Skip to main content

The Role of Viruses in the Genesis of Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Hodgkin lymphoma (HL) is a heterogeneous condition. Seminal papers published in 1957 and 1966 suggested that HL in younger and older adults had different etiologies and further suggested an infectious etiology for young adult HL. Subsequent epidemiological studies provide broad support for these hypotheses. Data linking young adult HL with a high standard of living in early childhood and lack of child–child contact suggest that delayed exposure to common childhood infections may be involved in the etiology of these cases. There is now compelling evidence that a proportion of cases of HL are associated with the Epstein–Barr virus (EBV). Paradoxically, older adult and childhood cases of HL are more likely to be EBV associated than young adult cases. In this article, I will review studies on viral involvement in HL with a focus on classical HL (cHL), since nodular lymphocyte-predominant HL is considered a separate disease entity. The association with EBV will be discussed with an emphasis on findings which support a causal role for EBV in this malignancy. Studies investigating direct involvement of other exogenous viruses will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BART:

BamHI-A rightward transcripts

cHL:

Classical Hodgkin lymphoma

DDR1:

Discoidin domain receptor 1

EBER:

EBV-encoded small RNAs

EBNA:

EBV nuclear antigen

EBV:

Epstein–Barr virus

HHV:

Human herpesvirus

HL:

Hodgkin lymphoma

HLA:

Human leukocyte antigen

HPyV:

Human polyomavirus

HRS:

Hodgkin and Reed–Sternberg

IHC:

Immunohistochemistry

LMP:

Latent membrane protein

MCHL:

Mixed cellularity Hodgkin lymphoma

MCV:

Merkel cell polyomavirus

MV:

Measles virus

NSHL:

Nodular sclerosis Hodgkin lymphoma

ORF:

Open reading frame

PyV:

Polyomavirus

SNP:

Single-nucleotide polymorphism

TTV:

Torque teno virus

References

  1. MacMahon B (1957) Epidemiological evidence of the nature of Hodgkin’s disease. Cancer 10:1045–1054

    CAS  PubMed  Google Scholar 

  2. MacMahon B (1966) Epidemiology of Hodgkin’s disease. Cancer Res 26:1189–1201

    CAS  PubMed  Google Scholar 

  3. Gutensohn NM (1982) Social class and age at diagnosis of Hodgkin’s disease: new epidemiologic evidence for the “two-disease hypothesis”. Cancer Treat Rep 66:689–695

    CAS  PubMed  Google Scholar 

  4. Alexander FE, McKinney PA, Williams J, Ricketts TJ, Cartwright RA (1991) Epidemiological evidence for the ‘two-disease hypothesis’ in Hodgkin’s disease. Int J Epidemiol 20:354–361

    CAS  PubMed  Google Scholar 

  5. Gutensohn NM, Shapiro DS (1982) Social class risk factors among children with Hodgkin’s disease. Int J Cancer 30:433–435

    CAS  PubMed  Google Scholar 

  6. Chang ET, Zheng T, Weir EG et al (2004) Childhood social environment and Hodgkin’s lymphoma: new findings from a population-based case-control study. Cancer Epidemiol Biomark Prev 13:1361–1370

    Google Scholar 

  7. Jarrett RF, Gallagher A, Jones DB et al (1991) Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol 44:844–848

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Jarrett RF, Armstrong AA, Alexander E (1996) Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol 7:S5–S10

    Google Scholar 

  9. Glaser SL, Lin RJ, Stewart SL et al (1997) Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer 70:375–382

    CAS  PubMed  Google Scholar 

  10. Rickinson AB, Kieff E (2007) Epstein-Barr virus. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 2655–2700

    Google Scholar 

  11. Kieff E, Rickinson AB (2007) Epstein-Barr virus and its replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 2603–2654

    Google Scholar 

  12. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA (1998) EBV persistence in memory B cells in vivo. Immunity 9:395–404

    CAS  PubMed  Google Scholar 

  13. Cai X, Schafer A, Lu S et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    PubMed Central  PubMed  Google Scholar 

  14. Edwards RH, Marquitz AR, Raab-Traub N (2008) Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol 82:9094–9106

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhu JY, Pfuhl T, Motsch N et al (2009) Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol 83:3333–3341

