Skip to main content

Polymers in Wound Repair

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

Efficient dermal wound care implies providing a healing environment at the site of injury. Current repair techniques, including polymeric dressings, are able to accelerate only the healing of epidermal and partial thickness acute wounds based on maintaining the area moist. However, these are not efficient in treatment of full-thickness and chronic wounds, which lack in inborn regenerative elements and are highly prone to infections. For this reason the research interest is nowadays shifted towards functional biomaterials to tackle severe skin deteriorations by providing a beneficiary for healing pro-active and pathogen-free environment. Recent advances in molecular biology and materials science together with better understanding of wound pathophysiology allowed for designing of new wound care approaches that rely on biochemical stimuli to promote wound closure. Biopolymers that couple intrinsic antimicrobial and wound repair properties with hydrophilicity appear as suitable dressing platforms. These can be further upgraded using various bio-entities (therapeutic molecules, cells) with the ability to address specific targets in the biochemical environment of wounds in order to stimulate the healing process. This chapter summarises the abundant experimental and clinical data on polymers in advanced wound dressings, scaffolds for dermal regeneration and platforms for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bFGF:

Basic fibroblast growth factor

BSA:

Bovine serum albumin

ECM:

Extracellular matrix

GAGs:

Glycosaminoglycans

GM-CSF:

Granulocyte macrophage colony stimulating factor

HA:

Hyaluronic acid

HClO:

Hypochlorous acid

MMPs:

Matrix metalloproteinases

MPO:

Myeloperoxidase

NPWT:

Negative pressure wound therapy

PDGF-BB:

Platelet-derived growth factor BB

PRP:

Platelet rich plasma

PHMB:

Polyhexamethylene biguanide

ROS:

Reactive oxygen species

SF:

Silk fibroin

VEGF:

Vascular endothelial growth factor

References

  1. Lazarus, G.S., et al.: Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regener. 2(3), 165–170 (1994)

    CAS  Google Scholar 

  2. Stadelmann, W.K., Digenis, A.G., Tobin, G.R.: Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg. 176(2, Supplement 1): 26S–38S (1998)

    Google Scholar 

  3. Weiss, S.J.: Tissue destruction by neutrophils. N. Engl. J. Med. 320(6), 365–376 (1989)

    CAS  Google Scholar 

  4. Martin, P., Leibovich, S.J.: Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15(11), 599–607 (2005)

    CAS  Google Scholar 

  5. Diegelmann, R.F.: Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regener. 11(6), 490–495 (2003)

    Google Scholar 

  6. Trengove, N.J., et al.: Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regener. 7(6), 442–452 (1999)

    CAS  Google Scholar 

  7. Wang, Y., et al.: Myeloperoxidase inactivates timp-1 by oxidizing its n-terminal cysteine residue. J. Biol. Chem. 282(44), 31826–31834 (2007)

    CAS  Google Scholar 

  8. Saarialho-Kere, U.K.: Patterns of matrix metalloproteinase and TIMP expression in chronic ulcers. Arch. Dermatol. Res. 290(1), S47–S54 (1998)

    CAS  Google Scholar 

  9. Falabella, A.F.: Debridement and wound bed preparation. Dermatol. Ther. 19(6), 317–325 (2006)

    Google Scholar 

  10. Boateng, J.S., et al.: Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97(8), 2892–2923 (2008)

    CAS  Google Scholar 

  11. Atiyeh, B.S., et al.: Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2), 139–148 (2007)

    Google Scholar 

  12. Gupta, S., et al.: Guidelines for managing pressure ulcers with negative pressure wound therapy. Adv. Skin Wound Care 17, 1–16 (2004)

    Google Scholar 

  13. Xie, X., McGregor, M., Dendukuri, N.: The clinical effectiveness of negative pressure wound therapy: a systematic review. J. wound care 19(11), 490–495 (2010)

    CAS  Google Scholar 

  14. Noble-Bell, G., Forbes, A.: A systematic review of the effectiveness of negative pressure wound therapy in the management of diabetes foot ulcers. Int. Wound J. 5(2), 233–242 (2008)

    Google Scholar 

  15. Ubbink Dirk, T., et al.: Topical negative pressure for treating chronic wounds. Cochrane Database Syst. Rev. 16 (2008). doi: CD001898

    Google Scholar 

  16. Suslick, K.S., Grinstaff, M.W.: Protein microencapsulation of nonaqueous liquids. J. Am. Chem. Soc. 112(21), 7807–7809 (1990)

    CAS  Google Scholar 

  17. Ennis, W.J., et al.: Evaluation of clinical effectiveness of mist ultrasound therapy for the healing of chronic wounds. Adv. Skin Wound Care: J. Prev. Healing 19(8), 437–446 (2006)

    Google Scholar 

  18. Francesko, A., Tzanov, T.: Chitin, chitosan and derivatives for wound healing and tissue engineering. In: Nyanhongo, G.S., Steiner, W., Gübitz, G. (eds.) Biofunctionalization of Polymers and their Applications, pp. 1–27. Springer, Berlin (2011)

    Google Scholar 

  19. Queen, D., et al.: A dressing history. Int. Wound J. 1(1), 59–77 (2004)

    Google Scholar 

  20. Mogoşanu, G.D., Grumezescu, A.M.: Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463(2), 127–136 (2014)

    Google Scholar 

  21. Wright, K.A., et al.: Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury. Burns 24(1), 7–17 (1998)

    CAS  Google Scholar 

  22. Jansson, E., Tengvall, P.: In vitro preparation and ellipsometric characterization of thin blood plasma clot films on silicon. Biomaterials 22(13), 1803–1808 (2001)

    CAS  Google Scholar 

  23. Losi, P., et al.: Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials 25(18), 4447–4455 (2004)

    CAS  Google Scholar 

  24. Whelan, J.: Smart bandages diagnose wound infection. Drug Discov. Today 7(1), 9–10 (2002)

    Google Scholar 

  25. Van den Kerckhove, E., et al.: Silicones in the rehabilitation of burns: a review and overview. Burns 27(3), 205–214 (2001)

    Google Scholar 

  26. Raphael, K.G., et al.: Self-reported systemic, immune-mediated disorders in patients with and without proplast-teflon implants of the temporomandibular joint. J. Oral Maxillofac. Surg. 57(4), 364–370 (1999)

    CAS  Google Scholar 

  27. Kim, I.-Y., et al.: Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26(1), 1–21 (2008)

    CAS  Google Scholar 

  28. Ueno, H., et al.: Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20(15), 1407–1414 (1999)

    CAS  Google Scholar 

  29. Wedmore, I., et al.: A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J. Trauma Acute Care Surg. 60(3), 655–658 (2006)

    Google Scholar 

  30. Pietramaggiori, G., et al.: Effects of poly-N-acetyl glucosamine (pGlcNAc) patch on wound healing in db/db mouse. J. Trauma Acute Care Surg. 64(3), 803–808 (2008)

    CAS  Google Scholar 

  31. Dhanasingh, A., et al.: Tailored hyaluronic acid hydrogels through hydrophilic prepolymer cross-linkers. Soft Matter 6(3), 618–629 (2010)

    CAS  Google Scholar 

  32. Gilbert, M.E., et al.: Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 114(8), 1406–1409 (2004)

    CAS  Google Scholar 

  33. West, D., et al.: Angiogenesis induced by degradation products of hyaluronic acid. Science 228(4705), 1324–1326 (1985)

    CAS  Google Scholar 

  34. Perng, C.-K., et al.: In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. J. Surg. Res. 168(1), 9–15 (2011)

    CAS  Google Scholar 

  35. Park, S.-N., et al.: Biological characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal tissue restoration. Biomaterials 24(9), 1631–1641 (2003)

    CAS  Google Scholar 

  36. Luo, Y., Kirker, K.R., Prestwich, G.D.: Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Controlled Release 69(1), 169–184 (2000)

    CAS  Google Scholar 

  37. Lin, Y.-C., et al.: Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomater. 5(7), 2591–2600 (2009)

    CAS  Google Scholar 

  38. Chang, C.-H., et al.: Gelatin–chondroitin–hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24(26), 4853–4858 (2003)

    CAS  Google Scholar 

  39. Dumville, J., et al., Alginate dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev. 15(2) (2012)

    Google Scholar 

  40. Cen, L., et al.: Collagen tissue engineering: development of novel biomaterials and applications. Pediatr. Res. 63(5), 492–496 (2008)

    CAS  Google Scholar 

  41. Parenteau-Bareil, R., Gauvin, R., Berthod, F.: Collagen-based biomaterials for tissue engineering applications. Materials 3(3), 1863–1887 (2010)

    CAS  Google Scholar 

  42. Ruszczak, Z., Friess, W.: Collagen as a carrier for on-site delivery of antibacterial drugs. Adv. Drug Deliv. Rev. 55(12), 1679–1698 (2003)

    CAS  Google Scholar 

  43. Cullen, B., et al.: Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regener. 10(1), 16–25 (2002)

    Google Scholar 

  44. Cullen, B., et al.: The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int. J. Biochem. Cell Biol. 34(12), 1544–1556 (2002)

    CAS  Google Scholar 

  45. Rothwell, S., et al.: Wound healing and the immune response in swine treated with a hemostatic bandage composed of salmon thrombin and fibrinogen. J. Mater. Sci. Mater. Med. 20(10), 2155–2166 (2009)

    CAS  Google Scholar 

  46. Vasconcelos, A., Cavaco-Paulo, A.: Wound dressings for a proteolytic-rich environment. Appl. Microbiol. Biotechnol. 90(2), 445–460 (2011)

    CAS  Google Scholar 

  47. de Moraes, M.A., Beppu, M.M.: Biocomposite membranes of sodium alginate and silk fibroin fibers for biomedical applications. J. Appl. Polym. Sci. 130(5), 3451–3457 (2013)

    Google Scholar 

  48. Liu, T.-L., et al.: Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. J. Zhejiang Univ. Sci. B 11(1), 10–16 (2010)

    Google Scholar 

  49. Zhu, X., et al.: Activation of T lymphocytes on local trauma after implantation of regenerated porous silk fibroin film. J. Clim. Rehabil. Tissue Eng. Res. 15, 7061–7065 (2011)

    CAS  Google Scholar 

  50. Dror, Y., et al.: Nanofibers made of globular proteins. Biomacromolecules 9(10), 2749–2754 (2008)

    CAS  Google Scholar 

  51. Jin, R., et al.: Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13), 2544–2551 (2009)

    CAS  Google Scholar 

  52. Sibbald, R.G., Woo, K.Y., Queen, D.: Wound bed preparation and oxygen balance—a new component? Int. Wound J. 4, 9–17 (2007)

    Google Scholar 

  53. Werner, S., Grose, R.: Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83(3), 835–870 (2003)

    Google Scholar 

  54. Barrientos, S., et al.: Perspective article: growth factors and cytokines in wound healing. Wound Repair Regener. 16(5), 585–601 (2008)

    Google Scholar 

  55. Steed, D.L., Study Group, t.D.U.*: Clinical evaluation of recombinant human platelet—derived growth factor for the treatment of lower extremity diabetic ulcers. J. Vasc. Surg. 21(1), 71–81 (1995)

    Google Scholar 

  56. Anitua, E., et al.: Platelet-rich plasma: preparation and formulation. Operative Tech. Orthop. 22(1), 25–32 (2012)

    Google Scholar 

  57. Vande Berg, J., Robson, M., Mikhail, R.: Extension of the life span of pressure ulcer fibroblasts with recombinant human interleukin-1 beta. Am. J. Pathol. 146(5), 1273–1282 (1995)

    CAS  Google Scholar 

  58. Cianfarani, F., et al.: Granulocyte/macrophage colony-stimulating factor treatment of human chronic ulcers promotes angiogenesis associated with de novo vascular endothelial growth factor transcription in the ulcer bed. Br. J. Dermatol. 154(1), 34–41 (2006)

    CAS  Google Scholar 

  59. Da Costa, R.M., et al.: Randomized, double-blind, placebo-controlled, dose- ranging study of granulocyte-macrophage colony stimulating factor in patients with chronic venous leg ulcers. Wound Repair Regener. 7(1), 17–25 (1999)

    Google Scholar 

  60. Cruciani, M., et al.: Are granulocyte colony-stimulating factors beneficial in treating diabetic foot infections?: a meta-analysis. Diabetes Care 28(2), 454–460 (2005)

    CAS  Google Scholar 

  61. Kavanaugh, A.: Combination cytokine therapy: the next generation of rheumatoid arthritis therapy? Arthritis Care Res. 47(1), 87–92 (2002)

    CAS  Google Scholar 

  62. Pellegrini, M., Mak, T., Ohashi, P.: Fighting cancers from within: augmenting tumor immunity with cytokine therapy. Trends Pharmacol. Sci. 31(8), 356–363 (2010)

    CAS  Google Scholar 

  63. Lansdown, A.B.G.: Silver 2: toxicity in mammals and how its products aid wound repair. J. Wound Care 11(5), 173–177 (2002)

    CAS  Google Scholar 

  64. Howell-Jones, R.S., et al.: A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J. Antimicrob. Chemother. 55(2), 143–149 (2005)

    CAS  Google Scholar 

  65. Landsdown, A., Williams, A.: Bacterial resistance to silver in wound care and medical devices. J Wound Care 16(1), 15–19 (2007)

    CAS  Google Scholar 

  66. Gilbert, P.: Avoiding the resistance pitfall in infection control. Does the use of antiseptic products contribute to the spread of antibiotic resistance? Ostomy Wound Manage 52(10 A Suppl): 1S–3S (2006)

    Google Scholar 

  67. Giles, N.M., et al.: Metal and redox modulation of cysteine protein function. Chem. Biol. 10(8), 677–693 (2003)

    CAS  Google Scholar 

  68. Gu, Z., et al.: S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584), 1186–1190 (2002)

    CAS  Google Scholar 

  69. Andreassen, O.A., et al.: N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. NeuroReport 11(11), 2491–2493 (2000)

    CAS  Google Scholar 

  70. Fu, X., et al.: Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). J. Biol. Chem. 276(44), 41279–41287 (2001)

    CAS  Google Scholar 

  71. Van Antwerpen, P., et al.: Thiol-containing molecules interact with the myeloperoxidase/H2O2/chloride system to inhibit LDL oxidation. Biochem. Biophys. Res. Commun. 337(1), 82–88 (2005)

    Google Scholar 

  72. Rice-Evans, C.A., Miller, N.J., Paganga, G.: Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20(7), 933–956 (1996)

    CAS  Google Scholar 

  73. Mira, L., et al.: Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic. Res. 36(11), 1199–1208 (2002)

    CAS  Google Scholar 

  74. Pauff, J.M., Hille, R.: Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J. Nat. Prod. 72(4), 725–731 (2009)

    CAS  Google Scholar 

  75. Ding, Z., et al.: Anti-inflammatory effects of scopoletin and underlying mechanisms. Pharm. Biol. 46(12), 854–860 (2008)

    Google Scholar 

  76. Geyid, A., et al.: Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J. Ethnopharmacol. 97(3), 421–427 (2005)

    CAS  Google Scholar 

  77. Kim, H., et al.: Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regener. 16(5), 714–720 (2008)

    Google Scholar 

  78. Masaki, H., Atsumi, T., Sakurai, H.: Protective activity of hamamelitannin on cell damage of murine skin fibroblasts induced by UVB irradiation. J. Dermatol. Sci. 10(1), 25–34 (1995)

    CAS  Google Scholar 

  79. Deters, A., et al.: High molecular compounds (polysaccharides and proanthocyanidins) from Hamamelis virginiana bark: influence on human skin keratinocyte proliferation and differentiation and influence on irritated skin. Phytochemistry 58(6), 949–958 (2001)

    CAS  Google Scholar 

  80. Kato, Y., et al.: Inhibition of myeloperoxidase-catalyzed tyrosylation by phenolic antioxidants in vitro. Biosci. Biotechnol. Biochem. 67(5), 1136–1139 (2003)

    Google Scholar 

  81. Madhan, B., et al.: Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int. J. Biol. Macromol. 41(1), 16–22 (2007)

    CAS  Google Scholar 

  82. Chen, R., Mooney, D.: Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 20(8), 1103–1112 (2003)

    CAS  Google Scholar 

  83. Lee, K., Silva, E.A., Mooney, D.J.: Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8(55), 153–170 (2011)

    CAS  Google Scholar 

  84. Koria, P.: Delivery of growth factors for tissue regeneration and wound healing. BioDrugs 26(3), 163–175 (2012)

    CAS  Google Scholar 

  85. Ulubayram, K., et al.: EGF containing gelatin-based wound dressings. Biomaterials 22(11), 1345–1356 (2001)

    CAS  Google Scholar 

  86. Kolambkar, Y.M., et al.: An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1), 65–74 (2011)

    CAS  Google Scholar 

  87. Değim, Z.: Use of microparticulate systems to accelerate skin wound healing. J. Drug Target. 16(6), 437–448 (2008)

    Google Scholar 

  88. Takemoto, S., et al.: Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng. Part A 14(10), 1629–1638 (2008)

    CAS  Google Scholar 

  89. Matsumoto, Y., Kuroyanagi, Y.: Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. J. Biomater. Sci. Polym. Ed. 21(6), 126–715 (2010)

    Google Scholar 

  90. Huang, S., et al.: Wound dressings containing bFGF-impregnated microspheres. J. Microencapsul. 23(3), 277–290 (2006)

    CAS  Google Scholar 

  91. Kakagia, D.D., et al.: Synergistic action of protease-modulating matrix and autologous growth factors in healing of diabetic foot ulcers. A prospective randomized trial. J. Diabetes Complications 21(6), 387–391 (2007)

