Skip to main content

Radiogenic Isotopes in Dating of Natural Waters and Sediments

  • Chapter
  • First Online:
Nuclear Geophysics

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1261 Accesses

Abstract

The production and distribution of radiogenic (natural) radioisotopes and the distribution and separation of uranium, thorium and radium isotopes (238U, 235U, 234U, 232Th, 230Th, 238Th, 224Ra, and 226Ra) in natural waters are discussed in this chapter. Methods of dating surface waters, groundwaters, closed reservoirs and bottom sediments are analysed. The values of the radiogenic isotopes in waters are practically independent of chemical factors. It is mainly determined by the uranium distribution in rocks of a water-bearing complex. Therefore, the uranium isotope ratio serves as some kind of natural indicator of water of a certain water-bearing complex. This fact makes it possible to determine patterns of natural water filtration; to distinguish the rock of the water-bearing complex, to construct models of groundwater circulation, to establish the mixing proportions of waters of different complexes and to examine the interrelations between waters of different complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev FA, Bondarev LG, Zverev VL, Spiridonov AI (1973) Influence of precipitation radioactivity on isotopic composition of uranium in the Issyk-Kul Lake in connection with the age determination. Geokhimiya 5:787–780

    Google Scholar 

  • Andreev PF, Rogozina EM, Rogozin YuM (1960) Extraction of uranium from rocks by ultrasonic action. J Phys Chem 34:2429–2430

    Google Scholar 

  • Baturin GN (1968) Relationship in forms of uranium migration in some rivers of the USSR territory. Dokl AN SSSR 17:698–701

    Google Scholar 

  • Baturin GN, Kochenov AV (1969) Uranium migration in rivers and its residence time in waters of oceans, rivers and lakes. Geokhimiya 6:715–723

    Google Scholar 

  • Baturin GN, Kochenov AV, Kovaleva SA (1966) Some peculiarities of uranium distribution in the Black Seaf water. Dokl AN SSSR 166:698–700

    Google Scholar 

  • Bath AH, Edmunds WM, Andrews JN (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In: Isotope hydrology 1978: proceedings of a symposium, IAEA, Vienna, pp 545–566

    Google Scholar 

  • Bernat M, Goldberg ED (1969) Thorium isotopes in the marine environment. Earth Planet Sci Lett. 5:308–312

    Article  Google Scholar 

  • Bhat SG, Krishnaswamy S, Lal D, Moore WS (1969) 234Th/238U ratios in the ocean. Earth Planet Sci Lett 5:483–491

    Article  Google Scholar 

  • Blanchard RL, Oakes D (1970) Relationship between uranium and radium in coastal marine shells and their environment. J Geophys Res 70:2911–2921

    Article  Google Scholar 

  • Broecker WS, Kaufman A (1970) Near-surface and near-bottom radon results for the 1969 North Pacific Geosecs Station. J Geophys Res 75:7679–7681

    Article  Google Scholar 

  • Broecker WS, Li YH, Cromwell J (1967) Radium-226 and radon-222 concentration in Atlantic and Pacific oceans. Science 158:1307–1310

    Article  Google Scholar 

  • Broecker WS, Goddard J, Sarmiento L (1976) The distribution of 226Ra in Atlantic ocean. Earth Planet Sci Lett 32:220–238

    Article  Google Scholar 

  • Cerrai E, Lonati R, Gazzarini F, Tongeorgi E (1965) Il metodo ionio-uranio per la determinazione della’eta dei minerali vulcanici recenti. Rend Della Soc Mineralog Italia 21:109–115

    Google Scholar 

  • Chalov PI (1959) Isotope ratio 234U/238U in some secondary minerals. Gokhimiya 2:165–170

    Google Scholar 

  • Chalov PI (1968) Dating by non-equilibrium uranium. Ilim, Frunze

    Google Scholar 

  • Chalov PI, Tuzova TV, Musin YaA (1964) Isotope ratio of 234U/238U in natural waters and its application in nuclear geochronology. Geokhimiya 5:404–413

    Google Scholar 

  • Chalov PI, Merkulova KI, Tuzova TV (1966a) Absolute age of the Aral Sea determined by nonequilibrium uranium. Dokl AN SSSR 166:89–91

    Google Scholar 

  • Chalov PI, Merkulova KI, Tuzova TV (1966b) Ratio of 234U/238U in water and bottom sediments of the Aral Sea and its absolute age. Geokhimiya 12:1431–1438

    Google Scholar 

  • Chalov PI, Svetlichnaya NA, Tuzova TV (1970) The results of absolute age determination of Balkhash Lake by nonequilibrium uranium. Dokl AN SSSR 195:190–192

    Google Scholar 

  • Chalov PI, Svetlichnaya NA, Tuzova TV (1973) Application of nonequilibrium uranium in establishing relationship between continental reservoirs in the past. Geokhimiya 6:897–902

    Google Scholar 

  • Cherdyntsve VV (1955) Isotopic composition of radioelements in natural objects in connection with their geochronology. In: Annals of the third commission on absolute determination of geologic age. Nauka, Moskva, pp 175–233

    Google Scholar 

  • Cherdyntsve VV (1969) Uranium-234. Atomizdat, Moscow

    Google Scholar 

  • Cherdyntsve VV (1973) Nuclear vulcanology. Nauka, Moscow

    Google Scholar 

  • Cherdyntsev VV, Kazachevsky IV, Kuzmina EA (1963) Isotopic composition of uranium and thorium in zone of hypergeneze. Geokhimiya 3:254–265

    Google Scholar 

  • Cherdyntsev VV, Kazachevsky IV, Kuzmina EA (1965) The age of Pleistocene carbonate formations by uranium isotopes. Geokhimiya 9:1085–1092

    Google Scholar 

  • Cherdyntsev VV, Kazachevsky IV, Kislitsyna GI et al (1966) Nonequilibrium uranium in carbonate deposits and their age. Geokhimiya 2:1939–1946

    Google Scholar 

  • Cherdyntsev VV, Kazachevsky IV, Kuzmina EA et al (1967) Absolute geochronology of Cenozoic deposits. Proc Acad Sci USSR Ser Geol 1:11–20

    Google Scholar 

  • Cherdyntsev VV, Kuptsov VM, Kuzmina EA, Zverev VL (1968) Radioisotopes and protactinium age of neovulcanic rocks of Caucasus. Geokhimiya 1:77–85

    Google Scholar 

  • Chirkov AM (1971) 222Rn content in Kamchatka’s hydrothems. Dokl AN SSSR 199:202–203

    Google Scholar 

  • Chung YC (1974a) Transient excess-radon profile in Pacific bottom water. Earth Planet Sci Lett 21:295–300

    Article  Google Scholar 

  • Chung YC (1974b) Radium-226 and Ra-Ba relationships in Antarctic and Pacific waters. Earth Planet Sci Lett 23:125–135

    Article  Google Scholar 

  • Chung YC (1976) A deep 226Ra maximum in the northeast Pacific. Earth Planet Sci Lett 32:249–257

    Article  Google Scholar 

  • Chung YC, Craig H, Ku TL, Goddard J, Broecker WS (1974) Radium226 measurements from three Geosecs intercalibration stations. Earth Planet Sci Lett 23:116–124

    Article  Google Scholar 

  • Crozaz G (1967) Datation des glaciers par le plomb-210. In: Radioactive dating and methods of low-level count: proc symp. IAEA, Vienna, pp 385–392

    Google Scholar 

  • Ferronsky VI, Polyakov VA (2012) Isotopes in the Earth's hydrosphere. Springer, Dordrecht

    Book  Google Scholar 

  • Goldberg E (1963) Geochronology with Lead-210. In: Radioactive dating: pros symp. IAEA, Vienna, pp 121–131

    Google Scholar 

  • Gorbushina LV, Salmenkova NA, Tyminsky VG (1967) The ages and mixture proportions of mineral waters in the Tashkent artesian basin. Izv Vissh Uch Zaved Ser Geol Razv 2:92–95

    Google Scholar 

  • Gorbushina LV, Gratsiansky VG, Tyminsky VG (1968) The experience with ultrasound use for recovery of thoron and actinon from solutions. Radiokhimiya 10:495–496

    Google Scholar 

  • Gorbushina LV, Tyminsky VG, Spiridonov AI (1972) On the mechanism of radiohydrogeological anomalies appearance in seismic regions and their significance in earthquake prediction. Sovetskaya Geologiya 1:153–156

    Google Scholar 

  • Grashchenko SM, Nikolaev DS, Kolyadin LV et al (1960) Radium content in the Black Sea waters. Dokl AN SSSR 132:1171–1172

    Google Scholar 

  • Higashi S (1959) Estimation of microgram amount of Th in sea water. J Oceanogr Soc Jpn 15:64

    Google Scholar 

  • Hoang CT, Servant J (1972) Le flux de radon de la mer. CR Acad Sci 274(24):1321–1349

    Google Scholar 

  • Joshi LV, Mahadevan TN (1967) Radiochemical determination of lead-210 concentrations in ground level air in India. Nucl Radiat Chem Pros 1:519–523

    Google Scholar 

  • Junge CE (1963) Air chemistry and radioactivity. Academic, New York

    Google Scholar 

  • Kaufman A (1969) The 232Th concentration on surface ocean water. Geochim Cosmochim Acta 33:717–724

    Article  Google Scholar 

  • Kaufman A, Broeker W (1965) Comparison of 230Th and 14C ages for carbonate materials from lakes Lachontan and Bonneville. J Geophys Res 70:4039–4054

    Article  Google Scholar 

  • Kaufman MI, Rydell HS, Osmond JK (1969) 234U/238U disequilibrium as an air to hydrologic study of the Floridian aquifer. J Hydrol 9:374–386

    Article  Google Scholar 

  • Kaufman A, Trier R, Broecker WS, Feely HW (1973) Distribution of 228Ra in the world ocean. J Geophys Res 78:8827–8848

    Google Scholar 

  • Khristianov VK, Korchuganov BN (1971) Radon content in the Upper Volga River waters. Geokhimiya 4:492–496

    Google Scholar 

  • Kigoshi K (1973) Uranium 238/234 disequilibrium and age of underground water. Working paper of the IAEA panel meet, IAEA, Vienna

    Google Scholar 

  • Knauss KG, Ku TL, Moore WS (1978) Radium and thorium isotopes in the surface waters of the east Pacific and coastal Southern California. Earth Planet Sci Lett 39:235–249

    Article  Google Scholar 

  • Kochenov AV, Baturin PN (1967) Uranium distribution in the Aral Sea sediments. Oceanology 7:623–627

    Google Scholar 

  • Ku TL, Lin MC (1976) 226Ra distribution in the Atlantic ocean. Earth Planet Sci Lett 32:236–248

    Article  Google Scholar 

  • Ku TL, Knauss KG, Mathieu GG (1977) Uranium in open ocean: concentration and isotopic composition. Deep-sea Res 24:1005–1007

    Article  Google Scholar 

  • Kuptsov VM, Cherdyntsev VV (1968) Radon and thoron in fumarole gases. Dokl AN SSSR 2:436–438

    Google Scholar 

  • Kuptsov VM, Cherdyntsev VV (1969) Uranium and thorium decay products in the USSR active volcanism. Geokhimiya 6:643–658

    Google Scholar 

  • Kuznetsov YuV (1962) On the forms of ionium and thorium in the oceans. Geokhimiya 2:177–184

    Google Scholar 

  • Kuznetsov YuV, Elizarova AN, Frenklikh MS (1966a) Study of sedimentation in oceanic waters by 231P and 230Th isotopes. Radiochemistry 8:459–468

    Google Scholar 

  • Kuznetsov YuV, Elizarova AN, Frenklikh MS (1966b) Protactinium and thorium content in oceanic waters. Radiochemistry 8:455–458

    Google Scholar 

  • Kuznetsov Yu, Legin VK, Lisitsin AP et al (1967) Radioactivity of oceanic suspension, 2. Uranium in oceanic suspension. Radiochemistry 9:498–499

    Google Scholar 

  • Li YH, Ku TL, Mathieu GG, Wolgemuth K (1973) Barium in the Antarctic ocean and implications regarding the marine geochemistry of Ba and 226Ra. Earth Planet Sci Lett 19:352–358

    Article  Google Scholar 

  • Li YH, Mathieu GG, Biscye P, Simpson HJ (1977) The flux of 226Ra from estuarine and continental shell sediments. Earth Planet Sci Lett 37:237–241

    Article  Google Scholar 

  • Moore WS (1969) Measurement of 228Ra and 228Th in the sea water. J Geophys Res 74:694–704

    Article  Google Scholar 

  • Nikolaev SD, Lazarev KF, Grashchenko SM (1961) Thorium isotopes content in the Asov Sea waters. Dokl AN SSSR 138:674–676

    Google Scholar 

  • Nikolaev SD, Lazarev KF, Korn OP, Drozhin VM (1966) Geochemical balance of radioactive elements in the Black sea and Asov sea basins: 1. Uranium balance. Radiochemiya 11:688–698

    Google Scholar 

  • Nozaki Y, Tsunogai S (1976) 226Ra, 210Pb, and 210Po distribution in the western North Pacific. Earth Planet Sci Lett 32:313–321

    Article  Google Scholar 

  • Nozaki Y, Thompson J, Turekian KK (1976) The distribution of 210Pb and 210Po in the surface waters of the Pacific ocean. Earth Planet Sci Lett 32:304–312

    Article  Google Scholar 

  • Osmond JK, Rydell HS, Kaufman MI (1968) Uranium disequilibrium in groundwater: an isotope delution approach in hydrologic investigations. Science 162:997–999

    Article  Google Scholar 

  • Pearson DH, Cambray RS, Spiser GS (1966) Lead-210 and polonium-210 in the atmosphere. Tellus 18:427–433

    Article  Google Scholar 

  • Rona D, Akers LK, Noakes JE, Supernew I (1965) Geochronology in the Gulf of Mexico. Prog Oceanogr 3:289–295

    Google Scholar 

  • Sackett WM (1963) Geochemistry of ocean water. Trans Am Geophys Union 44:483–485

    Google Scholar 

  • Sackett WM, Mo R, Sapaldin RF, Exnet ME (1973) A revolution of the marine geochemistry of uranium. In: Radioactive contamination of the marine environment: proc symp, IAEA, Vienna, pp 757–769

    Google Scholar 

  • Sarmiento JL, Feely HW (1976) The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea. Earth Planet Sci Lett 32:357–370

    Article  Google Scholar 

  • Shannou LV, Cherry RD, Orren MJ (1970) Polonium-210 and lead-210 in the marine environment cycles. Geochim Cosmochim Acta 34:701–711

    Article  Google Scholar 

  • Shukolyukov YuA (1970) Uranium nuclear fssion in nature. Atomizdat, Moskva

    Google Scholar 

  • Shukolyukov YuA, Komarov AN (1966) Possibilities of paleothermometry by uranium fission tracks. Izv AN SSSR Ser Geol 9:137–141

    Google Scholar 

  • Spiridonov AI, Tyminsky VG (1971) On 234U/238U ratio variation in groundwater. Izv AN SSSR Ser Phys Zem 3:91–93

    Google Scholar 

  • Starik IE (1961) Nuclear geochronology. Izd AN SSSR. Moscow-Leningrad

    Google Scholar 

  • Starik IE, Kolyadin LB (1957) On the conditions of uranium existance in oceanic water. Geokhimiya 3:204–213

    Google Scholar 

  • Starik IE, Melikova OS (1957) Emanation ability of minerals. Trudy Radievogo Inst 5:184–202

    Google Scholar 

  • Starik IE, Lazarev KF, Nikolaev DS et al (1959) Thorium isotope concentration in the Black Sea waters. Dokl AN SSSR 129:919–921

    Google Scholar 

  • Styro BI, Shpirkauskayte IK, Kuptsov VM (1970) 238U, 232Th and 239Pu altitude distribution in atmospheric precipitation. At Energ 29:135–136

    Article  Google Scholar 

  • Sultankhodzhaev AN, Tyminsky GV, Taneev RN (1970) Non-equilibrium uranium in groundwaters of the Tashkent artesian basin. Uzbek Geol J 3:75–77

    Google Scholar 

  • Syromyatnikov NG (1961) Uranium, thorium and radium isotope migration and interpretation of the radioactive anomalies. Izd AN KazSSR, Alma-Ata

    Google Scholar 

  • Thurber DL (1963) Natural variations in the ratio 234U/238U. In: Radioactive dating: proceedings of a symposium, IAEA, Vienna, pp 113–120

    Google Scholar 

  • Thurber DL (1965) The concentration of some natural radioelements in the waters of the Great basin. Bull Volcanol 28:195–201

    Article  Google Scholar 

  • Titaeva NA (1966) On the possibilities of orogenic sediments absolute age determination by ionium method. Geokhimiya 10:1183–1192

    Google Scholar 

  • Titaeva NA, Filonov VA, Ovchenkov VYa et al (1973) Uranium and thorium isotopes behaviour in crystalline rocks-surface water system for cold humid climate conditions. Geokhimiya 10:1522–1528

    Google Scholar 

  • Tokarev AV, Shcherbakov AV (1956) Radiohydrogeology. Gosgeoltekhizdat, Moskva

    Google Scholar 

  • Tsunogai Sh, Nozaki Y (1971) Lead-210 and plutonium-210 in the surface water of the Pacific. Geochim J 5:165–173

    Article  Google Scholar 

  • Vinogradov AP (ed) (1963) The main features of uranium geochemistry. Izd AN SSSR, Moskva

    Google Scholar 

  • Vinogradov AP (1967) Introduction to ocean geochemistry. Nauka, Moskva

    Google Scholar 

  • Voytkevich GV (1961) Radiogeology problems. Gosgeoltekhizdat, Moskva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ferronsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferronsky, V. (2015). Radiogenic Isotopes in Dating of Natural Waters and Sediments. In: Nuclear Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-12451-3_11

Download citation

Publish with us

Policies and ethics