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Cosmopoulos K, Pegtel M, Hawkins J et al (2009) Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. J Virol 83:2357–2367

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Klinke O, Feederle R, Delecluse HJ (2014) Genetics of Epstein-Barr virus microRNAs. Semin Cancer Biol 26:52–59

    Google Scholar 

  18. Khanna R, Burrows SR (2000) Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol 54:19–48

    CAS  PubMed  Google Scholar 

  19. Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617

    CAS  PubMed  Google Scholar 

  20. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J (1987) Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol 129:86–91

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Gledhill S, Gallagher A, Jones DB et al (1991) Viral involvement in Hodgkin’s disease: detection of clonal type A Epstein-Barr virus genomes in tumour samples. Br J Cancer 64:227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Wu TC, Mann RB, Charache P et al (1990) Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer 46:801–804

    CAS  PubMed  Google Scholar 

  23. Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS (1991) Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet 337:320–322

    CAS  PubMed  Google Scholar 

  24. Grasser FA, Murray PG, Kremmer E et al (1994) Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): immunohistologic detection of EBNA1 in the malignant cells of Hodgkin’s disease. Blood 84:3792–3798

    CAS  PubMed  Google Scholar 

  25. Deacon EM, Pallesen G, Niedobitek G et al (1993) Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177:339–349

    CAS  PubMed  Google Scholar 

  26. Niedobitek G, Kremmer E, Herbst H et al (1997) Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood 90:1664–1672

    CAS  PubMed  Google Scholar 

  27. Qiu J, Cosmopoulos K, Pegtel M et al (2011) A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog 7:e1002193

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kuppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27

    PubMed  Google Scholar 

  29. Kuppers R (2009) Molecular biology of Hodgkin lymphoma. Hematol Am Soc Hematol Educ Prog, 491–496

    Google Scholar 

  30. Kuppers R, Klein U, Schwering I et al (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111:529–537

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Schwering I, Brauninger A, Klein U et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101:1505–1512

    CAS  PubMed  Google Scholar 

  32. Bechtel D, Kurth J, Unkel C, Kuppers R (2005) Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 106:4345–4350

    CAS  PubMed  Google Scholar 

  33. Mancao C, Altmann M, Jungnickel B, Hammerschmidt W (2005) Rescue of ‘crippled’ germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106:4339–4344

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Chaganti S, Bell AI, Pastor NB et al (2005) Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood 106:4249–4252

    CAS  PubMed  Google Scholar 

  35. Mancao C, Hammerschmidt W (2007) Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 110:3715–3721

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Caldwell RG, Brown RC, Longnecker R (2000) Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol 74:1101–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Portis T, Longnecker R (2003) Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J Virol 77:105–114

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Anderson LJ, Longnecker R (2009) Epstein-Barr virus latent membrane protein 2A exploits Notch1 to alter B-cell identity in vivo. Blood 113:108–116

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Portis T, Dyck P, Longnecker R (2003) Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 102:4166–4178

    CAS  PubMed  Google Scholar 

  40. Basso K, Klein U, Niu H et al (2004) Tracking CD40 signaling during germinal center development. Blood 104:4088–4096

    CAS  PubMed  Google Scholar 

  41. Devergne O, Cahir McFarland ED, Mosialos G et al (1998) Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72:7900–7908

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Izumi KM, Kieff ED (1997) The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF- kappaB. Proc Natl Acad Sci U S A 94:12592–12597

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kieser A, Kilger E, Gires O et al (1997) Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 16:6478–6485

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Eliopoulos AG, Young LS (1998) Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein- Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16:1731–1742

    CAS  PubMed  Google Scholar 

  45. Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS (1999) Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274:16085–16096

    CAS  PubMed  Google Scholar 

  46. Vockerodt M, Morgan SL, Kuo M et al (2008) The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol 216:83–92

    CAS  PubMed  Google Scholar 

  47. Bargou RC, Emmerich F, Krappmann D et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Dutton A, O’Neil JD, Milner AE et al (2004) Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A 101:6611–6616

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kashkar H, Haefs C, Shin H et al (2003) XIAP-mediated caspase inhibition in Hodgkin’s lymphoma-derived B cells. J Exp Med 198:341–347

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Cader FZ, Vockerodt M, Bose S et al (2013) The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 122:4237–4245

    CAS  PubMed  Google Scholar 

  51. Nanbo A, Sugden A, Sugden B (2007) The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO J 26:4252–4262

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kennedy G, Komano J, Sugden B (2003) Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A 100:14269–14274

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Wilson JB, Bell JL, Levine AJ (1996) Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 15:3117–3126

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kang MS, Lu H, Yasui T et al (2005) Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci U S A 102:820–825

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kang MS, Soni V, Bronson R, Kieff E (2008) Epstein-Barr virus nuclear antigen 1 does not cause lymphoma in C57BL/6J mice. J Virol 82:4180–4183

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Yajima M, Kanda T, Takada K (2005) Critical role of Epstein-Barr virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol 79:4298–4307

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Cullen BR (2013) MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 14:205–210

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ramalingam D, Kieffer-Kwon P, Ziegelbauer JM (2012) Emerging themes from EBV and KSHV microRNA targets. Viruses 4:1687–1710

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ross N, Gandhi MK, Nourse JP (2013) The Epstein-Barr virus microRNA BART11-5p targets the early B-cell transcription factor EBF1. Am J Blood Res 3:210–224

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Godshalk SE, Bhaduri-McIntosh S, Slack FJ (2008) Epstein-Barr virus-mediated dysregulation of human microRNA expression. Cell Cycle 7:3595–3600

    CAS  PubMed  Google Scholar 

  61. van den Berg A, Kroesen BJ, Kooistra K et al (2003) High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosome Cancer 37:20–28

    Google Scholar 

  62. Navarro A, Gaya A, Martinez A et al (2008) MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111:2825–2832

    CAS  PubMed  Google Scholar 

  63. Jarrett RF, Krajewski AS, Angus B et al (2003) The Scotland and Newcastle epidemiological study of Hodgkin’s disease: impact of histopathological review and EBV status on incidence estimates. J Clin Pathol 56:811–816

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Flavell K, Constandinou C, Lowe D et al (1999) Effect of material deprivation on Epstein-Barr virus infection in Hodgkin’s disease in the West Midlands. Br J Cancer 80:604–608

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Crawford DH, Macsween KF, Higgins CD et al (2006) A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis 43:276–282

    PubMed  Google Scholar 

  66. Alexander FE, Jarrett RF, Lawrence D et al (2000) Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer 82:1117–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Alexander FE, Lawrence DJ, Freeland J et al (2003) An epidemiologic study of index and family infectious mononucleosis and adult Hodgkin’s disease (HD): evidence for a specific association with EBV+ve HD in young adults. Int J Cancer 107:298–302

    CAS  PubMed  Google Scholar 

  68. Hjalgrim H, Askling J, Rostgaard K et al (2003) Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med 349:1324–1332

    CAS  PubMed  Google Scholar 

  69. Hjalgrim H, Smedby KE, Rostgaard K et al (2007) Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res 67:2382–2388

    CAS  PubMed  Google Scholar 

  70. Glaser SL, Clarke CA, Gulley ML et al (2003) Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the greater San Francisco Bay area, 1988–1998. Cancer 98:300–309

    PubMed  Google Scholar 

  71. Quinlan SC, Landgren O, Morton LM, Engels EA (2010) Hodgkin lymphoma among US solid organ transplant recipients. Transplantation 90:1011–1015

    PubMed Central  PubMed  Google Scholar 

  72. Jarrett RF (2002) Viruses and Hodgkin’s lymphoma. Ann Oncol 13(S1):23–29

    PubMed  Google Scholar 

  73. Levin LI, Chang ET, Ambinder RF et al (2012) Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood 120:3750–3755

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Chang ET, Zheng T, Lennette ET et al (2004) Heterogeneity of risk factors and antibody profiles in Epstein-Barr virus genome-positive and -negative Hodgkin lymphoma. J Infect Dis 189:2271–2281

    PubMed  Google Scholar 

  75. Henle W, Henle G, Andersson J et al (1987) Antibody responses to Epstein-Barr virus-determined nuclear antigen (EBNA)-1 and EBNA-2 in acute and chronic Epstein-Barr virus infection. Proc Natl Acad Sci U S A 84:570–574

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Rubicz R, Yolken R, Drigalenko E et al (2013) A genome-wide integrative genomic study localizes genetic factors influencing antibodies against Epstein-Barr virus nuclear antigen 1 (EBNA-1). PLoS Genet 9:e1003147

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Urayama KY, Jarrett RF, Hjalgrim H et al (2012) Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. J Natl Cancer Inst 104:240–253

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Diepstra A, Niens M, Vellenga E et al (2005) Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet 365:2216–2224

    CAS  PubMed  Google Scholar 

  79. Niens M, Jarrett RF, Hepkema B et al (2007) HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV-positive Hodgkin lymphoma. Blood 110:3310–3315

    CAS  PubMed  Google Scholar 

  80. Hjalgrim H, Rostgaard K, Johnson PC et al (2010) HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc Natl Acad Sci U S A 107:6400–6405

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Huang X, Kushekhar K, Nolte I et al (2012) HLA associations in classical Hodgkin lymphoma: EBV status matters. PLoS One 7:e39986

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Huang X, Hepkema B, Nolte I et al (2012) HLA-A*02:07 is a protective allele for EBV negative and a susceptibility allele for EBV positive classical Hodgkin lymphoma in China. PLoS One 7:e31865

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Johnson PCD, McAulay KA, Montgomery D, Lake A, Gallagher A, Taylor GM, Jarrett RF (2013) Modelling of HLA associations in EBV-positive and -negative classical Hodgkin lymphoma suggests distinct mechanisms in disease pathogenesis [Abstract]. Haematologica 98:32

    Google Scholar 

  84. Brennan RM, Burrows SR (2008) A mechanism for the HLA-A*01-associated risk for EBV+ Hodgkin lymphoma and infectious mononucleosis. Blood 112:2589–2590

    CAS  PubMed  Google Scholar 

  85. McAulay KA, Higgins CD, Macsween KF et al (2007) HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest 117:3042–3048

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Khan G, Lake A, Shield L et al (2005) Phenotype and frequency of Epstein-Barr virus-infected cells in pretreatment blood samples from patients with Hodgkin lymphoma. Br J Haematol 129:511–519

    PubMed  Google Scholar 

  87. Hochberg D, Souza T, Catalina M et al (2004) Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol 78:5194–5204

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Khan G, Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA (1996) Is EBV persistence in vivo a model for B cell homeostasis? Immunity 5:173–179

    CAS  PubMed  Google Scholar 

  89. Brauninger A, Schmitz R, Bechtel D et al (2006) Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer 118:1853–1861

    PubMed  Google Scholar 

  90. Schmitz R, Hansmann ML, Bohle V et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206:981–989

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18:3063–3070

    CAS  PubMed  Google Scholar 

  92. Emmerich F, Meiser M, Hummel M et al (1999) Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood 94:3129–3134

    CAS  PubMed  Google Scholar 

  93. Jungnickel B, Staratschek-Jox A, Brauninger A et al (2000) Clonal deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin’s lymphoma. J Exp Med 191:395–402

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Lake A, Shield LA, Cordano P et al (2009) Mutations of NFKBIA, encoding IkappaBalpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer 125:1334–1342

    CAS  PubMed  Google Scholar 

  95. Enciso-Mora V, Broderick P, Ma Y et al (2010) A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet 42:1126–1130

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Tiacci E, Doring C, Brune V et al (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 120:4609–4620

    CAS  PubMed  Google Scholar 

  97. Clarke CA, Glaser SL, Dorfman RF et al (2001) Epstein-Barr virus and survival after Hodgkin disease in a population- based series of women. Cancer 91:1579–1587

    CAS  PubMed  Google Scholar 

  98. Jarrett RF, Stark GL, White J et al (2005) Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: a population-based study. Blood 106:2444–2451

    CAS  PubMed  Google Scholar 

  99. Keegan TH, Glaser SL, Clarke CA et al (2005) Epstein-Barr virus as a marker of survival after Hodgkin’s lymphoma: a population-based study. J Clin Oncol 23:7604–7613

    PubMed  Google Scholar 

  100. Diepstra A, van Imhoff GW, Schaapveld M et al (2009) Latent Epstein-Barr virus infection of tumor cells in classical Hodgkin’s lymphoma predicts adverse outcome in older adult patients. J Clin Oncol 27:3815–3821

    Google Scholar 

  101. Gutensohn N, Cole P (1977) Epidemiology of Hodgkin’s disease in the young. Int J Cancer 19:595–604

    CAS  PubMed  Google Scholar 

  102. Glaser SL, Keegan TH, Clarke CA et al (2005) Exposure to childhood infections and risk of Epstein-Barr virus-defined Hodgkin’s lymphoma in women. Int J Cancer 115:599–605

    CAS  PubMed  Google Scholar 

  103. Gallagher A, Perry J, Freeland J et al (2003) Hodgkin lymphoma and Epstein-Barr virus (EBV): no evidence to support hit-and-run mechanism in cases classified as non-EBV-associated. Int J Cancer 104:624–630

    CAS  PubMed  Google Scholar 

  104. Staratschek-Jox A, Kotkowski S, Belge G et al (2000) Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in Latent membrane protein-1 (LMP-1)-negative classical Hodgkin’s disease. Am J Pathol 156:209–216

    CAS  PubMed Central  PubMed  Google Scholar 

  105. zur Hausen H, de Villiers EM (2005) Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer 115:1–5

    PubMed  Google Scholar 

  106. Jelcic I, Hotz-Wagenblatt A, Hunziker A, zur Hausen H, de Villiers EM (2004) Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78:7498–7507

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Figueiredo CP, Franz-Vasconcelos HC, Giunta G et al (2007) Detection of Torque teno virus in Epstein-Barr virus positive and negative lymph nodes of patients with Hodgkin lymphoma. Leuk Lymphoma 48:731–735

    PubMed  Google Scholar 

  108. Garbuglia AR, Iezzi T, Capobianchi MR et al (2003) Detection of TT virus in lymph node biopsies of B-cell lymphoma and Hodgkin’s disease, and its association with EBV infection. Int J Immunopathol Pharmacol 16:109–118

    CAS  PubMed  Google Scholar 

  109. Armstrong AA, Shield L, Gallagher A, Jarrett RF (1998) Lack of involvement of known oncogenic DNA viruses in Epstein-Barr virus-negative Hodgkin’s disease. Br J Cancer 77:1045–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Schmidt CA, Oettle H, Peng R et al (2000) Presence of human beta- and gamma-herpes virus DNA in Hodgkin’s disease. Leuk Res 24:865–870

    CAS  PubMed  Google Scholar 

  111. Gallagher A, Perry J, Shield L et al (2002) Viruses and Hodgkin disease: no evidence of novel herpesviruses in non-EBV-associated lesions. Int J Cancer 101:259–264

    CAS  PubMed  Google Scholar 

  112. Benavente Y, Mbisa G, Labo N et al (2011) Antibodies against lytic and latent Kaposi’s sarcoma-associated herpes virus antigens and lymphoma in the European EpiLymph case-control study. Br J Cancer 105:1768–1771

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Samoszuk M, Ravel J (1991) Frequent detection of Epstein-Barr viral deoxyribonucleic acid and absence of cytomegalovirus deoxyribonucleic acid in Hodgkin’s disease and acquired immunodeficiency syndrome-related Hodgkin’s disease. Lab Invest 65:631–636

    CAS  PubMed  Google Scholar 

  114. Lin SH, Yeh HM, Tzeng CH, Chen PM (1993) Immunoglobulin and T cell receptor beta chain gene rearrangements and Epstein-Barr viral DNA in tissues of Hodgkin’s disease in Taiwan. Int J Hematol 57:251–257

    CAS  PubMed  Google Scholar 

  115. Hernandez-Losa J, Fedele CG, Pozo F et al (2005) Lack of association of polyomavirus and herpesvirus types 6 and 7 in human lymphomas. Cancer 103:293–298

    PubMed  Google Scholar 

  116. Berneman ZN, Torelli G, Luppi M, Jarrett RF (1998) Absence of a directly causative role for human herpesvirus 7 in human lymphoma and a review of human herpesvirus 6 in human malignancy. Ann Hematol 77:275–278

    CAS  PubMed  Google Scholar 

  117. Ablashi D, Agut H, Alvarez-Lafuente R et al (2014) Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol 159:863–870

    Google Scholar 

  118. Ablashi DV, Josephs SF, Buchbinder A et al (1988) Human B-lymphotropic virus (human herpesvirus-6). J Virol Methods 21:29–48

    CAS  PubMed  Google Scholar 

  119. Clark DA, Alexander FE, McKinney PA et al (1990) The seroepidemiology of human herpesvirus-6 (HHV-6) from a case-control study of leukaemia and lymphoma. Int J Cancer 45:829–833

    CAS  PubMed  Google Scholar 

  120. Torelli G, Marasca R, Luppi M et al (1991) Human herpesvirus-6 in human lymphomas: identification of specific sequences in Hodgkin’s lymphomas by polymerase chain reaction. Blood 77:2251–2258

    CAS  PubMed  Google Scholar 

  121. Di Luca D, Dolcetti R, Mirandola P et al (1994) Human herpesvirus 6: a survey of presence and variant distribution in normal peripheral lymphocytes and lymphoproliferative disorders. J Infect Dis 170:211–215

    PubMed  Google Scholar 

  122. Valente G, Secchiero P, Lusso P et al (1996) Human herpesvirus 6 and Epstein-Barr virus in Hodgkin’s disease: a controlled study by polymerase chain reaction and in situ hybridization. Am J Pathol 149:1501–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Kashanchi F, Araujo J, Doniger J et al (1997) Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene 14:359–367

    CAS  PubMed  Google Scholar 

  124. Collot S, Petit B, Bordessoule D et al (2002) Real-time PCR for quantification of human herpesvirus 6 DNA from lymph nodes and saliva. J Clin Microbiol 40:2445–2451

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Lacroix A, Jaccard A, Rouzioux C et al (2007) HHV-6 and EBV DNA quantitation in lymph nodes of 86 patients with Hodgkin’s lymphoma. J Med Virol 79:1349–1356

    CAS  PubMed  Google Scholar 

  126. Siddon A, Lozovatsky L, Mohamed A, Hudnall SD (2012) Human herpesvirus 6 positive Reed-Sternberg cells in nodular sclerosis Hodgkin lymphoma. Br J Haematol 158:635–643

    PubMed  Google Scholar 

  127. Leong HN, Tuke PW, Tedder RS et al (2007) The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. J Med Virol 79:45–51

    CAS  PubMed  Google Scholar 

  128. Luppi M, Marasca R, Barozzi P et al (1993) Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J Med Virol 40:44–52

    CAS  PubMed  Google Scholar 

  129. Staal SP, Ambinder R, Beschorner WE, Hayward GS, Mann R (1989) A survey of Epstein-Barr virus DNA in lymphoid tissue. Frequent detection in Hodgkin’s disease. Am J Clin Pathol 91:1–5

    CAS  PubMed  Google Scholar 

  130. Maeda A, Sata T, Enzan H et al (1993) The evidence of human herpesvirus 6 infection in the lymph nodes of Hodgkin’s disease. Virchows Arch A Pathol Anat Histopathol 423:71–75

    CAS  PubMed  Google Scholar 

  131. Rojo J, Ferrer Argote VE, Klueppelberg U et al (1994) Semi-quantitative in situ hybridization and immunohistology for antigen expression of human herpesvirus-6 in various lymphoproliferative diseases. In Vivo 8:517–526

    CAS  PubMed  Google Scholar 

  132. Luppi M, Barozzi P, Garber R et al (1998) Expression of human herpesvirus-6 antigens in benign and malignant lymphoproliferative diseases. Am J Pathol 153:815–823

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Lacroix A, Collot-Teixeira S, Mardivirin L et al (2010) Involvement of human herpesvirus-6 variant B in classic Hodgkin’s lymphoma via DR7 oncoprotein. Clin Cancer Res 16:4711–4721

    CAS  PubMed  Google Scholar 

  134. Thompson J, Choudhury S, Kashanchi F et al (1994) A transforming fragment within the direct repeat region of human herpesvirus type 6 that transactivates HIV-1. Oncogene 9:1167–1175

    CAS  PubMed  Google Scholar 

  135. Schleimann MH, Hoberg S, Solhoj HA et al (2014) The DR6 protein from human herpesvirus-6B induces p53-independent cell cycle arrest in G2/M. Virology 452–453:254–263

    PubMed  Google Scholar 

  136. Megaw AG, Rapaport D, Avidor B, Frenkel N, Davison AJ (1998) The DNA sequence of the RK strain of human herpesvirus 7. Virology 244:119–132

    CAS  PubMed  Google Scholar 

  137. Ehlers B, Borchers K, Grund C et al (1999) Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers. Virus Genes 18:211–220

    CAS  PubMed  Google Scholar 

  138. Jarrett RF, Johnson D, Wilson KS, Gallagher A (2006) Molecular methods for virus discovery. Dev Biol (Basel) 123:77–88

    CAS  Google Scholar 

  139. Allander T, Andreasson K, Gupta S et al (2007) Identification of a third human polyomavirus. J Virol 81:4130–4136

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Gaynor AM, Nissen MD, Whiley DM et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3:e64

    PubMed Central  PubMed  Google Scholar 

  141. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Ehlers B, Wieland U (2013) The novel human polyomaviruses HPyV6, 7, 9 and beyond. APMIS 121:783–795

    CAS  PubMed  Google Scholar 

  143. Knowles WA, Pipkin P, Andrews N et al (2003) Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J Med Virol 71:115–123

    PubMed  Google Scholar 

  144. Kean JM, Rao S, Wang M, Garcea RL (2009) Seroepidemiology of human polyomaviruses. PLoS Pathog 5:e1000363

    PubMed Central  PubMed  Google Scholar 

  145. Tolstov YL, Pastrana DV, Feng H et al (2009) Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer 125:1250–1256

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Kassem A, Schopflin A, Diaz C et al (2008) Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res 68:5009–5013

    CAS  PubMed  Google Scholar 

  147. Wilson KS, Gallagher A, Freeland JM, Shield LA, Jarrett RF (2006) Viruses and Hodgkin lymphoma: no evidence of polyomavirus genomes in tumor biopsies. Leuk Lymphoma 47:1315–1321

    CAS  PubMed  Google Scholar 

  148. Robles C, Poloczek A, Casabonne D et al (2012) Antibody response to Merkel cell polyomavirus associated with incident lymphoma in the epilymph case-control study in Spain. Cancer Epidemiol Biomarkers Prev 21:1592–1598

    CAS  PubMed  Google Scholar 

  149. Shuda M, Arora R, Kwun HJ et al (2009) Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer 125:1243–1249

    CAS  PubMed  Google Scholar 

  150. Toracchio S, Foyle A, Sroller V et al (2010) Lymphotropism of Merkel cell polyomavirus infection, Nova Scotia, Canada. Emerg Infect Dis 16:1702–1709

    PubMed Central  PubMed  Google Scholar 

  151. Volter C, Hausen H, Alber D, de Villiers EM (1997) Screening human tumor samples with a broad-spectrum polymerase chain reaction method for the detection of polyomaviruses. Virology 237:389–396

    CAS  PubMed  Google Scholar 

  152. Benharroch D, Shemer-Avni Y, Levy A et al (2003) New candidate virus in association with Hodgkin’s disease. Leuk Lymphoma 44:605–610

    CAS  PubMed  Google Scholar 

  153. Benharroch D, Shemer-Avni Y, Myint YY et al (2004) Measles virus: evidence of an association with Hodgkin’s disease. Br J Cancer 91:572–579

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Maggio E, Benharroch D, Gopas J et al (2007) Absence of measles virus genome and transcripts in Hodgkin-Reed/Sternberg cells of a cohort of Hodgkin lymphoma patients. Int J Cancer 121:448–453

    CAS  PubMed  Google Scholar 

  155. Wilson KS, Freeland JM, Gallagher A et al (2007) Measles virus and classical Hodgkin lymphoma: no evidence for a direct association. Int J Cancer 121:442–447

    CAS  PubMed  Google Scholar 

  156. Karunanayake CP, Singh GV, Spinelli JJ et al (2009) Occupational exposures and Hodgkin lymphoma: Canadian case-control study. J Occup Environ Med 51:1447–1454

    PubMed  Google Scholar 

  157. Palacios G, Druce J, Du L et al (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358:991–998

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by Leukaemia Lymphoma Research and the Kay Kendall Leukaemia Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth F. Jarrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Jarrett, R.F. (2015). The Role of Viruses in the Genesis of Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-12505-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12505-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12504-6

  • Online ISBN: 978-3-319-12505-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics