Skip to main content

Linking Inflammation, Obesity and Diabetes

  • Living reference work entry
  • First Online:
Metabolic Syndrome

Abstract

Overnutrition disrupts normal adipose tissue function. Dysfunctional lipid metabolism leads to an increase in circulating free fatty acids, initiating inflammatory signaling cascades and increased immune cell activity in metabolic tissue. A feedback loop of pro-inflammatory cytokines exacerbates this chronic inflammatory state, driving further immune cell infiltration, cytokine secretion, and activation of inflammasome complexes. This disrupts the insulin signaling cascade and is causative of defects in hepatic and skeletal muscle glucose homeostasis, resulting in systemic insulin resistance and ultimately the development of type 2 diabetes. This chapter will focus on the initiation of the inflammatory response in obesity and describe the impact of this on metabolic tissue, with a particular emphasis on the development of insulin resistance and type 2 diabetes. We will also review current and prospective treatment and intervention strategies and the biological mechanisms through which these function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

ASC:

Apoptosis-associated speck-like protein containing a CARD

ATM:

Adipose tissue macrophages

ATP:

Adenosine triphosphate

BAT:

Brown adipose tissue

BMI:

Body mass index

BMM:

Bone marrow macrophages

CCR:

C–C chemokine receptor

CLS:

Crown-like structures

DAG:

Diacylglycerols

DAMPs:

Danger-associated molecular patterns

DC:

Dendritic cell

DGAT:

Diacylglycerol acyltransferase

DHA:

Docosahexaenoic acid

DIO:

Diet-induced obesity

ECM:

Extracellular matrix

EPA:

Eicosapentaenoic acid

FA:

Fatty acids

FFA:

Free fatty acids

Fiaf:

Fasting-induced adipocyte factor

GLUT:

Glucose transporter type

GPR:

G protein-coupled receptor

HFD:

High-fat diet

ICAM:

Intercellular adhesion molecule

IKK:

IκB kinase

IL:

Interleukin

IR:

Insulin resistance

IRS:

Insulin receptor substrate

IS:

Insulin sensitivity

IκB:

Inhibitor of κB

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

MetS:

Metabolic syndrome

MHC:

Major histocompatibility complex

MUFA:

Monounsaturated fatty acids

NF-κB:

Nuclear factor kappa B

NLR:

NOD-like receptor

PI3K:

Phosphatidylinositol 3-kinase

PKB:

Protein kinase B

PKC:

Protein kinase C

PPAR:

Peroxisome proliferator-activated receptor

PUFA:

Polyunsaturated fatty acids

R:

Receptor

RA:

Receptor antagonist

SCFA:

Short-chain fatty acid

SFA:

Saturated fatty acids

SOCS:

Suppressor of cytokine signaling

SVF:

Stromal vascular fraction

T2D:

Type 2 diabetes

TAG:

Triacylglycerol

TH :

T helper

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

Treg:

Regulatory T cell

TZDs:

Thiazolidinediones

UCP-1:

Uncoupling protein 1

WAT:

White adipose tissue

References

  • Abdul-Ghani MA, Defronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010.

    Google Scholar 

  • Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729–33.

    CAS  PubMed  Google Scholar 

  • Agostini L, Martinon F, Burns K, Mcdermott MF, Hawkins PN, Tschopp J. NALP3 Forms an IL-1B -Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder. Immunity. 2004;20:319–25.

    CAS  PubMed  Google Scholar 

  • Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. Elsevier Inc.; 2014 Jan 7;19(1):162–71.

    CAS  Google Scholar 

  • Angulo P. Nonalcoholic fatty liver disease. N. Engl. J. Med. Mass Medical Soc; 2002;15(16):7–10.

    Google Scholar 

  • Arkan MC, Hevener AL, Greten FR, Maeda S, Li Z-W, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005 Feb;11(2):191–8.

    CAS  PubMed  Google Scholar 

  • Backhed F, Ding H, Wang T, Hooper L V, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U. S. A. United States; 2004 Nov;101(44):15718–23.

    Google Scholar 

  • Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. U. S. A. United States; 2007 Jan;104(3):979–84.

