Skip to main content

Diversity of Chromosomal Characteristics Among Mammals: With Special Reference to Laboratory Mouse in Cancer Research

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer
  • 1038 Accesses

Abstract

The class Mammalia is divided into three subclasses: (1) Prototheria including monotremes, (2) Metatheria including marsupials, and (3) Eutheria that include all other mammalian species. Eutherian mammals, which include humans, have chromosome numbers ranging from 2nā€‰=ā€‰6 (lowest) to 2nā€‰=ā€‰102 (highest). The karyotype which consists of the chromosome number and morphology is considered to be the characteristic of a given species. Some mammalian species have either only acrocentric chromosomes, as in the case of laboratory mouse, or only metacentric and/or submetacentric chromosomes, as in the case of most hamster species. Some species, on the other hand, have a combination of acrocentric, submetacentric, and metacentric chromosomes, as in the case of humans. In a few rare mammalian species, the X and the Y chromosomes may be fused to an autosome. With the discovery and application of various chromosome identification (banding) techniques, it became apparent that diverse groups of mammalian species share large chromosomal segments or even many intact chromosomes. Here, I have discussed in brief chromosomal characteristics of various mammalian species with special reference to the laboratory mouse, Mus musculus, and human, Homo sapiens sapiens and concluded that laboratory mouse may not be a suitable animal model representing all mammalian species including humans. In addition, the discussions presented here suggest that mouse is not the best or ideal laboratory animal model for cancer research and anticancer drug development. In the era of personalized medicine, the time has come to use human mini-organs (organoids) produced in culture vessels following the various somatic cell cloning techniques including the somatic cell nuclear transfer (SCNT), induced pluripotent stem (iPS) cells, and other small molecules induced newly discovered reprogramming methods. Such reprogrammed iPS or SCNT stem cells can be monitored in culture to produce patient-specific different human organoids and used instead of using mouse by the pharmaceutical companies and research institutes for testing drug toxicity and production of more effective new anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnason U (1969) The karyotype of the fin whale. Hereditas 62:273ā€“284

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81ā€“86

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Arrighi FE, Hsu TC, Pathak S, Sawada H (1974) The sex chromosomes of the Chinese hamster: constitutive heterochromatin deficient in repetitive DNA sequences. Cytogenet Cell Genet 13:268ā€“274

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Campbell KHS, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64ā€“66

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chiarelli AB, Capanna E (1973) Cytotaxonomy and vertebrate evolution. Academic, London/New York

    Google ScholarĀ 

  • Contreras LC, Torres-Mura JC, Spotorno AE (1990) The largest known chromosome number for a mammal, in a South-American desert rodent. Experientia 46:506ā€“508

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dev VG, Tantravahi R, Miller DA, Miller OJ (1977) Nucleolus organizers in Mus musculus subspecies and in the RAG mouse cell line. Genetics 86:389ā€“398

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Dhaliwal MK, Pathak S, Shirley LR, Flanagan JP (1988) Ag-NOR staining in Bennett Wallaby, Macropus rufogriseus: evidence for dosage compensation. Cytobios 56:29ā€“38

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fredga K (1965) A new sex determining mechanism in mammal chromosomes of Indian mongoose (Herpestes auropunctatus). Hereditas 52:411ā€“420

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Galton M (1966) Evolution of sex chromosomes in mammals and birds. Lancet 2:1397

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolus organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37ā€“50

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651ā€“654

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hsu TC, Arrighi FE (1971) Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma 34:243ā€“253

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hsu TC, Rearden HH, Luquette GF (1963) Karyological studies of nine species of Felidae. Am Nat 97:225ā€“234

    ArticleĀ  Google ScholarĀ 

  • Hsu TC, Baker RJ, Utakoji T (1968) The multiple sex chromosomes system of American leaf-nosed bats (Chiroptera, Phyllostomidae). Cytogenetics 7:27ā€“38

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hsu TC, Markvong A, Marshall JT (1978) G-band patterns of six species of mice belonging to subgenus Mus. Cytogenet Cell Genet 20:304ā€“307

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hungerford DA, Chandra HS, Snyder RL, Ulmer FA (1966) Chromosomes of three elephants, two Asian (Elephas maximus) and one African (Loxodonta Africana). Cytogenetics 5:243ā€“246

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Markvong A, Marshall JT Jr, Pathak S, Hsu TC (1975) Chromosomes and DNA of Mus : the karyotypes of M. fulvidiventris and M. dunni. Cytogenet Cell Genet 14:116ā€“125

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Markvong A, Ward OG, Hsu TC (1976) Association of the sex chromosomes in meiosis of mouse species. Cytogenetics 17:287ā€“290

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mascarello JT, Mazrimas JA (1977) Chromosomes of antelope squirrels (Genus Ammospermophilus): a systematic banding analysis of four species with unusual constitutive heterochromatin. Chromosoma 64:207ā€“217

    ArticleĀ  Google ScholarĀ 

  • Mascarello JT, Stock AD, Pathak S (1974) Conservatism of the arrangement of genetic material in rodents. J Mammal 55:695ā€“704

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mayer E (1963) Animal species and evolution. Belknap Press/Harvard University Press, Cambridge, MA

    BookĀ  Google ScholarĀ 

  • Merry D, Pathak S, VandeBerg JL (1983) Differential NOR activities in somatic and germ cells of Monodelphis domestica (Marsupialia, Mammalia). Cytogenet Cell Genet 35:244ā€“251

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3ā€“10

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622ā€“6626

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Multani AS, Ozen M, Furlong CL, Zhao YJ, Hsu TC, Pathak S (2001) Heterochromatin and interstitial telomeric DNA homology. Chromosoma 110:214ā€“220

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • News Focus (2013) Human cloning at last: dishing up mini-organs. Science 342:1436ā€“1437

    Google ScholarĀ 

  • Oā€™Brien SJ, Menninger JC, Nash WG (2006) Atlas of mammalian chromosomes. Wiley, Hoboken

    BookĀ  Google ScholarĀ 

  • Ohno S, Jainchill J, Stenius C (1963) The creeping vole (Microtus oregoni) as a gonosomic mosaic. The OY/XY constitution of the male. Cytogenetics 2:232ā€“239

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313ā€“317

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S (1976) Chromosomes of the Indian Spiny Mouse, Mus saxicola gurkha: With a brief discussion on the mechanisms of karyological evolution in the genus Mus. Period Biol 3:3ā€“12

    Google ScholarĀ 

  • Pathak S (1983) The behavior of X chromosomes during mitosis and meiosis. In: Sandberg AA (ed) Cytogenetics of the mammalian X chromosome Part A: basic mechanisms of X chromosome behavior. Alan R Liss Inc, New York, pp 67ā€“106

    Google ScholarĀ 

  • Pathak S (1990) Chromosome alterations in speciation and neoplastic transformation: a parallelism. In: Sharma T (ed) Trends in chromosome research. Springer/Narosa Publishing House, New Delhi, pp 204ā€“220

    ChapterĀ  Google ScholarĀ 

  • Pathak S, Hsu TC (1976) Chromosomes and DNA of Mus. The behavior of constitutive heterochromatin in spermatogenesis of M. dunni. Chromosoma 57:227ā€“234

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Multani AS (2009) Telomere dynamics in aging and cancer. In: Mishra RK (ed) Chromosomes to genome. International Publishing House, New Delhi/Bangalore, pp 141ā€“156

    Google ScholarĀ 

  • Pathak S, Sharma T (1969) Chromosomes of five species of Indian vespertilionid bats. Caryologia 22:35ā€“46

    ArticleĀ  Google ScholarĀ 

  • Pathak S, Stock AD (1974) The X chromosomes of mammals: karyological homology as revealed by banding techniques. Genetics 78:703ā€“714

    CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Stock AD (1976) Giemsa bandings and the identification of the Y-autosome translocation in the African Marsh Mongoose, Atilax paludinosus (Carnivora, Viverridae). Cytogenet Cell Genet 16:487ā€“494

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Hsu TC, Arrighi FE (1973a) Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet Cell Genet 12:315ā€“326

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Hsu TC, Utakoji T (1973b) Relationships between patterns of chromosome banding and DNA synthetic sequences: a study on the chromosomes of the Sebaā€™s fruit bats, Carollia perspicillata. Cytogenet Cell Genet 12:157ā€“164

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Hsu TC, Shirley L, Helm JD (1973c) Chromosome homology in the climbing rats, genus Tylomys (Rodentia, Cricetidae). Chromosoma 42:215ā€“228

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Shirley L, Johnson ML (1980) The chromosome banding pattern of the Aardvark Orycteropus afer (Tubulidentata, Orycteropidae). Experientia 36:547ā€“548

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, van Tuinen P, Merry DE (1982) Heterochromatin, synaptonemal complex and NOR activity in the somatic and germ cells of a male domestic dog, Canis familiaris (Mammalia, Canidae). Cytogenet Cell Genet 34:112ā€“118

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Dolhonde JA, Multani AS (1998) Amplification of telomeric DNA and the extent of karyotypic evolution. Cytobios 93:141ā€“146

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pathak S, Multani AS, Narayan S, Kumar V, Newman RA (2000) Anvirzel, an extract of Nerium oleander, induces cell death in human but not murine cancer cells. Anticancer Drugs 11:455ā€“463

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Popescu NC, DiPaolo JA (1979) Heterogeneity of constitutive heterochromatin in somatic Syrian hamster chromosomes. Cytogenet Cell Genet 24:53ā€“60

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ray-Chaudhuri SP, Pathak S, Sharma T (1968). Chromosomes and affinities of Pteropidae (Megachiroptera) and Rhinopomatidae (Microchiroptera). In: Proceeding inter semi on ā€“ chromosome: its structure and function, Calcutta, Nucleus (suppl), pp 96ā€“101

    Google ScholarĀ 

  • Robertson WRB (1916) Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae. V-shaped chromosomes and their significance in Acrididae, Locustidae and Gryllidae: chromosomes and variation. J Morphol 27:179ā€“331

    ArticleĀ  Google ScholarĀ 

  • Ronne M, Poulsen BS, Shibasaki Y (1991) NOR association in Canis familiaris. Genet Sel Evol 1:191ā€“195

    ArticleĀ  Google ScholarĀ 

  • Sharma T, Balajee AS, Cheong N (1990) Chromosomal speciation: constitutive heterochromatin and evolutionary differentiation of the Indian pygmy field-mice. In: Sharma T (ed) Trends in chromosome research. Springer/Narosa Publishing House, New Delhi, pp 265ā€“283

    ChapterĀ  Google ScholarĀ 

  • Sinha AK, Kakati S, Pathak S (1972) Exclusive localization of C-bands in opossum sex-chromosomes. Exp Cell Res 77:265ā€“268

    ArticleĀ  Google ScholarĀ 

  • White MJD (1969) Chromosomal rearrangements and speciation in animals. Annu Rev Genet 3:75ā€“98

    ArticleĀ  Google ScholarĀ 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge, UK

    Google ScholarĀ 

  • White MJD (1978) Chain processes in chromosomal speciation. Syst Zool 27:285ā€“298

    ArticleĀ  Google ScholarĀ 

  • White MJD (1982) Rectangularity, speciation, and chromosome architecture. In: Barigozzi CB (ed) Mechanisms of speciation. Alan R Liss, New York, pp 75ā€“103

    Google ScholarĀ 

  • Winking H, Nielsen K, Gropp A (1980) Variable positions of NORs in Mus musculus. Cytogenet Cell Genet 26:158ā€“164

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wurster DH, Benirschke K (1967) Chromosome studies in some deer, the springbok and the pronghorn, with notes on placentation in deer. Cytologia 32:273ā€“285

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wurster DH, Benirschke K (1970) Indian muntjac, Muntiacus muntjak: a deer with a low diploid number. Science 168:1364

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wurster-Hill DH, Hsu TC, Gropp A, Zech A, Marshall JT (1973) Q-, G- and benzimidazole banding comparisons in several species of Eurasian Mus. Mammal Chrom Newsl 14:85

    Google ScholarĀ 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642ā€“652

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zijlmans JM, Martens UM, Poon SS et al (1997) Telomeres in the mouse have large inter- chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci U S A 94:7423ā€“7428

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

I thank my long-term colleague Asha S. Multani, Ph.D. for contributing some of the microphotographs and her editorial corrections. I am grateful to my friend, Richard R. Behringer, Ph.D., who encouraged me to write such an article because many molecular biologists thought that what is true for the laboratory mouse could be true for all mammalian species including human. Part of this work was supported by the National Institutes of Health (Cancer Center Core Grant CA-016672) to the Molecular Cytogenetics Core Facility, Department of Genetics at the University of Texas M. D. Anderson Cancer Center, Houston, Texas. My apology to all those researchers whose articles could not be cited here due to space limitation. S.P. is the Distinguished Research Professor of Cancer Biology and Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pathak, S. (2015). Diversity of Chromosomal Characteristics Among Mammals: With Special Reference to Laboratory Mouse in Cancer Research. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_1

Download citation

Publish with us

Policies and ethics