Skip to main content

High Harmonic Generation Assisted by Metal Nanostructures and Nanoparticles

  • Chapter
  • First Online:
Progress in Nonlinear Nano-Optics

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

We present a review of our theoretical studies of plasmonic field enhanced high harmonic generation in the vicinity of various metallic nanostructures, of rough metallic surfaces or in composites containing a mixture of a noble gas and metallic nanoparticles. First we present a semiclassical model for plasmon-enhanced high-harmonic generation (HHG) taking into account both the field inhomogeneity in the hot spots and electron absorption by the metal surface. Both effects play an important role in the HHG process and lead to the generation of even harmonics and to an twofold increased cutoff. Further alternative arrangements or mechanism for field enhancement enabling higher HHG efficiencies and a lower damage threshold are studied. We simulate field enhancement and HHG spectra in the vicinity of metallic rough surfaces and predict an increased interaction volume of hot spots in the case of grazing incidence of s-polarized pump pulses with an efficiency of plateau harmonics in the range of 10−7. Finally, we investigate low-intensity high-harmonic generation enabled by the plasmonic electric field enhancement in a mixture of a noble gas with metal nanoparticles. In this case HHG efficiencies up to 10−6 are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hentschel et al., Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  2. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  3. A. Paul et al., Nature 421, 51 (2003)

    Article  ADS  Google Scholar 

  4. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  5. G. Sansone et al., Nature 465, 763 (2010)

    Article  ADS  Google Scholar 

  6. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49(3), 2117–2132 (1994)

    Article  ADS  Google Scholar 

  7. S. Kim et al., Nature 453, 757 (2008)

    Article  ADS  Google Scholar 

  8. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  9. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  10. M.I. Stockman, Nonlinear Optical Materials (Springer, New York, 1998)

    Google Scholar 

  11. I.-Y. Park et al., Nat. Photonics 5, 678 (2011)

    Article  ADS  Google Scholar 

  12. A. Husakou, S.-J. Im, J. Herrmann, Phys. Rev. A 83(4), 043839 (2011)

    Article  ADS  Google Scholar 

  13. M.F. Ciappina et al., Phys. Rev. A 85, 033828 (2012)

    Article  ADS  Google Scholar 

  14. T. Shaaran et al., Phys. Rev. A 86, 023408 (2012)

    Article  ADS  Google Scholar 

  15. I. Yavuz et al., Phys. Rev. A 85, 013416 (2012)

    Article  ADS  Google Scholar 

  16. S.L. Stebbings et al., New J. Phys. 13, 073010 (2011)

    Article  ADS  Google Scholar 

  17. A. Husakou, F. Kelkensberg, J. Herrmann, M.J.J. Vrakking, Opt. Express 19, 25346 (2011)

    Article  ADS  Google Scholar 

  18. J. Choi et al., New J. Phys. 14, 103038 (2012)

    Article  ADS  Google Scholar 

  19. M.F. Ciappina et al., Opt. Express 20, 26261 (2012)

    Article  ADS  Google Scholar 

  20. I. Yavuz, Phys. Rev. A 87, 053815 (2013)

    Article  ADS  Google Scholar 

  21. M.F. Ciappina, T. Shaaran, M. Lewenstein, Ann. Phys. 525, 97 (2013)

    Article  MATH  Google Scholar 

  22. B. Fetic, K. Kalajdzic, D.B. Milosevic, Ann. Phys. 525, 107 (2013)

    Article  MATH  Google Scholar 

  23. J.A. Perez-Hernandez et al., Phys. Rev. Lett. 110, 053001 (2013)

    Article  ADS  Google Scholar 

  24. J. Luo et al., J. Phys. B 46, 145602 (2013)

    Article  ADS  Google Scholar 

  25. N. Pfullmann et al., New J. Phys. 15, 093027 (2013)

    Article  ADS  Google Scholar 

  26. K. Furusawa et al., Appl. Phys. A 69, S359 (1999)

    Article  ADS  Google Scholar 

  27. Farcas et al., Phys. Rev. A 46, R3605 (1992)

    Article  ADS  Google Scholar 

  28. F. Banfi et al., Phys. Rev. Lett. 94, 037601 (2005)

    Article  ADS  Google Scholar 

  29. V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer, Berlin, 2000)

    Google Scholar 

  30. E.Y. Poliakov, V.A. Markel, V.M. Shalaev, R. Botet, Phys. Rev. B 57(23), 14901–14913 (1998)

    Article  ADS  Google Scholar 

  31. C.K. Chen, A.R.B. de Castro, Y.R. Shen, Phys. Rev. Lett. 46(2), 145–148 (1981)

    Article  ADS  Google Scholar 

  32. K.A. O’Donnell, R. Torre, C.S. West, Phys. Rev. B 55(12), 7985–7992 (1997)

    Article  ADS  Google Scholar 

  33. E.M. Kim, S.S. Elovikov, T.V. Murzina, A.A. Nikulin, O.A. Aktsipetrov, M.A. Bader, G. Marowsky, Phys. Rev. Lett. 95(22), 227402 (2005)

    Article  ADS  Google Scholar 

  34. K.-H. Kim, A. Husakou, J. Herrmann, Opt. Express 19, 20910–20915 (2011)

    Article  ADS  Google Scholar 

  35. P. Meakin, P. Ramanlal, L.M. Sander, R.C. Ball, Phys. Rev. A 34(6), 5091–5103 (1986)

    Article  ADS  Google Scholar 

  36. J.M. Kim, J.M. Kosterlitz, Phys. Rev. Lett. 62(19), 2289–2292 (1989)

    Article  ADS  Google Scholar 

  37. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11(4), 1491–1499 (1994)

    Article  ADS  Google Scholar 

  38. V.M. Shalaev, R. Botet, J. Mercer, E.B. Stechel, Phys. Rev. B 54(11), 8235–8242 (1996)

    Article  ADS  Google Scholar 

  39. J.C.-E. Sten, J. Electrostat. 64, 647–654 (2005)

    Google Scholar 

  40. A. Husakou, J. Herrmann, Opt. Express 17, 12481–12492 (2009)

    Article  ADS  Google Scholar 

  41. H.R. Reiss, Phys. Rev. A 22, 1786–1813 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A. H. acknowledges financial support from German Research Council, Projekt Hu 1593/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Husakou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Husakou, A., Im, SJ., Kim, KH., Herrmann, J. (2015). High Harmonic Generation Assisted by Metal Nanostructures and Nanoparticles. In: Sakabe, S., Lienau, C., Grunwald, R. (eds) Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-12217-5_14

Download citation

Publish with us

Policies and ethics