Skip to main content

Fundamental Concepts in Gaseous Electronics

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

It is beyond the scope of this book to even attempt a comprehensive treatment of fundamental concepts of gaseous electronics, which experienced immense growth during and after the Second World War. In this chapter the fundamentals behind the generation, loss, and motion of charge carriers are discussed. This is followed by a review of thermal excitation and ionization, definition of the plasma state, quasi-neutrality, and plasma sheaths. For a comprehensive treatment of the subject, the reader is referred to a number of books (Capitelli et al. 2012; Finkelnburg and Maecker 1956; Griem 1964; Gupta 2007; Huddlestone and Leonard 1965; Lee et al. 1973; Lochte-Holtgreven 1995; Massey et al. 1969; Mitchner and Kruger 1973; Müller and Weiss 2005; Reif 2009) that may be considered classics in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Alternating current

CTE:

Complete thermodynamic equilibrium

CLTE:

Complete local thermodynamic equilibrium

DC:

Direct current

LTE:

Local thermodynamic equilibrium

PLTE:

Partial local thermodynamic equilibrium

RF:

Radio frequency

References

  • Allis WP (1956) Motion of ions and electrons. In: Encyclopedia of physics, vol 21. Springer, Berlin

    Google Scholar 

  • Cambel AB (1963) Plasma physics and magnetofluid mechanics. McGraw-Hill, New York

    Google Scholar 

  • Capitelli M, Colonna G, D’Angola A (2012) Fundamental aspects of plasma chemical physics thermodynamics, vol 66, Springer series on atomic, optical, and plasma physics. Springer, New York

    Book  Google Scholar 

  • Delalondre C (1990) Modélisation aérothermodynamique d’arcs électroniques à forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode. Ph.D. thesis, University of Rouen

    Google Scholar 

  • Drawin HW (1970) Spectroscopic measurement of high temperatures (a review). High Temp High Pressures 2:359

    Google Scholar 

  • Finkelnburg W, Maecker H (1956) Elektrische Bôgen und thermisches Plasma. In: Flügge S (ed) Encyclopedia of physics, vol 23. Springer, Berlin

    Google Scholar 

  • Griem HR (1964) Plasma spectroscopy. McGraw-Hill, New York

    Google Scholar 

  • Gupta MC (2007) Statistical thermodynamics. Amazon, p 528

    Google Scholar 

  • Gvosdover SD (1937) Phys Z Sov 12:164

    Google Scholar 

  • Huddlestone RH, Leonard SL (eds) (1965) Plasma diagnostic techniques. Academic, New York, p 627

    Google Scholar 

  • Hutchinson IH (2002) Principles of plasma diagnostics, 2nd edn. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Laurandeau NM (2005) Statistical thermodynamics: fundamentals and applications. Cambridge University Press, New York

    Book  Google Scholar 

  • Lee JF, Sears FW, Turcotte DL (1973) Statistical thermodynamics, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Lochte-Holtgreven W (ed) (1995) Plasma diagnostics. AIP Press, New York, p 928

    Google Scholar 

  • Loeb LB (1961) Basic processes of gaseous electronics. University of California Press, Berkeley/Los Angeles

    MATH  Google Scholar 

  • Massey HSW, Burhop EHS, Gilbody HB (1969) Electronic and ionic impact phenomena, vol 4, 2nd edn. Oxford University Press, New York

    MATH  Google Scholar 

  • Mitchner M, Kruger CH Jr (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  • Müller I, Weiss W (2005) Entropy and energy: a universal competition. Springer, Berlin

    MATH  Google Scholar 

  • Reif F (2009) Fundamentals of statistical and thermal physics. Waveland Press, Long Grove, p 651

    Google Scholar 

  • Schmidt G (1979) Physics of high temperature plasmas, 2nd edn. Academic, New York

    Google Scholar 

  • Uman MA (1964) Introduction to plasma physics. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Nomenclature and Greek Symbols

\( \overrightarrow{\mathrm{B}} \)

Magnetic induction (V.s/m2)

B 0υ

Intensity of blackbody radiation (J/ster.m2)

c

Light velocity (c = 3xl08 m/s)

Da

Ambipolar diffusion coefficient (m2/s)

De

Electron diffusion coefficient (m2/s)

Di

Ion diffusion coefficient (m2/s)

Dk

Diffusion of plasma charge carriers (m2/s)

e

Electron charge (e = 1.6 × l0−19 A.s)

efast

Fast electrons

eslow

Slow electrons

Ex

Electric field responsible for ambipolar diffusion (V/m)

Er+1

Energy required for transforming an r-times ionized atom into an (r + 1)-times ionized atom

\( \overrightarrow{\mathrm{E}} \)

Electric field (V/m)

\( {\overrightarrow{\mathrm{E}}}_{\mathrm{r}} \)

Electric field in radial direction (V/m)

\( {\mathrm{E}}_{\mathrm{r}+1}^{*} \)

Reduced ionization energy \( {\mathrm{E}}_{\mathrm{r}+1}^{*} \)= \( {\mathrm{E}}_{\mathrm{r}+1}-\updelta {\mathrm{E}}_{\mathrm{r}+1}\left(\mathrm{eV}\right) \)

Eion

Ionization energy (eV)

\( {\mathrm{E}}_{{\mathrm{H}}^{+}} \)

Hydrogen atom ionization energy (EH+=13.6 eV)

Er,k

Energy of chemical species r in the excited state k (cm−1)

eV

Electron volt (1 eV = 1.6*10−19 J)

f(v)

Maxwellian distribution function

\( \overrightarrow{\mathrm{F}} \)

Force vector (N)

\( {\overrightarrow{\mathrm{F}}}_{\mathrm{r}} \)