    Google Scholar 

  92. Leaper, D.J.: Silver dressings: their role in wound management. Int. Wound J. 3(4), 282–294 (2006)

    Google Scholar 

  93. Leaper, D.: Silver dressings: their role in wound management. Int Wound J. 3(4), 282–294 (2006)

    Google Scholar 

  94. Fong, J., Wood, F.: Nanocrystalline silver dressings in wound management: a review. Int. J. Nanomed. 1(4), 441–449 (2006)

    CAS  Google Scholar 

  95. Rutten, H., Nijhuis, P.: Prevention of wound infection in elective colorectal surgery by local application of a gentamicin-containing collagen sponge. Eur. J. Surg. Suppl. 578, 31–35 (1997)

    Google Scholar 

  96. Sawada, Y., et al.: Treatment of dermal depth burn wounds with an antimicrobial agent-releasing silicone gel sheet. Burns 16(5), 347–352 (1990)

    CAS  Google Scholar 

  97. Sawada, Y., et al.: An evaluation of a new lactic acid polymer drug delivery system: a preliminary report. Br. J. Plast. Surg. 47(3), 158–161 (1994)

    CAS  Google Scholar 

  98. Galandiuk, S., et al.: Absorbable, delayed-release antibiotic beads reduce surgical wound infection. Am. Surg. 63(9), 831–835 (1997)

    CAS  Google Scholar 

  99. Aoyagi, S., Onishi, H., Machida, Y.: Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. Int. J. Pharm. 330(1–2), 138–145 (2007)

    CAS  Google Scholar 

  100. Kingsley, A., et al.: Suprasorb X + PHMB: antimicrobial and HydroBalance action in a new wound dressing. Wounds UK 5(1), 72–77 (2009)

    Google Scholar 

  101. Glover, D., Wicks, G.: Suprasorb X + PHMB: the clinical evidence. J. wound care. ACTIVA healthcare Supplement, 15–21 (2009)

    Google Scholar 

  102. Elzinga, G., et al.: Clinical evaluation of a PHMB-impregnated biocellulose dressing on paediatric lacerations. J Wound Care 20(6), 280–284 (2011)

    CAS  Google Scholar 

  103. Antonio, F., et al.: Cross-linked collagen sponges loaded with plant polyphenols with inhibitory activity towards chronic wound enzymes. Biotechnol. J. 6(10), 1208–1218 (2011)

    CAS  Google Scholar 

  104. Díaz-GonzáLez, M., et al.: Inhibition of deleterious chronic wound enzymes with plant polyphenols. Biocatal. Biotransform. 30(1), 102–110 (2012)

    Google Scholar 

  105. Haslam, E.: natural polyphenols (vegetable tannins) as drugs: possible modes of action. J. Nat. Prod. 59(2), 205–215 (1996)

    CAS  Google Scholar 

  106. Madhan, B., et al.: Stabilization of collagen using plant polyphenol: role of catechin. Int. J. Biol. Macromol. 37(1–2), 47–53 (2005)

    CAS  Google Scholar 

  107. Tang, H.R., Covington, A.D., Hancock, R.A.: Structure–activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers 70(3), 403–413 (2003)

    CAS  Google Scholar 

  108. Francesko, A., et al.: Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomater. 9(2), 5216–5225 (2013)

    CAS  Google Scholar 

  109. Rocasalbas, G., et al.: Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydr. Polym. 92(2), 989–996 (2013)

    CAS  Google Scholar 

  110. Roldo, M., et al.: Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 57(1), 115–121 (2004)

    CAS  Google Scholar 

  111. Föger, F., Schmitz, T., Bernkop-Schnürch, A.: In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials 27(23), 4250–4255 (2006)

    Google Scholar 

  112. Kast, C.E., et al.: Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering? Int. J. Pharm. 256(1–2), 183–189 (2003)

    CAS  Google Scholar 

  113. Kast, C.E., Bernkop-Schnürch, A.: Thiolated polymers—thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates. Biomaterials 22(17), 2345–2352 (2001)

    CAS  Google Scholar 

  114. Francesko, A., et al.: GAGs-thiolated chitosan assemblies for chronic wounds treatment: control of enzyme activity and cell attachment. J. Mater. Chem. 22(37), 19438–19446 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzanko Tzanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Francesko, A., Fernandes, M.M., Rocasalbas, G., Gautier, S., Tzanov, T. (2015). Polymers in Wound Repair. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_14

Download citation

Publish with us

Policies and ethics