Skip to main content

Design of Experiments for Screening

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs, and systematic fractional replicate designs. Generic issues of aliasing, bias, and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are addressed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modeling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, B., Chipman, H., Vijayan, K.: Some risks in the construction and analysis of supersaturated designs. Technometrics, 41, 135–141 (1999).

    Article  Google Scholar 

  2. Andres, T.H., Hajas, W.C.: Using iterated fractional factorial design to screen parameters in sensitivity analysis of a probabilistic risk assessment model. In: Proceedings of Joint International Conference on Mathematical Methods and Supercomputing in Nuclear Applications, Karlsruhe, pp. 328–340 (1993)

    Google Scholar 

  3. Ankenman, B.E., Cheng, R.C.H., Lewis, S.M.: Screening for dispersion effects by sequential bifurcation. ACM Trans. Model. Comput. Simul. 25 pages 2:1 - 2:27 (2014)

    Google Scholar 

  4. Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS, 2nd edn. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  5. Ba, S.: SLHD: Maximin-Distance (Sliced) Latin Hypercube Designs. http://CRAN.R-project.org/package=SLHD (2015). R package version 2.1-1

  6. Ba, S., Brenneman, W.A., Myers, W.R.: Optimal sliced Latin hypercube designs. Technometrics 57, 479–487 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ba, S., Joseph, R.: MaxPro: Maximum Projection Designs. http://CRAN.R-project.org/package=MaxPro (2015). R package version 3.1-2

  8. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Bettonvil, B.: Factor screening by sequential bifurcation. Commun. Stat. Simul. Comput. 24, 165–185 (1995)

    Article  MATH  Google Scholar 

  10. Bettonvil, B., Kleijnen, J.P.C.: Searching for important factors in simulation models with many factors: sequential bifurcation. Eur. J. Oper. Res. 96, 180–194 (1996)

    Article  MATH  Google Scholar 

  11. Booth, K.H.V., Cox, D.R.: Some systematic supersaturated designs. Technometrics 4, 489–495 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boukouvalas, A., Gosling, J.P., Maruri-Aguilar, H.: An efficient screening method for computer experiments. Technometrics 56, 422–431 (2014)

    Article  MathSciNet  Google Scholar 

  13. Bowman, V.E., Woods, D.C.: Weighted space-filling designs. J. Simul. 7, 249–263 (2013)

    Article  Google Scholar 

  14. Box, G.E.P.: Discussion of the papers of Satterthwaite and Budne. Technometrics 1, 174–180 (1959)

    Article  Google Scholar 

  15. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Discovery and Innovation, 2nd edn. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  16. Box, G.E.P., Meyer, R.D.: An analysis for unreplicated fractional factorials. Technometrics 28, 11–18 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. B 13, 1–45 (1951)

    MathSciNet  MATH  Google Scholar 

  18. Brenneman, W.A.: Comment: simulation used to solve tough practical problems. Technometrics 56, 19–20 (2014)

    Article  MathSciNet  Google Scholar 

  19. Bulutoglu, D.A., Cheng, C.S.: Construction of E(s 2)-optimal supersaturated designs. Ann. Stat. 32, 1162–1678 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  21. Butler, N.A.: Supersaturated Latin hypercube designs. Commun. Stat. Theory Methods 34, 417–428 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518 (2007)

    Article  Google Scholar 

  23. Campolongo, F., Kleijnen, J.P.C., Andres, T.H.: Screening methods. In: Saltelli, A., Chan, K., Scott, E.M. (eds.) Sensitivity Analysis, chap. 4 Wiley, Chichester (2000)

    Google Scholar 

  24. Candes, E.O., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35, 2313–2351 (2007)

    Google Scholar 

  25. Cheng, C.S., Tang, B.: A general theory of minimum aberration and its applications. Ann. Stat. 33, 944–958 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chipman, H.A., Hamada, M.S., Wu, C.F.J.: A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing. Technometrics 39, 372–381 (1997)

    Article  MATH  Google Scholar 

  27. Claeys-Bruno, M., Dobrijevic, M., Cela, R., Phan-Tan-Luu, R., Sergent, M.: Supersaturated designs for computer experiments: comparison of construction methods and new methods of treatment adopted to the high dimensional problem. Chemom. Intell. Lab. Syst. 105, 137–146 (2011)

    Article  Google Scholar 

  28. Cotter, S.C.: A screening design for factorial experiments with interactions. Biometrika 66, 317–320 (1979)

    Article  MathSciNet  Google Scholar 

  29. Damblin, G., Couplet, M., Iooss, B.: Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties. J. Simul. 7, 276–289 (2013)

    Article  Google Scholar 

  30. Daniel, C.: Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 1, 311–341 (1959)

    Article  MathSciNet  Google Scholar 

  31. Dean, A.M., Lewis, S.M.: Comparison of group screening strategies for factorial experiments. Comput. Stat. Data Anal. 39, 287–297 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dean, A.M., Lewis, S.M. (eds.): Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics. Springer, New York (2006)

    MATH  Google Scholar 

  33. Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14, 436–440 (1943)

    Article  Google Scholar 

  34. Draguljić, D., Woods, D.C., Dean, A.M., Lewis, S.M., Vine, A.E.: Screening strategies in the presence of interactions (with discussion). Technometrics 56, 1–28 (2014)

    Article  MathSciNet  Google Scholar 

  35. DuMouchel, W., Jones, B.A.: A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model. Technometrics 36, 37–47 (1994)

    MATH  Google Scholar 

  36. Dupuy, D., Corre, B., Claeys-Bruno, M., Sergent, M.: Comparison of different screening methods. Case Stud. Bus. Ind. Gov. Stat. 5, 115–125 (2014)

    Google Scholar 

  37. Durrande, N., Ginsbourger, D., Roustant, O.: Additive covariance kernels for high-dimensional Gaussian process modeling. Annales de la Faculté de Sciences de Toulouse 21, 481–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fang, K.T., Lin, D.K.J., Winker, P., Zhang, Y.: Uniform design: theory and application. Technometrics 42, 237–248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Finney, D.J.: The fractional replication of factorial arrangements. Ann. Eugen. 12, 291–301 (1943)

    Article  MathSciNet  Google Scholar 

  40. Franco, J., Dupuy, D., Roustant, O., Damblin, G., Iooss, B.: DiceDesign: Design of Computer Experiments. http://CRAN.R-project.org/package=DiceDesign (2014). R package version 1.6

  41. George, E.I., McCulloch, R.E.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88, 881–889 (1993)

    Article  Google Scholar 

  42. Gilmour, S.G.: Factor screening via supersaturated designs. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 169–190. Springer, New York (2006)

    Chapter  Google Scholar 

  43. Gramacy, R.B., Lee, H.K.H.: Bayesian treed Gaussian process models with an application to computer modeling. J. Am. Stat. Assoc. 103, 1119–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hall, M.J.: Combinatorial Theory. Blaisdell, Waltham (1967)

    MATH  Google Scholar 

  45. Hamada, M., Balakrishnan, N.: Analyzing unreplicated factorial experiments: a review with some new proposals. Statistica Sinica 8, 1–41 (1998)

    MathSciNet  MATH  Google Scholar 

  46. Hamada, M., Wu, C.F.J.: Analysis of designed experiments with complex aliasing. J. Qual. Technol. 24, 130–137 (1992)

    Google Scholar 

  47. Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 11, 311–334 (1982)

    Article  MATH  Google Scholar 

  48. James, G.M., Radchenko, P., Lv, J.: DASSO: connections between the Dantzig selector and lasso. J. R. Stat. Soc. B 71, 127–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Inference 134, 268–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Johnson, M., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance design. J. Stat. Plan. Inference 26, 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  51. Jones, B.A., Lin, D.K.J., Nachtsheim, C.J.: Bayesian D-optimal supersaturated designs. J. Stat. Plan. Inference 138, 86–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jones, B.A., Majumdar, D.: Optimal supersaturated designs. J. Am. Stat. Assoc. 109, 1592–1600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jones, B.A., Nachtsheim, C.J.: A class of three-level designs for definitive screening in the presence of second-order effects. J. Qual. Technol. 43, 1–15 (2011)

    Google Scholar 

  54. Joseph, R., Gul, E., Ba, S.: Maximum projection designs for computer experiments. Biometrika 102, 371–380 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments, 2nd edn. Springer, New York (2015)

    Book  MATH  Google Scholar 

  56. Lenth, R.V.: Quick and easy analysis of unreplicated factorials. Technometrics 31, 469–473 (1989)

    Article  MathSciNet  Google Scholar 

  57. Lewis, S.M., Dean, A.M.: Detection of interactions in experiments on large numbers of factors (with discussion). J. R. Stat. Soc. B 63, 633–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Li, W.: Screening designs for model selection. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 207–234. Springer, New York (2006)

    Chapter  Google Scholar 

  59. Li, W.W., Wu, C.F.J.: Columnwise-pairwise algorithms with applications to the construction of supersaturated designs. Technometrics 39, 171–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  60. Li, X., Zhao, T., Wong, L., Yuan, X., Liu, H.: flare: Family of Lasso Regression. http://CRAN.R-project.org/package=flare (2014). R package version 1.5.0

  61. Lin, D.K.J.: A new class of supersaturated designs. Technometrics 35, 28–31 (1993)

    Article  Google Scholar 

  62. Lin, D.K.J.: Generating systematic supersaturated designs. Technometrics 37, 213–225 (1995)

    Article  MATH  Google Scholar 

  63. Linkletter, C., Bingham, D., Hengartner, N., Hidgon, D., Ye, K.Q.: Variable selection for Gaussian process models in computer experiments. Technometrics 48, 478–490 (2006)

    Article  MathSciNet  Google Scholar 

  64. Liu, Y., Dean, A.M.: K-circulant supersaturated designs. Technometrics 46, 32–43 (2004)

    Article  MathSciNet  Google Scholar 

  65. Liu, M., Fang, K.T.: A case study in the application of supersaturated designs to computer experiments. Acta Mathematica Scientia 26B, 595–602 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Loeppky, J.L., Sacks, J., Welch, W.J.: Choosing the sample size of a computer experiment: a practical guide. Technometrics 51, 366–376 (2009)

    Article  MathSciNet  Google Scholar 

  67. Marley, C.J., Woods, D.C.: A comparison of design and model selection methods for supersaturated experiments. Comput. Stat. Data Anal. 54, 3158–3167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Marrel, A., Iooss, B., Van Dorpe, F., Volkova, E.: An efficient methodology for modeling complex computer codes with Gaussian processes. Comput. Stat. Data Anal. 52, 4731–4744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Mauro, C.A., Smith, D.E.: The performance of two-stage group screening in factor screening experiments. Technometrics 24, 325–330 (1982)

    Article  Google Scholar 

  70. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  71. Meyer, R.K., Nachtsheim, C.J.: The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37, 60–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  72. Miller, A.: Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, Boca Raton (2002)

    Book  MATH  Google Scholar 

  73. Moon, H., Dean, A.M., Santner, T.J.: Two-stage sensitivity-based group screening in computer experiments. Technometrics 54, 376–387 (2012)

    Article  MathSciNet  Google Scholar 

  74. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)

    Article  Google Scholar 

  75. Morris, M.D.: An overview of group factor screening. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 191–206. Springer, New York (2006)

    Chapter  Google Scholar 

  76. Morris, M.D., Mitchell, T.J.: Exploratory designs for computer experiments. J. Stat. Plan. Inference 43, 381–402 (1995)

    Article  MATH  Google Scholar 

  77. Nguyen, N.K.: An algorithmic approach to constructing supersaturated designs. Technometrics 38, 69–73 (1996)

    Article  MATH  Google Scholar 

  78. Nguyen, N.K., Cheng, C.S.: New E(s 2)-optimal supersaturated designs constructed from incomplete block designs. Technometrics 50, 26–31 (2008)

    Article  MathSciNet  Google Scholar 

  79. Nguyen, N.K., Stylianou, S.: Constructing definitive screening designs using cyclic generators. J. Stat. Theory Pract. 7, 713–724 (2012)

    Article  MathSciNet  Google Scholar 

  80. Overstall, A.M., Woods, D.C.: Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model (2016). J. Roy. Statist. Soc. C, in press (DOI:10.1111/rssc.12141).

  81. Owen, A.B.: Orthogonal arrays for computer experiments, integration and visualisation. Statistica Sinica 2, 439–452 (1992)

    MathSciNet  MATH  Google Scholar 

  82. Phoa, F.K.H., Lin, D.K.J.: A systematic approach for the construction of definitive screening designs. Statistica Sinica 25, 853–861 (2015)

    MathSciNet  MATH  Google Scholar 

  83. Phoa, F.K.H., Pan, Y.H., Xu, H.: Analysis of supersaturated designs via the Dantzig selector. J. Stat. Plan. Inference 139, 2362–2372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  84. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  85. Pronzato, L., Müller, W.G.: Design of computer experiments: space filling and beyond. Stat. Comput. 22, 681–701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  86. Pujol, G.: Simplex-based screening designs for estimating meta-models. Reliab. Eng. Syst. Saf. 94, 1156–1160 (2009)

    Article  Google Scholar 

  87. Pujol, G., Iooss, B., Janon, A.: Sensitivity: Sensitivity Analysis. http://CRAN.R-project.org/package=sensitivity (2015). R package version 1.11

  88. Qian, P.Z.G.: Sliced Latin hypercube designs. J. Am. Stat. Assoc. 107, 393–399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  89. Qian, P.Z.G., Wu, C.F.J.: Sliced space-filling designs. Biometrika 96, 945–956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  90. Qian, P.Z.G., Wu, H., Wu, C.F.J.: Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics 50, 383–396 (2008)

    Article  MathSciNet  Google Scholar 

  91. Qu, X., Wu, C.F.J.: One-factor-at-a-time designs of resolution V. J. Stat. Plan. Inference 131, 407–416 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  92. Rao, C.R.: Factorial experiments derivable from combinatorial arrangements of arrays. J. R. Stat. Soc. Suppl. 9, 128–139 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  93. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT, Cambridge (2006)

    MATH  Google Scholar 

  94. Ryan, K.J., Bulutoglu, D.A.: E(s 2)-optimal supersaturated designs with good minimax properties. J. Stat. Plan. Inference 137, 2250–2262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  95. Saltelli, A., Andres, T.H., Homma, T.: Sensitivity analysis of model output. An investigation of new techniques. Comput. Stat. Data Anal. 15, 211–238 (1993)

    Article  MATH  Google Scholar 

  96. Saltelli, A., Andres, T.H., Homma, T.: Sensitivity analysis of model output. Performance of the iterated fractional factorial design method. Comput. Stat. Data Anal. 20, 387–407 (1995)

    Article  MATH  Google Scholar 

  97. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  MATH  Google Scholar 

  98. Satterthwaite, F.: Random balance experimentation. Technometrics 1, 111–137 (1959)

    Article  MathSciNet  Google Scholar 

  99. Scinto, P.R., Wilkinson, R.G., Wang, Z., Rose, A.D.: Comment: need for guidelines on appropriate screening designs for practitioners. Technometrics 56, 23–24 (2014)

    Article  MathSciNet  Google Scholar 

  100. Scott-Drechsel, D., Su, Z., Hunter, K., Li, M., Shandas, R., Tan, W.: A new flow co-culture system for studying mechanobiology effects of pulse flow waves. Cytotechnology 64, 649–666 (2012)

    Article  Google Scholar 

  101. Sun, D.X., Li, W., Ye, K.Q.: An algorithm for sequentially constructing non-isomorphic orthogonal designs and its applications. Technical report SUNYSB-AMS-02-13, Department of Applied Mathematics, SUNY at Stony Brook, New York (2002)

    Google Scholar 

  102. Tang, B.: Orthogonal array-based Latin hypercubes. J. Am. Stat. Assoc. 88, 1392–1397 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  103. Tang, B.: Selecting Latin hypercubes using correlation criteria. Statistica Sinica 8, 965–977 (1998)

    MathSciNet  MATH  Google Scholar 

  104. Vine, A.E., Lewis, S.M., Dean, A.M.: Two-stage group screening in the presence of noise factors and unequal probabilities of active effects. Statistica Sinica 15, 871–888 (2005)

    MathSciNet  MATH  Google Scholar 

  105. Voss, D.T., Wang, W.: Analysis of orthogonal saturated designs. In: Dean, A.M., Lewis, S.M. (eds.) Screening: Methods for Experimentation in Industry, Drug Discovery and Genetics, pp. 268–286. Springer, New York (2006)

    Chapter  Google Scholar 

  106. Wan, H.B.E., Ankenman, B.E., Nelson, B.L.: Controlled sequential bifurcation: a new factor-screening method for discrete-event simulation. Oper. Res. 54, 743–755 (2006)

    Article  Google Scholar 

  107. Wan, H., Ankenman, B.E., Nelson, B.L.: Improving the efficiency and efficacy of controlled sequential bifurcation for simulation factor screening. INFORMS J. Comput. 3, 482–492 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  108. Watson, G.S.: A study of the group screening method. Technometrics 3, 371–388 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  109. Welch, W.J., Buck, R.J., Sacks, J., Wynn, H.P., Mitchell, T.J., Morris, M.D.: Screening, predicting and computer experiments. Technometrics 34, 15–25 (1992)

    Article  Google Scholar 

  110. Wolters, M.A., Bingham, D.R.: Simulated annealing model search for subset selection in screening experiments. Technometrics 53, 225–237 (2011)

    Article  MathSciNet  Google Scholar 

  111. Wu, C.F.J.: Construction of supersaturated designs through partially aliased interactions. Biometrika 80, 661–669 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  112. Wu, C.F.J., Hamada, M.: Experiments: Planning, Analysis and Optimization, 2nd edn. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  113. Xiao, L., Lin, D.K.J., Bai, F.: Constructing definitive screening designs using conference matrices. J. Qual. Technol. 44, 2–8 (2012)

    Google Scholar 

  114. Xing, D., Wan, H., Yu Zhu, M., Sanchez, S.M., Kaymal, T.: Simulation screening experiments using Lasso-optimal supersaturated design and analysis: a maritime operations application. In: Pasupathy, R., Kim, S.H., Tolk, A., Hill, R., Kuhl, M.E. (eds.) Proceedings of the 2013 Winter Simulation Conference, Washington, DC, pp. 497–508 (2013)

    Chapter  Google Scholar 

  115. Xu, H., Phoa, F.K.H., Wong, W.K.: Recent developments in nonregular fractional factorial designs. Stat. Surv. 3, 18–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  116. Yang, H., Butz, K.D., Duffy, D., Niebur, G.L., Nauman, E.A., Main, R.P.: Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microct-based finite element analysis. Bone 66, 131–139 (2014)

    Article  Google Scholar 

  117. Ye, K.Q.: Orthogonal column Latin hypercubes and their application in computer experiments. J. Am. Stat. Assoc. 93, 1430–1439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

D. C. Woods was supported by a fellowship from the UK Engineering and Physical Sciences Research Council (EP/J018317/1). The authors thank Dr Antony Overstall (University of Glasgow, UK) and Dr Maria Adamou (University of Southampton, UK) for providing code for the RDVS and SGPVS methods, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Woods .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Woods, D.C., Lewis, S.M. (2017). Design of Experiments for Screening. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_33

Download citation

Publish with us

Policies and ethics