Skip to main content

Reconstruction of 3D Vertebral Models from a Single 2D Lateral Fluoroscopic Image

  • Chapter
  • First Online:
Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

Abstract

Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). In this chapter, we present an alternative technique that can reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model. Cadaveric studies are conducted to verify the reconstruction accuracy by comparing the surface models reconstructed from a single lateral fluoroscopic image to the ground truth data from 3D CT segmentation. A mean reconstruction error between 0.7 and 1.4 mm was found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muggleton JM, Allen R (1997) Automatic location of vertebrae in digitized videofluoroscopic images of the lumbar spine. Med Eng Phys 19:77–89

    Article  Google Scholar 

  2. Zheng Y, Nixon MS, Allen R (2003) Lumbar spine visualization based on kinematic analysis from videofluoroscopic imaging. Med Eng Phys 25:171–179

    Article  Google Scholar 

  3. Wang S, Passias P, Li G, Li G, Wood K (2009) Measurement of vertebral kinematics using noninvasive image matching method—validation and application. Spine 33:E355–E361

    Article  Google Scholar 

  4. Bifulco P, Sansone M, Cesarelli M, Allen R, Bracale M (2002) Estimation of out-of-plane vertebra rotations on radiographic projections using ct data: a simulation study. Med Eng Phys 24:295–300

    Article  Google Scholar 

  5. Hanson GR, Suggs JS, Freiberg AA, Durbhakula S, Li G (2006) Investigation of in vivo 6DOF total knee arthroplasty kinematics using a dual orthogonal fluoroscopic system. J Orthop Res 24:974–981

    Article  Google Scholar 

  6. Aubin CE, Descrimes JL, Dansereau J, Skalli W, Lavaste F, Labelle H (1995) Geometrical modeling of the spine and thorax for biomechanical analysis of scoliotic deformities using finite element method. Ann Chir 49:749–761

    Google Scholar 

  7. Mitton D, Landry C, Vron S, Skalli W, Lavaste F, De Guise JA (2000) 3D Reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38:133–139

    Article  Google Scholar 

  8. Pomero V, Mitton D, Laporte S, De Guise JA, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech 19:240–247

    Article  Google Scholar 

  9. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D Reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31:681–687

    Article  Google Scholar 

  10. Dumas R, Blanchard B, Carlier R, de Loubresse CG, Le Huec J-C, Marty C, Moinard M, Vital J-M (2009) A semi-automated method using interpolation and optimization for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study. Med Biol Eng Comput 46:85–92

    Article  Google Scholar 

  11. Kadoury S, Cheriet F, Labelle H (2009) Personalized X-ray 3D reconstruction of the scoliotic spine from hybrid statistical and image-models. IEEE Trans Med Imaging 28:1422–1435

    Article  Google Scholar 

  12. Benameur S, Mignotte M, Parent S et al (2003) 3D/2D registration and segmentation of scoliotic vertebra using statistical models. Comput Med Imaging Grap 27:321–337

    Article  Google Scholar 

  13. Benameur S, Mignotte M, Labelle H, De Guise JA (2005) A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Trans Biomed Eng 12:2041–2057

    Article  Google Scholar 

  14. Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Articulated spine models for 3-D reconstruction from partial radiographic data. IEEE Trans Biomed Eng 55:2565–2574

    Article  Google Scholar 

  15. Kendall D (1989) A survey of the statistical theory of shape. Stat Sci 4:87–120

    Article  MATH  MathSciNet  Google Scholar 

  16. Small CG (1996) The statistical theory of shape., Series in StatisticsSpringer, New York

    Book  MATH  Google Scholar 

  17. Dryden I, Mardia K (1998) Statistical shape analysis., Series in Probability and StatisticsWiley, New York

    MATH  Google Scholar 

  18. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3:71–86

    Article  Google Scholar 

  19. Cootes TF, Hill A, Taylor CJ, Haslam J (1994) The use of active shape models for locating structures in medical images. Image Vis Comput 12:355–366

    Article  Google Scholar 

  20. Zheng G, Gonzalez Ballester MA, Styner M, Nolte L-P (2006) Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and point distribution model. In: MICCAI’06, vol part I, LNCS 4190, pp 25–32

    Google Scholar 

  21. Zheng G, Schumann S (2009) 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated X-ray radiographs: a validation study. Med Phys 36:1155–1166

    Article  Google Scholar 

  22. Zheng G (2009) Statistically deformable 2D/3D registration for accurate determination of post-operative cup orientation from single standard X-ray radiograph. In: MICCAI’09, part I, LNCS 5761, pp 820–827

    Google Scholar 

  23. Toussaint N, Souplet J-C, Fillard P (2007) Image matching as a diffusion process: an analogy with maxwell’s demons. In: MICCAI’07 workshop on interaction in medical image and visualization

    Google Scholar 

  24. Jolliffe IT (2002) Principal component analysis, 2nd edn., Series in StatisticsSpringer, Berlin

    MATH  Google Scholar 

  25. Hofstetter R, Slomczykowski M, Sati M, Nolte L-P (1999) Fluroroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg 4:65–76

    Article  Google Scholar 

  26. Barrett WA, Mortensen EN (1997) Interactive live-wire boundary extraction. Med Image Anal 1:331–341

    Article  Google Scholar 

  27. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–714

    Article  Google Scholar 

  28. Zheng G, Gollmer S, Schumann S, Dong X, Feilkas T, Gonzalez Ballester MA (2009) A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Med Image Anal 13(6):883–899

    Article  Google Scholar 

  29. Hertzmann A, Zorin D (2000) Illustrating smooth surfaces. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques (SIGGRAPH’00). ACM Press/Addison-Wesley Publishing Cp., New York, pp 517–526

    Google Scholar 

  30. Besl P, McKay ND (1992) A method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256

    Article  Google Scholar 

  31. Aspert N, Santa-Cruz D, Ebrahimi T (2002) MESH: measuring errors between surfaces using the Hausdorff distance. In: Proceedings of 2002 IEEE conference on multimedia and expo (ICME 2002), August 2002, Lausanne, Switzerland, vol 1, pp 705–708

    Google Scholar 

  32. Davies RH (2002) Learning shape: optimal models for analyzing natural variability. Doctoral dissertation, University of Manchester

    Google Scholar 

  33. Styner MA, Rajamani KT, Nolte L-P, Zsemlye G, Székely G, Taylor CJ, Davies RH (2003) Evaluation of 3D correspondences methods for model building. In: Proceeding of IPMI 2003, LNCS 2732, pp 63–75

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Swiss National Science Foundation through the National Centers of Competence in Research CO-ME. The test data are provided by Prof. Dr. S.J. Ferguson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zheng, G., Nolte, L.P. (2015). Reconstruction of 3D Vertebral Models from a Single 2D Lateral Fluoroscopic Image. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics