Skip to main content

Performance of Dental Composites in Restorative Dentistry

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites
  • 3143 Accesses

Abstract

Resin composites, also named resin-based composites, composite resins, or composites, contain four major components: an organic polymer, inorganic fillers, a coupling agent, and an initiator-accelerator system. Classification of the composite resins takes into account the consistency of the material (correlated with the filler/organic matrix ratio) and, further, the size of the fillers’ particles. The area of indications of the composite materials in dentistry covers a large range of domains: from direct and indirect restorative materials, veneers, provisional restorations, inlays, onlays, crowns, sealants, cements used in adhesive cementation of the composite or ceramic crowns and bridges, inlays, root canal posts, and composite teeth for dentures.

The present chapter emphasizes the characteristics of composite resins such as direct and indirect restorations, advantages and disadvantages, clinical indications and clinical protocols used to process them, clinical considerations regarding the composites properties, and practical problems that can be encountered when used.

Direct composites offer rapid, minimally invasive, single-session methods of treatment. Due to the large range of materials available on the market, the esthetic results may be excellent. The clinical choice of a direct composite is based on the priority that should be given to mechanical or esthetic characteristics: if the mechanical parameters are mostly important, the material showing the highest percentage of filler is selected; in the case of special esthetic needs, the particle size is the factor that influences the selection.

The indirect processed composite resins are alternatives for large restorations, on several teeth in a quadrant, when used to replace functional cusps, in patients with bruxism or parafunctional habits. Their advantages over the ceramic restorations include: repair capabilities, resilience for comfort and shock absorption, adjustable in the mouth, and no wear of opposing structures in functional contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. García AH, Martínez Lozano MA, Cabanes Vila J, Barjau Escribano A, Fos Galve P (2006) Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal 11(E):215–220

    Google Scholar 

  2. Marcos VA, Bergeron C, Murchison DF, Roeters J, Chan DCN (2013) Direct anterior restorations. In: Hilton TJ, Ferracane JL, Broome JC (eds) Summitt’s fundamentals of operative dentistry. A contemporary approach, 4th edn. Quintessence, Chicago

    Google Scholar 

  3. Powers JM, Sakaguchi RL (2006) Chapter 9: Resin composite restorative materials. In: Craig’s restorative dental materials, 12th edn. Mosby Elsevier, Philadelphia

    Google Scholar 

  4. Rawls HR, Esquivel-Upshaw JF (2003) Restorative resins. In: Anusavice KJ (ed) Phillips’ science of dental materials, 11th edn. Saunders, St Louis

    Google Scholar 

  5. Holter D, Frey H, Mulhaupt R (1997) Branched bismethacrylates based on Bis-GMA. A systematic route to low shrinkage composites. Polym Prepr 38:84–85

    Google Scholar 

  6. Ferracane JL (2011) Resin composite – state of the art. Dent Mater 27:29–38

    Article  Google Scholar 

  7. Weinmann W, Thalacker C, Guggenberger R (2005) Siloranes in dental composites. Dent Mater 21:68–74

    Article  Google Scholar 

  8. Xu HHK, Sun L, Weir MD, Antonucci JM, Takagi S, Chow LC et al (2006) Nano DCPA-whisker composites with high strength and Ca and PO(4) release. J Dent Res 85:722–727

    Article  Google Scholar 

  9. Xu HHK, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC et al (2010) Strong nanocomposites with Ca, PO4, and F release for caries inhibition. J Dent Res 89:19–28

    Article  Google Scholar 

  10. Xu HHK, Moreau JL, Sun L, Chow LC (2010) Novel CaF2 nanocomposite with high strength and fluoride release. J Dent Res 89:739–745

    Article  Google Scholar 

  11. Neumann MG, Miranda WG Jr, Schmitt CC, Rueggeberg FA, Correa IC (2005) Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent 33:525–532

    Article  Google Scholar 

  12. Choi KK, Ferracane JL, Hilton TJ, Charlton D (2000) Properties of packable dental composites. J Esthet Dent 12:216–226

    Article  Google Scholar 

  13. Cramer NB, Stansbury JW, Bowman CN (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90(4):402–416

    Article  Google Scholar 

  14. Klapdohr S, Moszner N (2005) New inorganic components for dental filling composites. Monatsh Chem 136:21–45

    Article  Google Scholar 

  15. Chen M-H (2010) Update on dental nanocomposites. J Dent Res 89:549–560

    Article  Google Scholar 

  16. Prodan DA, Gasparik C, Mada DC, Miclăuș V, Băciuț M, Dudea D (2014) Influence of opacity on the color stability of a nanocomposite. Clin Oral Invest. doi:10.1007/s00784-014-1315-1

    Google Scholar 

  17. Queiroz RS, Lima JPM, Malta DAMP, Rastelli ANS, Cuin A, Porto Neto ST (2009) Changes on transmittance mode of different composite resins. Mater Res 2:127–132

    Article  Google Scholar 

  18. Touati B, Miara P, Nathanson D (2000) Esthetic dentistry and ceramic restoration. Martin Dunitz, London

    Google Scholar 

  19. Dudea D, Varlan C (2013) Principii generale in estetica dentara si dento-faciala [General principles in dental and dent-facial esthetics]. In: Lazarescu F (ed) Incursiuni in Estetica dentara. SSER, Bucharest

    Google Scholar 

  20. Vanini L (2010) Conservative composite restorations that mimic nature. A step-by –step anatomical stratification technique. J Cosmet Dent 26(3):80–98

    Google Scholar 

  21. Eimar H, Marelli B, Nazhat SN, AbiNader S, Amir WM, Torres J, Albuquerque RF Jr, Tamimi F (2011) The role of enamel crystallography on tooth shade. J Dent 39(Suppl 3):e3–e10

    Article  Google Scholar 

  22. Villarroel M, Fall N, De Sousa AM, De Oliveira OB (2011) Direct esthetic restorations based on translucency and opacity of composite resins. J Esthet Restor Dent 23:73–88

    Article  Google Scholar 

  23. Dietschi D, Campanile G, Holz J, Meyer JM (1994) Comparison of the color stability of ten new-generation composites: an in vitro study. Dent Mater 10:353–362

    Article  Google Scholar 

  24. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B (2007) Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28:3757–3785

    Article  Google Scholar 

  25. Hosoya Y (1999) Five-year color changes of light-cured resin composites: influence of light-curing times. Dent Mater 15:268–274

    Article  Google Scholar 

  26. Kolbeck C, Rosentritt M, Lang R, Handel G (2006) Discoloration of facing and restorative composites by UV-irradiation and staining food. Dent Mater 22:63–68

    Article  Google Scholar 

  27. Vichi A, Ferrari M, Davidson CL (2004) Color and opacity variations in three different resin-based composite products after water aging. Dent Mater 20:530–534

    Article  Google Scholar 

  28. Sabatini C, Campillo M, Aref J (2012) Color stability of ten resin-based restorative materials. J Esthet Restor Dent 24:185–199

    Article  Google Scholar 

  29. Jain V, Platt JA, Moore K, Spohr AM, Borges GA (2013) Color stability, gloss, and surface roughness of indirect composite resins. J Oral Sci 55(1):9–15

    Article  Google Scholar 

  30. Nahsan FPS, Mondelli RFL, Franco EB, Naufel FS, Ueda JK, Schmitt VL, Baseggio W (2012) Clinical strategies for esthetic excellence in anterior tooth restorations: understanding color and composite resin selection. J Appl Oral Sci 20(2):151–156

    Article  Google Scholar 

  31. Ryan E-A, Tam LE, McComb D (2010) Comparative translucency of esthetic composite resin restorative materials. J Can Dent Assoc 76:a84

    Google Scholar 

  32. Araújo EM, Baratieri LN, Monteiro S et al (2003) Direct adhesive restoration of anterior teeth: part 3 (procedural consideration). Pract Proced Aesthet Dent 15:433–437

    Google Scholar 

  33. Fahl N, Denehy GE, Jackson RD (1995) Protocol for predictable restoration of anterior teeth with composite resins. Pract Period Aesthet Dent 7(8):13–22

    Google Scholar 

  34. Fahl N (2006) A polychromatic composite layering approach for solving a complex class IV/direct veneer-diastema combination: part I. Pract Proced Aesthet Dent 18(10):641–645

    Google Scholar 

  35. Paravina RD, Westland S, Kimura M, Powers JM, Imai FH (2006) Color interaction of dental materials: blending effect of layered composites. Dent Mater 22(10):903–908

    Article  Google Scholar 

  36. Paravina RD, Westland S, Imai FH, Kimura M, Powers JM (2006) Evaluation of blending effect of composite related to restoration size. Dent Mater 22(4):299–307

    Article  Google Scholar 

  37. Sadowsky SJ (2006) An overview of treatment considerations for esthetic restorations: a review of the literature. J Prosthet Dent 96:433–442

    Article  Google Scholar 

  38. Hilton TJ, Broome JC (2013) Direct posterior esthetic restorations. In: Hilton TJ, Ferracane JL, Broome JC (eds) Summitt’s fundamentals of operative dentistry. A contemporary approach, 4th edn. Quintessence, Chicago

    Google Scholar 

  39. Hinoura K, Setcos JC, Phillips RW (1988) Cavity design and placement techniques for class 2 composites. Oper Dent 13:12–19

    Google Scholar 

  40. Opdam NJ, Roeters JJ, Peters TC, Burgersdijk RC, Kuijs RH (1996) Consistency of resin composites for posterior use. Dent Mater 12:350–354

    Article  Google Scholar 

  41. Lyons K (2003) Direct placement restorative materials for use in posterior teeth: the current options. N Z Dent J 99:10–15

    Google Scholar 

  42. Johnston WM, Ma T, Kienle BH (1995) Translucency parameter of colorants for maxillofacial prostheses. Int J Prosthodont 8:79–86

    Google Scholar 

  43. Ghinea R, Perez MM, Herrera LJ, Rivas MJ, Yebra A, Paravina RD (2010) Color difference thresholds in dental ceramics. J Dent 38(Suppl 2):e57–e64

    Article  Google Scholar 

  44. Paravina RD, Kimura M, Powers JM (2006) Color compatibility of resin composites of identical shade designation. Quintessence Int 37:713–719

    Google Scholar 

  45. Peyton JH (2004) Finishing and polishing techniques: direct composite resin restorations. Pract Proced Aesthet Dent 16(4):293–298

    Google Scholar 

  46. Lee YK, Lub H, Powers JM (2006) Changes in opalescence and fluorescence properties of resin composites after accelerated aging. Dent Mater 22:653–660

    Article  Google Scholar 

  47. Feilzer AJ, de Gee AJ, Davidson CL (1988) Curing contraction of composites and glass-ionomer cements. J Prosthet Dent 59:297–300

    Article  Google Scholar 

  48. Bryant RW, Mahler DB (1986) Modulus of elasticity in bending of composites and amalgams. J Prosthet Dent 56:243–248

    Article  Google Scholar 

  49. Van Dijken JW (2000) Direct resin composite inlays/onlays: an 11 year follow-up. J Dent 28:299–306

    Article  Google Scholar 

  50. Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Oda K, Tsuchitani Y (1995) Relationship between the degree of conversion and internal discoloration of light-activated composites. Dent Mater 14(1):23–30

    Article  Google Scholar 

  51. Ferracane JL, Berge XH, Condor JR (1998) In vitro aging of dental composites in water effect the degree of conversion, filler volume and filler/matrix coupling. J Biomed Mater Res 42:465–472

    Article  Google Scholar 

  52. Bayne SC, Taylor DF, Heymann HO (1992) Protection hypothesis for composite wear. Dent Mater 8:305–309

    Article  Google Scholar 

  53. Al Kheraif AA, Qasim SS, Ramakrishnaiah R, Rehman I (2013) Effect of different beverages on the color stability and degree of conversion of nano and microhybrid composites. Dent Mater J 32(2):326–331

    Article  Google Scholar 

  54. Ren YF, Feng L, Serban D, Malmstrom HS (2012) Effects of common beverage colorants on color stability of dental composite resins: the utility of thermocycling stain challenge model in vitro. J Dent 40(Suppl 1):e48–e56

    Article  Google Scholar 

  55. Lee BS, Huang SH, Chiang YC, Chien YS, Mou CY, Lin CP (2008) Development of in vitro tooth staining model and usage of catalysts to elevate the effectiveness of tooth bleaching. Dent Mater 24:57–66

    Article  Google Scholar 

  56. Yazici AR, Celik C, Dayangac B, Ozgunaltay G (2007) The effect of curing units and staining solutions on the color stability of resin composites. Oper Dent 32:616–622

    Article  Google Scholar 

  57. One-visit biomimetic composite resin inlays/onlays. www.dentistrytoday.com. June 2010

  58. Kois JC (1996) The restorative periodontal interface: biological parameters. Periodontology 2000(11):29–38

    Article  Google Scholar 

  59. Roberson TM, Heymann HO, Swift EJ (2002) Sturdevant’s art and science of operative dentistry, 4th edn. Mosby, St Louis

    Google Scholar 

  60. Schlichting LH, Maia HP, Baratieri LN, Magne P (2011) Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J Prosthet Dent 105:217–226

    Article  Google Scholar 

  61. Rekow ED (2006) Dental CAD/CAM systems – a 20-year success story. J Am Dent Assoc 137:5s–6s

    Article  Google Scholar 

  62. Christensen GJ (2008) Considering tooth-colored inlays and onlays versus crowns. J Am Dent Assoc 139:617–620

    Article  Google Scholar 

  63. Thordrup M, Isidor F, Hörsted-Bindslev P (2006) A prospective clinical study of indirect and direct composite and ceramic inlays: ten-year results. Quintessence Int 37(2):139–144

    Google Scholar 

  64. Peumans M, Voet M, De Munck J, Van Landuyt K, Van Ende A, Van Meerbeek B (2013) Four-year clinical evaluation of a self-adhesive luting agent for ceramic inlays. Clin Oral Invest 17:739–750

    Article  Google Scholar 

  65. Belvedere P, Turner WE (2002) Direct fiber-reinforcement composite bridge. Dent Today 21:88–94

    Google Scholar 

  66. Van Heumen CM, van Dijken WV, Tanner J, Pikaar R, Lassila VJ (2009) 5 year survival of 3 unit fiber-reinforced composite fixed partial denture in the anterior area. Dent Mater 25:820–827

    Article  Google Scholar 

  67. Khatavkar RA, Hegde VS (2010) A conservative treatment option for a single missing premolar using a partial veneered restoration with the SR Adoro system. J Conserv Dent 13(2):102–105. doi:10.4103/0972-0707.66722

    Article  Google Scholar 

  68. Beuer F, Schweiger J, Edelhoff D (2008) Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 204(9):505–511

    Article  Google Scholar 

  69. Birnbaum NS, Aaronson HB (2008) Dental impressions using 3D digital scanners: virtual becomes reality. Compedium 29(8):494–505

    Google Scholar 

  70. Feuerstein P, Puri S (2009) An overview of CAD/CAM and digital impressions. Oral Health 99(9):65–71

    Google Scholar 

  71. Davidowitz G, Kotick PG (2011) The use of CAD/CAM in dentistry. Dent Clin N Am 55(3):559–570

    Article  Google Scholar 

  72. Arnetzl GV, Arnetzl G (2013) Reliability of nonretentive all-ceramic CAD/CAM overlays. Int J Comput Dent 15(3):185–197

    Google Scholar 

  73. Ruse ND, Sadoun MJ (2014) Resin-composite blocks for dental CAD/CAM applications. J Dent Res 93:1232–1235. doi:10.1122/0022034514553967

    Article  Google Scholar 

  74. Coldea A, Swain MV, Thiel N (2013) Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 29:419–426

    Article  Google Scholar 

  75. He LH, Swain M (2011) A novel polymer infiltrated ceramic dental material. Dent Mater 27(6):527–534

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Dudea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Dudea, D., Alb, C., Culic, B., Alb, F. (2016). Performance of Dental Composites in Restorative Dentistry. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_53

Download citation

Publish with us

Policies and ethics