Force in the radial direction (N)

g

Number of compartments (h3) in the phase space volume dx.dy.dz.dpx.dpy.dpz

gk

Statistical weight of excited state k

gr,k

Statistical weight of chemical species r in excited state k

h

Planck’s constant (h = 6.626 × 10−34 W.s2)

H

Elementary volume in phase space: dx.dy.dz.dpx.dpy.dpz

I

Arc current (A)

\( {\overrightarrow{\mathrm{I}}}_{ \mathrm{e}} \)

Electrons flux (s−1·m−2)

\( {\overrightarrow{\mathrm{I}}}_{ \mathrm{k}} \)

Species k flux (s−1·m−2)

j

Electric current density (A/m2)

je

Electron current density (A/m2)

ji

Ion current density (A/m2)

\( {\overrightarrow{\mathrm{J}}}_{ \mathrm{k}} \)

Flux of charged particles (m−2·s−1)

k

Boltzmann constant (k = 1.38 × 10−23 J/K)

\( \overrightarrow{\mathrm{J}} \)

Current density vector (A·m−2)

e

Electron mean free path (m)

i

Ion mean free path (m)

L

length (m)

me

Electron mass (me = 9.11 × 10−31 kg)

M

Ion mass (kg)

ne

electrons density (m−2)

ni

electrons density (m−2)

nr,k

Particle number density of chemical species r in excited state k (m−3)

Nk

Number of particles in excited state k

\( {\mathrm{N}}_{\mathrm{k}}^{\mathrm{o}} \)

equilibrium distribution of phase points in phase space (Maxwell-Boltzmann distribution)

p

Total pressure (Pa)

pe

Partial pressure of an electron gas (Pa)

px

Component of the momentum (px = m.vx) (kg.m/s)

py

Component of the momentum (py = m.vy) (kg.m/s)

pz

Component of the momentum (pz = m.vz) (kg.m/s)

q

Electrical charge (A.s)

Qr

Partition function of chemical species r

rL

Larmor radius for the circular motion (rL = m.v/q.B (m))

rmin

Landau parameter (m)

R

Arc radius (m)

\( {\overrightarrow{\mathrm{s}}}_{\mathrm{e}} \)

Distance that an electron travels during time interval τ e (m)

\( \overline{{\overrightarrow{\mathrm{s}}}_{\mathrm{e}}} \)

Mean distance travelled by the electron (m)

Sk

Source term (see Eq. 35) (m−3.s−1)

t

Time (s)

T

Temperature (K)

Te

Electron temperature (K)

Th

Heavy species temperature (K)

Tk

Maximum kinetic energy acquired by an electron between two collisions (J)

\( {\overrightarrow{\mathrm{u}}}_{\mathrm{e}} \)

Electron drift velocity (m/s)

\( {\overline{\mathrm{u}}}_{\mathrm{e}} \)

Mean electron drift velocity (m/s)

\( {\overrightarrow{\mathrm{u}}}_{\mathrm{eo}} \)

Initial velocity of the electron when the electric field is applied (m/s)

\( \overline{{\overrightarrow{\mathrm{u}}}_{\mathrm{e}}} \)

Mean drift electron velocity (m/s)

\( \overline{{\overrightarrow{\mathrm{u}}}_{\mathrm{e}}} \)

Mean drift ion velocity (m/s)

\( {\overrightarrow{\mathrm{u}}}_{\mathrm{i}} \)

Ion drift velocity (m/s)

\( {\overline{\overrightarrow{\mathrm{u}}}}_{\mathrm{i}} \)

Mean ion drift velocity (m/s)

\( \overrightarrow{\mathrm{v}} \)

Particle velocity (m/s)

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{e}} \)

Electron velocity (m/s)

\( {\overline{\mathrm{v}}}_{\mathrm{e}} \)

Mean electron velocity (m/s)

\( {\overline{\mathrm{v}}}_{\mathrm{i}} \)

Mean ion velocity (m/s)

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{d}}^{\mathrm{e}} \)

Mean electron drift velocity (m/s)

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{D}} \)

Electron drift velocity in magnetic and electric fields (m/s)

\( \mathrm{v}\parallel \)

Charged particle velocity component parallel to the magnetic field (m/s)

v

Charged particle velocity component perpendicular to the magnetic field (m/s)

V

Electrical potential (V)

W

Thermodynamic probability

x

Position coordinate (m)

X

Chemical species

X+

Singly ionized chemical species

y

Position coordinate (m)

z

Position coordinate (m)

β

Lagrange multiplier [β = 1/(k.T)]

δE i

Ionization potential lowering (eV)

δN

Particle number variation

Δp(r)

Pressure variation along the plasma radius (Pa)

ε 0

Dielectric constant \( \left({\upvarepsilon}_0=8.86\times {10}^{-12} \mathrm{A}.\mathrm{s}/\mathrm{V}.\mathrm{m}\right) \)

γe

Gvosdover parameter

λD

Debye length (m)

Λ

Diffusion length (m)

μe

Electron mobility (m2/V.s)

μi

Ion mobility (m2/V.s)

μ0

Magnetic permeability constant \( \left({\upmu}_0=1.26\times {10}^{-6} \mathrm{H}\mathrm{y}/\mathrm{m}\right) \)

υi

Net ionization coefficient

ξ

Fraction of ionized atoms in the gas

ρ

Specific mass (kg/m3)

ρel

Electric space charge (C/m3)

σe

Electrical conductivity (ohm−1.m−1)

τe

Mean free flight time for electrons (s)

ωe

Larmor frequency (s−1)

\( \nabla \)

Laplace operator

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Boulos, M.I., Fauchais, P., Pfender, E. (2015). Fundamental Concepts in Gaseous Electronics. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics