Skip to main content

Particle Track Structure and Biological Implications

  • Reference work entry
  • First Online:
Handbook of Bioastronautics

Abstract

The insult from ionizing radiation to biological systems is always in the form of structured tracks of ionizations and excitations along the paths of charged particles. The track structure is primarily responsible for the potency of all ionizing radiations and for the relative effectiveness of different types of ionizing radiation. This chapter summarizes the interactions of radiation with matter and discusses microscopic features of the track structures produced by terrestrial and space radiations, with particular orientation toward the high charge and energy (HZE) particles of space radiation. Biological implications include efficient induction of complex clustered damage in DNA, as well as other correlations of damage across all levels of organization of biological system from the nanometer scale upward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloni D, Mariotti LG, Ottolenghi A (2014) Early events leading to radiation-induced biological effects. In: Brahme A (ed) Comprehensive biomedical physics, vol 7. Elsevier, Amsterdam, pp 1–22

    Google Scholar 

  • Alp M, Parihar VK, Limoli CL, Cucinotta FA (2015) Irradiation of neurons with high-energy charged particles: an in silico modelling approach. PLoS Comput Biol 11(8):e1004428. https://doi.org/10.1371/journal.pcbi.1004428

    Article  Google Scholar 

  • Anderson RA, Stevens DL, Goodhead DT (2002) M-FISH analysis shows that complex chromosome aberrations induced by α-particle tracks are cumulative products of localized rearrangements. Proc Natl Acad Sci 99:12167–12172

    Article  Google Scholar 

  • Berger MJ, Coursey JS, Zucker MA, Chang J (2005) ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions (version 1.2.3). National Institute of Standards and Technology. http://physics.nist.gov/Star. Accessed 19 Aug 2015

  • Bichsel H, Groom DE, Klein SR (2014) Passage of charged particles through matter. Chapter 32 of Olive KA et al (Particle Data Group) Review of particle physics. Chinese Physics C38: 090001. IOP Publishing, Bristol

    Google Scholar 

  • Cucinotta FA (2015) Review of NASA approach to space radiation risk assessments for Mars exploration. Health Phys 108:131–142

    Article  Google Scholar 

  • Cucinotta FA, Durante M (2006) Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol 7(5):431–435

    Article  Google Scholar 

  • Cucinotta FA, Nikjoo N, Goodhead DT (1999) Applications of amorphous track models in radiation biology. Radiat Environ Biophys 38:81–92

    Article  Google Scholar 

  • Cucinotta FA, Nikjoo H, Goodhead DT (2000) Model for radial dependence of frequency distributions for energy imparted in nanometer volumes from HZE particles. Radiat Res 153:459–468

    Article  Google Scholar 

  • Cucinotta FA, Plante I, Ponomarev AL, Kim MH (2011) Nuclear interactions in heavy ion transport and event-based risk models. Radiat Prot Dosim 143:384–390

    Article  Google Scholar 

  • Cucinotta FA, Kim M-HY, Chappell LJ (2013) Space radiation cancer risk projections and uncertainties – 2012. NASA TP-2013-217375. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Cucinotta FA, Alp M, Sulzman FM, Wang M (2014) Space radiation risks to the central nervous system. Life Sci Space Res 2:54–69

    Article  Google Scholar 

  • Curtis SB (2013) Fluence rates, delta rays and cell nucleus hit rates from galactic cosmic rays. The Health Risks of Extraterrestrial Environments. http://three.jsc.nasa.gov/articles/TracksinSpace.pdf. Posted 2/28/2013. Accessed 28 Aug 2015

  • Dingfelder M (2012) Track-structure simulations for charged particles. Health Phys 103:590–595

    Article  Google Scholar 

  • Dingfelder M (2014) Monte Carlo track simulations. The Health Risks of Extraterrestrial Environments. http://three.jsc.nasa.gov/articles/monte-carlo-Dingfelder.pdf. Posted 2/6/14. Accessed 28 Aug 2015

  • Durante M, Cucinotta FA (2008) Heavy ion carcinogenesis and human space exploration. Nat Rev 8:465–472

    Article  Google Scholar 

  • Durante M, Cucinotta FA (2011) Physical basis of radiation protection in space travel. Rev Mod Phys 83:1245–1281

    Article  Google Scholar 

  • Friedland W, Dingfelder M, Kundrat P, Jacob P (2011) Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res 711:28–40

    Article  Google Scholar 

  • Goodhead DT (1987) Relationship of microdosimetric techniques to applications in biological systems. In: Kase KR, Bjarngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol 2. Academic, New York, pp 1–89

    Google Scholar 

  • Goodhead DT (1988) Spatial and temporal distribution of energy. Health Phys 55:231–240

    Article  Google Scholar 

  • Goodhead DT (1992) Track structure considerations in low dose and low dose rate effects of ionizing radiation. In: Nygaard OF, Sinclair WK (eds) Advances in radiation biology. Low level radiation effects, vol 16. Academic, Orlando, pp 7–44

    Google Scholar 

  • Goodhead DT (1999) Mechanisms for the biological effectiveness of high-LET radiations. J Radiat Res (Japan) 40(Suppl):1–13

    Google Scholar 

  • Goodhead DT (2009) Fifth Warren K. Sinclair keynote address: issues in quantifying the effects of low-level radiation. Health Phys 97:394–406

    Article  Google Scholar 

  • Goodhead DT (2015) Classical approaches to microdosimetry, with examples of use in radiation protection, medicine and mechanistic understanding. Radiat Prot Dosim 166:276–281. https://doi.org/10.1093/rpd/ncv194

    Article  Google Scholar 

  • Goodhead DT (2018) Track structure and the quality factor for space radiation cancer risk. http://three.jsc.nasa.gov/articles/Track_QF_Goodhead.pdf. Posted 9/28/2018. Accessed 10 Dec 2018

  • Nikjoo H, Charlton D, Goodhead DT (1994) Monte Carlo track structure studies of energy deposition and calculation of initial DSB and RBE. Adv Space Res 14:161–180

    Article  Google Scholar 

  • Plante I, Cucinotta FA (2008) Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte-Carlo simulation of radiation tracks. New J Phys 10. https://doi.org/10.1088/1367-2630/10/12/125020

  • Plante I, Cucinotta FA (2009) Cross sections for the interactions of 1 eV-100 MeV electrons in liquid water and application to Monte-Carlo simulation of HZE tracks. New J Phys 11. https://doi.org/10.1088/1367-2630/11/6/063047

  • Sridharan DM, Chappell LJ, Whalen MK, Cucinotta FA, Pluth JM (2015) Defining the biological effectiveness of components of high-LET track structure. Radiat Res 184:105–119

    Article  Google Scholar 

  • Tavernier S (2010) Experimental techniques in nuclear and particle physics. Springer, Berlin

    Book  Google Scholar 

  • Toburen L (2014) Development of Monte Carlo track structure codes. The Health Risks of Extraterrestrial Environments. http://three.jsc.nasa.gov/articles/Monte-Carlo-Track-Structure-Toburen.pdf. Posted 2/6/14. Accessed 28 Aug 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dudley T. Goodhead .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goodhead, D.T. (2021). Particle Track Structure and Biological Implications. In: Young, L.R., Sutton, J.P. (eds) Handbook of Bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-12191-8_29

Download citation

Publish with us

Policies and ethics