We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Verifiable Computation in Multiparty Protocols with Honest Majority | SpringerLink
Skip to main content

Verifiable Computation in Multiparty Protocols with Honest Majority

  • Conference paper
Provable Security (ProvSec 2014)

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Included in the following conference series:

Abstract

We present a generic method for turning passively secure protocols into protocols secure against covert attacks. The method adds a post-execution verification phase to the protocol that allows a misbehaving party to escape detection only with negligible probability. The execution phase, after which the computed protocol result is already available for parties, has only negligible overhead added by our method. The checks, based on linear probabilistically checkable proofs, are done in zero-knowledge, thereby preserving the privacy guarantees of the original protocol. Our method is inspired by recent results in verifiable computation, adapting them to multiparty setting and significantly lowering their computational costs for the provers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Safra, S.: Probabilistic Checking of Proofs: A New Characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. J. Cryptology 23(2), 281–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Baum, C., Damgård, I., Orlandi, C.: Publicly Auditable Secure Multi-Party Computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P.: Secure multi-party data analysis: end user validation and practical experiments. Cryptology ePrint Archive, Report 2013/826 (2013)

    Google Scholar 

  8. Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From Input Private to Universally Composable Secure Multi-party Computation Primitives. In: Proceedings of the 27th IEEE Computer Security Foundations Symposium, pp. 184–198. IEEE (2014)

    Google Scholar 

  9. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)

    Article  Google Scholar 

  10. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security Symposium, Washington, DC, USA, pp. 223–239 (2010)

    Google Scholar 

  12. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

    Google Scholar 

  14. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Damgård, I., Geisler, M., Nielsen, J.B.: From passive to covert security at low cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 128–145. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Franklin, M., Gondree, M., Mohassel, P.: Communication-efficient private protocols for longest common subsequence. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 265–278. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In: STOC, pp. 218–229. ACM (1987)

    Google Scholar 

  25. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Twenty-Second Annual IEEE Conference on Computational Complexity, CCC 2007, pp. 278–291. IEEE (2007)

    Google Scholar 

  26. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 723–732. ACM, New York (1992), http://doi.acm.org/10.1145/129712.129782

    Chapter  Google Scholar 

  27. Kumaresan, R., Patra, A., Rangan, C.P.: The round complexity of verifiable secret sharing: The statistical case. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 431–447. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Laud, P., Pankova, A.: Verifiable Computation in Multiparty Protocols with Honest Majority. Cryptology ePrint Archive, report 2014/060 (2014)

    Google Scholar 

  29. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. Cryptology ePrint Archive, report 2013/121 (2013)

    Google Scholar 

  30. Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis, Stanford University (1979)

    Google Scholar 

  31. Micali, S.: CS Proofs (Extended Abstract). In: FOCS, pp. 436–453. IEEE Computer Society (1994)

    Google Scholar 

  32. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computation. In: IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society (2013)

    Google Scholar 

  33. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  34. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: Johnson, D.S. (ed.) STOC, pp. 73–85. ACM (1989)

    Google Scholar 

  35. Setty, S.T.V., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-based verified computation a few steps closer to practicality. In: USENIX Security Symposium (2012)

    Google Scholar 

  36. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yao, A.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Laud, P., Pankova, A. (2014). Verifiable Computation in Multiparty Protocols with Honest Majority. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds) Provable Security. ProvSec 2014. Lecture Notes in Computer Science, vol 8782. Springer, Cham. https://doi.org/10.1007/978-3-319-12475-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12475-9_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12474-2

  • Online ISBN: 978-3-319-12475-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics