expression and tumor differentiation. All are targeted to boost anticancer actions and to reduce tumor recurrence.

We describe here a protocol for boosting PpIX synthesis in Multi Drug Resistant cells by two rounds of ALA exposures. The first induces synthesis of dipyrromethane from ALA, which is essential for PBGD activity, while the second provides the precursor for PpIX synthesis and photodynamic cell killing.

In conclusion, new ALA delivery protocols and novel generations of multifunctional ALA prodrugs may render ALA-PDT into a more potent method in the front line cancer therapy. We believe that the future of ALA-PDT will involve the introduction of combinatory concepts of multifunctional ALA prodrugs to maximize sensitizer biosynthesis and to hit tumors in multiple subcellular targets independent of multi-drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALA:

5-amino levulinic acid

ALAD:

ALA dehydratase

DPM:

Dipyrromethane

MDR:

Multidrug resistance

PBGD:

Porphobilinogen deaminase

PpIX:

Protoporphyrin IX

References

  1. Hurtig J. Managing patients with advanced and metastatic breast cancer. Clin J Oncol Nurs. 2010;14:313–23.

    Article  PubMed  Google Scholar 

  2. Moore S. Cutaneous metastatic breast cancer. Clin J Oncol Nurs. 2002;6:255–60.

    Article  PubMed  Google Scholar 

  3. Gillet JP, Gottesman M. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010;596:47–76.

    Article  CAS  PubMed  Google Scholar 

  4. Gottesman MM. Mechanisms of multidrug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  5. Wong ST, Goodin S. Overcoming drug resistance in patients with metastatic breast cancer. Pharmacotherapy. 2009;29:954–65.

    Article  CAS  PubMed  Google Scholar 

  6. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7:2152–9.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Owais MM, Scragg JL, Dallas ML, Boycott HE, Warburton P, Chakrabarty A, Boyle JP, Peers C. Carbon monoxide mediates the anti-apoptotic effects of heme oxygenase-1 in medulloblastoma DAOY cells via K+ channel inhibition. J Biol Chem. 2012;287:24754–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Capella MA, Capella LS. A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J Biomed Sci. 2003;10:361–6.

    Article  CAS  PubMed  Google Scholar 

  9. Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel). 2011;3:2516–39.

    Article  CAS  Google Scholar 

  10. Haupt S, Malik Z, Ehrenberg B. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS. Photochem Photobiol Sci. 2014;13:38–47.

    Article  CAS  PubMed  Google Scholar 

  11. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011; 61:250–81.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lemoli RM, Igarashi T, Knizewski M, Acaba L, Richter A, Jain A, Mitchell D, Levy J, Gulati SC. Dye-mediated photolysis is capable of eliminating drug-resistant (MDR+) tumor cells. Blood. 1993;81:793–800.

    CAS  PubMed  Google Scholar 

  13. Kusuzaki K, Minami G, Takeshita H, Murata H, Hashiguchi S, Nozaki T, Ashihara T, Hirasawa Y. Photodynamic inactivation with acridine orange on a multidrug-resistant mouse osteosarcoma cell line. Jpn J Cancer Res. 2000;91:439–45.

    Article  CAS  PubMed  Google Scholar 

  14. Teiten MH, Bezdetnaya L, Merlin JL, Bour-Dill C, Pauly ME, Dicato M, Guillemin F. Effect of meta-tetra(hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy on sensitive and multidrug-resistant human breast cancer cells. J Photochem Photobiol B. 2001;62:146–52.

    Article  CAS  PubMed  Google Scholar 

  15. Tang PM, Zhang DM, Xuan NH, Tsui SK, Waye MM, Kong SK, Fong WP, Fung KP. Photodynamic therapy inhibits P-glycoprotein mediated multidrug resistance via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer. 2009;8:56–68.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther. 2005; 4:187–94.

    Article  CAS  PubMed  Google Scholar 

  17. Malik Z, Lugaci H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer. 1987;56:589–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Malik Z, Lugaci H, Hanania J. Stimulation of friend erythroleukemic cell cytodifferentiation by 5-amino levulinic acid; porphyrins, cell size, segregation of sialoglycoproteins, and nuclear translocation. Exp Hematol. 1988;16:330–5.

    CAS  PubMed  Google Scholar 

  19. Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25.

    CAS  PubMed  Google Scholar 

  20. Li W, Zhang WJ, Ohnishi K, Yamada I, Ohno R, Hashimoto K. 5-Aminolaevulinic acid-mediated photodynamic therapy in multidrug resistant leukemia cells. J Photochem Photobiol B. 2001;60:79–86.

    Article  CAS  PubMed  Google Scholar 

  21. Tsai T, Hong RL, Tsai JC, Lou PJ, Ling IF, Chen CT. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med. 2004;34:62–72.

    Article  PubMed  Google Scholar 

  22. Feuerstein T, Berkovitch-Luria G, Nudelman A, Rephaeli A, Malik Z. Modulating ALA-PDT efficacy of mutlidrug resistant MCF-7 breast cancer cells using ALA prodrug. Photochem Photobiol Sci. 2011;10:1926–33.

    Article  CAS  PubMed  Google Scholar 

  23. Schoenfeld N, Mamet R, Nordenberg Y, Shafran M, Babushkin T, Malik Z. Protoporphyrin biosynthesis in melanoma B16 cells stimulated by 5-aminolevulinic acid and chemical inducers: characterization of photodynamic inactivation. Int J Cancer. 1994;56:106–12.

    Article  CAS  PubMed  Google Scholar 

  24. Ickowicz Schwartz D, Gozlan Y, Greenbaum L, Babushkina T, Katcoff DJ, Malik Z. Differentiation-dependent photodynamic therapy regulated by porphobilinogen deaminase in B16 melanoma. Br J Cancer. 2004;90:1833–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Hanania J, Malik Z. The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells. Cancer Lett. 1992;65:127–31.

    Article  CAS  PubMed  Google Scholar 

  26. Ohgari Y, Nakayasu Y, Kitajima S, Sawamoto M, Mori H, Shimokawa O, Matsui H, Taketani S. Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol. 2005;71:42–9.

    Google Scholar 

  27. Joensuu H, Gligorov J. Adjuvant treatments for triple-negative breast cancers. Ann Oncol. 2012;23:40–5.

    Article  Google Scholar 

  28. Berkovitch-Luria G, Weitman M, Nudelman A, Rephaeli A, Malik Z. Multifunctional 5-aminolevulinic acid prodrugs activating diverse cell-death pathways. Invest New Drugs. 2012;30:1028–38.

    Article  CAS  PubMed  Google Scholar 

  29. Berkovitch-Luria G, Yakobovitch S, Weitman M, Nudelman A, Rozic G, Rephaeli A, Malik Z. A multifunctional 5-aminolevulinic acid derivative induces erythroid differentiation of K562 human erythroleukemic cells. Eur J Pharm Sci. 2012;47:206–14.

    Article  CAS  PubMed  Google Scholar 

  30. Berkovitch G, Doron D, Nudelman A, Malik Z, Rephaeli A. Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity independent and dependent on photoactivation. J Med Chem. 2008;51:7356–69.

    Article  CAS  PubMed  Google Scholar 

  31. Feuerstein T, Schauder A, Malik Z. Silencing of ALA dehydratase affects ALA-photodynamic therapy efficacy in K562 erythroleukemic cells. Photochem Photobiol Sci. 2009;8:1461–6.

    Article  CAS  PubMed  Google Scholar 

  32. Schauder A, Feuerstein T, Malik Z. The centrality of PBGD expression levels on ALA-PDT efficacy. Photochem Photobiol Sci. 2011;10:1310–7.

    Google Scholar 

  33. Yu CH, Yu CC. Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells. PLoS One. 2014;9:e87129

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malik, Z., Nudelman, A., Ehrenberg, B. (2015). Mechanisms of Tumor Cell Resistance to ALA-PDT. In: Rapozzi, V., Jori, G. (eds) Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-12730-9_10

Download citation

Publish with us

Policies and ethics