    CAS  Google Scholar 

  • Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011 Jan 5;13(1):11–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bakker GCM, Van Erk MJ, Pellis L, Wopereis S, Rubingh CM, Cnubben NHP, et al. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men : a nutrigenomics approach. Am J Clin Nutr. Am Soc Nutrition; 2010;91(4):1044–59.

    CAS  Google Scholar 

  • Baltimore D. NF-κB is 25. Nat Immunol. 2011 Aug;12(8):683–5.

    CAS  PubMed  Google Scholar 

  • Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 2011 Aug;12(8):715–23.

    CAS  PubMed  Google Scholar 

  • Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012 Sep;61(9):2238–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boden G, Jadali F, White J, Liang Y, Mozzoll M, Chen X, et al. Effects of Fat on Insulin-stimulated Carbohydrate Metabolism in Normal Men Indirect calorimetry Respiratory gas exchange. 1991;88(September):960–6.

    Google Scholar 

  • Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Immunol. 2005/02/03 ed. 2005;11(2):183–90.

    CAS  Google Scholar 

  • Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006;83(6 Suppl):1505S–1519S.

    CAS  PubMed  Google Scholar 

  • Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011 Dec;106 Suppl:S5–78.

    CAS  PubMed  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008/02/29 ed. 2008;57(6):1470–81.

    CAS  PubMed  Google Scholar 

  • Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004;84(1):277–359.

    CAS  PubMed  Google Scholar 

  • Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, Armah CK, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am. J. Clin. Nutr. United States; 2008 Sep;88(3):618–29.

    CAS  Google Scholar 

  • Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 1996;63:116–22.

    CAS  PubMed  Google Scholar 

  • Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008 Jan 9;582(1):117–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Centre for Clinical Practice at NICE. Type 2 Diabetes: Newer Agents for Blood Glucose Control in Type 2 Diabetes. London, UK; 2009 May.

    Google Scholar 

  • Chavez J a, Summers S a. A ceramide-centric view of insulin resistance. Cell Metab. Elsevier Inc.; 2012 May 2;15(5):585–94.

    Google Scholar 

  • Chen Y, Tian J, Tian X, Tang X, Rui K, Tong J, et al. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS One. 2014 Jan;9(3):e92450.

    PubMed Central  PubMed  Google Scholar 

  • Cho KW, Morris DL, DelProposto JL, Geletka L, Zamarron B, Martinez-Santibanez G, et al. An MHC Class II Dependent Activation Loop Between Adipose Tissue Macrophages and CD 4+ T cells Controls Obesity- Induced Inflammation. Cell Rep. 2014;9(2):605–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, et al. Brown Adipose Tissue Improves Whole Body Glucose Homeostasis and Insulin Sensitivity in Humans. Diabetes. 2014;

    Google Scholar 

  • Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology. 2006 Nov;147(11):5340–51.

    CAS  PubMed  Google Scholar 

  • Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005 Nov;46(11):2347–55.

    CAS  PubMed  Google Scholar 

  • Coll RC, Robertson AAB, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 2015 Feb;

    Google Scholar 

  • Corcoran MP, Lamon-Fava S, Fielding RA. Skeletal muscle lipid deposition and insulin resistance: Effect of dietary fatty acids and exercise. Am. J. Clin. Nutr. 2007. p. 662–77.

    Google Scholar 

  • Cristancho AG, Lazar M a. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. Nature Publishing Group; 2011 Nov;12(11):722–34.

    CAS  Google Scholar 

  • Dali-Youcef N, Mecili M, Ricci R, Andres E. Metabolic inflammation: connecting obesity and insulin resistance. Ann. Med. England; 2013 May;45(3):242–53.

    CAS  Google Scholar 

  • DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009 Nov;32 Suppl 2:S157–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, et al. Class II Major Histocompatibility Complex Plays an Essential Role in Obesity-Induced Adipose Inflammation. Cell Metab. Elsevier Inc.; 2013 Mar;17(3):411–22.

    Google Scholar 

  • Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009 Jan;27:519–50.

    CAS  PubMed  Google Scholar 

  • Dinarello CA. Anti-inflammatory Agents: Present and Future. Cell. United States; 2010 Mar;140(6):935–50.

    CAS  Google Scholar 

  • Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. Nature Publishing Group; 2011 Feb;11(2):98–107.

    CAS  Google Scholar 

  • Dyerberg J, Eskesen DC, Andersen PW, Astrup A, Buemann B, Christensen JH, et al. Effects of trans- and n-3 unsaturated fatty acids on cardiovascular risk markers in healthy males. An 8 weeks dietary intervention study. Eur. J. Clin. Nutr. England; 2004 Jul;58(7):1062–70.

    CAS  Google Scholar 

  • Ebke LA, Nestor-Kalinoski AL, Slotterbeck BD, Al Dieri AG, Ghosh-Lester S, Russo L, et al. Tight Association between Macrophages and Adipocytes in Obesity: Implications for Adipocyte Preparation. Obes. (Silver Spring). 2014;22(5):1246–55.

    CAS  Google Scholar 

  • Emanuelli B. SOCS-3 Is an Insulin-induced Negative Regulator of Insulin Signaling. J. Biol. Chem. 2000 May 19;275(21):15985–91.

    CAS  PubMed  Google Scholar 

  • Emanuelli B, Macotela Y, Boucher J, Khan CR. SCOS-1 Deficiency does not prevent diet-induced insulin resistance. Biochem Biophys Res Commun. 2008;377(2):447–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Epelman S, Lavine KJ, Randolph GJ. Origin and Functions of Tissue Macrophages. Immunity. Elsevier Inc.; 2014 Jul;41(1):21–35.

    CAS  Google Scholar 

  • Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. United States; 2007 Nov;86(5):1286–92.

    CAS  Google Scholar 

  • Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014;1–15.

    Google Scholar 

  • Feng B, Jiao P, Nie Y, Kim T, Jun D, van Rooijen N, et al. Clodronate liposomes improve metabolic profile and reduce visceral adipose macrophage content in diet-induced obese mice. PLoS One. 2011 Jan;6(9):e24358.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. Nature Publishing Group; 2009 Aug;15(8):930–9.

    CAS  Google Scholar 

  • Finnegan YE, Minihane AM, Leigh-Firbank EC, Kew S, Meijer GW, Muggli R, et al. Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am. J. Clin. Nutr. United States; 2003 Apr;77(4):783–95.

    CAS  Google Scholar 

  • Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, et al. Monounsaturated fatty acid enriched high fat-diets impede adipose NLRP3 inflammasome mediated IL-1beta secretion and insulin resistance despite obesity. Diabetes. 2015 Jan;

    Google Scholar 

  • Gage D. Weight loss/maintenance as an effective tool for controlling type 2 diabetes: novel methodology to sustain weight reduction. Diabetes Metab Res Rev. 2012;28(3):214–8.

    PubMed  Google Scholar 

  • Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012 Sep 30;13(11):1118–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998 Jul;78(3):783–809.

    CAS  PubMed  Google Scholar 

  • Gual P, Le Marchand-Brustel Y, Tanti J-FF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 2005/03/01 ed. 2005 Jan;87(1):99–109.

    Google Scholar 

  • Gustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J Biol Chem. 2006 Apr 7;281(14):9507–16.

    CAS  PubMed  Google Scholar 

  • Harley ITW, Karp CL. Obesity and the gut microbiome: Striving for causality. Mol. Metab. Elsevier; 2012;1(1-2):21–31.

    Google Scholar 

  • Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. Nature Publishing Group; 2013;19(10):1252–63.

    CAS  PubMed  Google Scholar 

  • Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. Nature Publishing Group; 2012 Feb 9;482(7384):179–85.

    CAS  Google Scholar 

  • Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011/04/15 ed. 2011;121(5):1858–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes. 2005/11/25 ed. 2005 Dec;54 Suppl 2:S73–8.

    Google Scholar 

  • Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995/05/01 ed. 1995;95(5):2409–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hotamisligil GS, Shargill NS, Spiegelman BM, Shargill S. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science (80-. ). 1993/01/01 ed. 1993;259(5091):87–91.

    CAS  PubMed  Google Scholar 

  • Imamura T, Huang J, Usui I, Satoh H, Bever J, Olefsky JM. Insulin-Induced GLUT4 Translocation Involves Protein Kinase C- ␭-Mediated Functional Coupling between Rab4 and the Motor Protein Kinesin. 2003;23(14):4892–900.

    Google Scholar 

  • Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, et al. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput. Biol. 2009 Mar;5(3):e1000324.

    PubMed Central  PubMed  Google Scholar 

  • Kabir M, Skurnik G, Naour N, Pechtner V, Meugnier E, Rome S, et al. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: a randomized controlled study. Am J Clin Nutr. 2007 Dec;86(6):1670–9.

    CAS  PubMed  Google Scholar 

  • Kabir SM, Lee E-S, Son D-S. Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte. 2014 Apr 1;3(2):97–106.

    PubMed Central  PubMed  Google Scholar 

  • Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 2006 Sep 8;281(36):26602–14.

    CAS  PubMed  Google Scholar 

  • Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy – from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. Netherlands; 2005 Dec;1754(1–2):253–62.

    Google Scholar 

  • Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue , insulin resistance , and hepatic steatosis in obesity. 2006;116(6).

    Google Scholar 

  • Kanneganti T-D, Dixit VD. Immunological complications of obesity. Nat. Immunol. Nature Publishing Group; 2012 Jul 19;13(8):707–12.

    CAS  Google Scholar 

  • Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest. 1995/05/01 ed. 1995;95(5):2111–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Könner a C, Brüning JC. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol. Metab. 2011 Jan;22(1):16–23.

    Google Scholar 

  • Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120(10):3466–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kovacikova M, Sengenes C, Kovacova Z, Siklova-Vitkova M, Klimcakova E, Polak J, et al. Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int. J. Obes. (Lond). England; 2011 Jan;35(1):91–8.

    CAS  Google Scholar 

  • Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front. Immunol. 2014 Jan;5(September):470.

    PubMed Central  PubMed  Google Scholar 

  • Lam TK, Yoshii H, Haber CA, Bogdanovic E, Lam L, Fantus IG, et al. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab. 2002/09/10 ed. 2002;283(4):E682–91.

    CAS  PubMed  Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;357(3):302–3; author reply 303.

    Google Scholar 

  • Lee H-M, Kim J-J, Kim HJ, Shong M, Ku BJ, Jo E-K. Upregulated NLRP3 Inflammasome Activation in Patients With Type 2 Diabetes. Diabetes. 2013 Oct 18;62:1–11.

    Google Scholar 

  • Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 2001 May 18;276(20):16683–9.

    CAS  PubMed  Google Scholar 

  • Lefterova MI, Haakonsson AK, Lazar M a, Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014 Jun;25(6):293–302.

    Google Scholar 

  • Liu H-S, Chen Y-H, Hung P-F, Kao Y-H. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E273–81.

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia E, Schulze MB, Manson JE, Meigs JB, Albert CM, Rifai N, et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J. Nutr. United States; 2004 Jul;134(7):1806–11.

    CAS  Google Scholar 

  • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007/01/04 ed. 2007;117(1):175–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008/10/03 ed. 2008;57(12):3239–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp F a, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 2010 Sep;11(10):8–11

    Google Scholar 

  • McGettrick AF, O’Neill LAJ. NLRP3 and IL-1beta in macrophages as critical regulators of metabolic diseases. Diabetes. Obes. Metab. England; 2013 Sep;15 Suppl 3:19–25.

    Google Scholar 

  • McMorrow AM, Connaughton RM, Lithander FE, Roche HM. Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality. Proc. Nutr. Soc. England; 2015 Feb;74(1):67–82.

    CAS  Google Scholar 

  • McNelis JC, Olefsky JM. Macrophages, Immunity, and Metabolic Disease. Immunity. Elsevier Inc.; 2014 Jul;41(1):36–48.

    CAS  Google Scholar 

  • Mills KH, Dunne A. Immune modulation: IL-1, master mediator or initiator of inflammation. Nat Med. 2009/12/08 ed. 2009;15(12):1363–4.

    CAS  PubMed  Google Scholar 

  • Mishra M, Kumar H, Bajpai S, Singh RK, Tripathi K. Level of serum IL-12 and its correlation with endothelial dysfunction, insulin resistance, proinflammatory cytokines and lipid profile in newly diagnosed type 2 diabetes. Diabetes Res Clin Pr. 2011 Nov;94(2):255–61.

    CAS  Google Scholar 

  • Miyazaki Y, He H, Mandarino LJ, DeFronzo RA. Rosiglitazone improves downstream insulin receptor signaling in type 2 diabetic patients. Diabetes. 2003;52(8):1943–50.

    CAS  PubMed  Google Scholar 

  • Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front. Microbiol. 2014;5(April):1–10.

    Google Scholar 

  • Morinaga H, Mayoral R, Heinrichsdorff J, Osborn O, Franck N, Hah N, et al. Characterization of Distinct Subpopulations of Hepatic Macrophages in HFD/Obese Mice. Diabetes. 2014;epub ahead.

    Google Scholar 

  • Morris DL, Cho KW, Delproposto JL, Oatmen KE, Geletka LM, Martinez-Santibanez G, et al. Adipose Tissue Macrophages Function As Antigen-Presenting Cells and Regulate Adipose Tissue CD4+ T Cells in Mice. Diabetes. 2013 Aug;62(8):2762–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. Nature Publishing Group; 2008;8(12):958–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. Elsevier; 2014 Jul;41(1):14–20.

    CAS  Google Scholar 

  • Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ, Grant RW, et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. Cell Press; 2014;19(5):821–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nam H, Ferguson BS, Stephens JM, Morrison RF. Impact of obesity on IL-12 family gene expression in insulin responsive tissues. Biochim Biophys Acta. Elsevier B.V.; 2013 Aug 23;1832(1):ePub.

    Google Scholar 

  • Ng Y, Ramm G, Burchfield JG, Coster ACF, Stöckli J, James DE. Cluster analysis of insulin action in adipocytes reveals a key role for Akt at the plasma membrane. J. Biol. Chem. 2010 Jan 22;285(4):2245–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009/07/28 ed. 2009;15(8):914–20.

    CAS  PubMed  Google Scholar 

  • Obstfeld AE, Sugaru E, Thearle M, Francisco A, Gayet C, Ginsberg HN, et al. Recruitment of Myeloid Cells That Promote Obesity-Induced Hepatic Steatosis. 2010;59(April).

    Google Scholar 

  • Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM. Increased macrophage migration into adipose tissue in obese mice. Diabetes. 2012 Feb;61(2):346–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010/09/04 ed. Elsevier Ltd; 2010 Sep;142(5):687–98.

    Google Scholar 

  • Orr JS, Puglisi MJ, Ellacott KLJ, Lumeng CN, Wasserman DH, Hasty AH. Toll-like Receptor 4 Deficiency Promotes the Alternative Activation of Adipose Tissue Macrophages. Diabetes. 2012 Jun 29;61(11):2718–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. Nature Publishing Group; 2012 Mar;18(3):363–74.

    CAS  Google Scholar 

  • Owyang AM, Maedler K, Gross L, Yin J, Esposito L, Shu L, et al. XOMA 052, an anti-IL-1{beta} monoclonal antibody, improves glucose control and {beta}-cell function in the diet-induced obesity mouse model. Endocrinology. 2010 Jun;151(6):2515–27.

    CAS  PubMed  Google Scholar 

  • Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-Positive Cells Normalizes Insulin Sensitivity in Obese Insulin Resistant Animals. Cell Metab. 2008;8(4):301–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, et al. A Molecular Basis for Insulin Resistance: Elevated Serine/Threonine Phosphorylation of IRS-1 and IRS-2 Inhibits their Binding to the Juxtamembrane Region of the Insulin Receptor and Impairs their Ability to Undergo Insulin-Induced Tyrosine Phosphorylation. J. Biol. Chem. 1997 Nov 21;272(47):29911–8.

    CAS  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.

    CAS  PubMed  Google Scholar 

  • Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005;98(4):1154–62.

    CAS  PubMed  Google Scholar 

  • Phillips CM, Dillon C, Harrington JM, McCarthy VJC, Kearney PM, Fitzgerald AP, et al. Defining metabolically healthy obesity: role of dietary and lifestyle factors. PLoS One. 2013 Jan;8(10):e76188.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pradhan AD, Manson JE, Buring JE, Ridker PM. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. 2001;286(3):327–34.

    Google Scholar 

  • Reynolds CM, McGillicuddy FC, Harford K a, Finucane OM, Mills KHG, Roche HM. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol Nutr Food Res. 2012 Jun 15;56(8):1212–22.

    CAS  PubMed  Google Scholar 

  • Rhee EJ, Lee MK, Kim JD, Jeon WS, Bae JC, Park SE, et al. Metabolic health is a more important determinant for diabetes development than simple obesity: A 4-year retrospective longitudinal study. PLoS One. 2014;9(5):1–8.

    Google Scholar 

  • Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996/06/15 ed. 1996;97(12):2859–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rothman DL, Shulman RG, Shulman GI. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate: Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1992;89(4):1069–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saito M, Okamatsu-ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-kobayashi J, et al. High Incidence of Metabolically Active Brown Adipose Effects of Cold Exposure and Adiposity. Diabetes. 2009;58(JULY):1526–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J Exp Med. 1994;179(4):1109–18.

    CAS  PubMed  Google Scholar 

  • Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010. p. 2267–77.

    Google Scholar 

  • Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J. Clin. Invest. 2007;117(6):1690–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seijkens T, Kusters P, Chatzigeorgiou A, Chavakis T, Lutgens E. Immune cell crosstalk in obesity: a key role for costimulation? Diabetes. 2014 Dec;63(12):3982–91.

    CAS  PubMed  Google Scholar 

  • Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi H, Kokoeva M V, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006/10/21 ed. 2006;116(11):3015–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shulman GI. On diabetes: insulin resistance Cellular mechanisms of insulin resistance. J. Clin. Invest. 2000;106(2):171–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Aggarwal BB. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J. Biol. Chem. 1995;270(42):24995–5000.

    CAS  PubMed  Google Scholar 

  • Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003/02/28 ed. 2003;52(3):812–7.

    CAS  PubMed  Google Scholar 

  • Stefanovic-Racic M, Yang X, Turner MS, Mantell BS, Stolz DB, Sumpter TL, et al. Dendritic Cells Promote Macrophage Infiltration and Comprise a Substantial Proportion of Obesity-Associated Increases in CD11c+ Cells in Adipose Tissue and Liver. Diabetes. 2012 Sep;61(9):2330–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012 Jan 19;481(7381):278–86.

    CAS  PubMed  Google Scholar 

  • Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet. England; 2012 Jun;379(9833):2279–90.

    Google Scholar 

  • Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. Nature Publishing Group; 2012 Aug 5;18(9):1407–12.

    CAS  Google Scholar 

  • Tanti J-F, Jager J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr. Opin. Pharmacol. 2009 Dec;9(6):753–62.

    CAS  PubMed  Google Scholar 

  • Tchkonia T, Tchoukalova YD, Giorgadze N, Pirtskhalava T, Karagiannides I, Forse RA, et al. Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. Am. J. Physiol. Endocrinol. Metab. 2005 Jan;288(1):E267–77.

    CAS  PubMed  Google Scholar 

  • Tierney AC, McMonagle J, Shaw DI, Gulseth HL, Helal O, Saris WHM, et al. Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome – LIPGENE: a European randomized dietary intervention study. Int. J. Obes. (Lond). England; 2011 Jun;35(6):800–9.

    CAS  Google Scholar 

  • Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 2006;103(28):10741–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. England; 2006 Dec;444(7122):1027–31.

    Google Scholar 

  • Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999 p. 2005–12.

    Google Scholar 

  • Ueki K, Kondo T, Kahn CR. Suppressor of Cytokine Signaling 1 ( SOCS-1 ) and SOCS-3 Cause Insulin Resistance through Inhibition of Tyrosine Phosphorylation of Insulin Receptor Substrate Proteins by Discrete Mechanisms. Mol. Cell. Biol. 2004;24(12):5434–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Berg SM, Seijkens TTP, Kusters PJH, Zarzycka B, Beckers L, den Toom M, et al. Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice. Int. J. Obes. (Lond). 2014 Nov;

    Google Scholar 

  • Verschuren L, Wielinga PY, van Duyvenvoorde W, Tijani S, Toet K, van Ommen B, et al. A dietary mixture containing fish oil, resveratrol, lycopene, catechins, and vitamins E and C reduces atherosclerosis in transgenic mice. J. Nutr. United States; 2011 May;141(5):863–9.

    CAS  Google Scholar 

  • Vijay-Kumar M, Aitken JD, Carvalho F a, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010 Apr;328(5975):228–31.

    CAS  PubMed  Google Scholar 

  • Wegner M, Winiarska H, Bobkiewicz-Kozłowska T, Dworacka M. IL-12 serum levels in patients with type 2 diabetes treated with sulphonylureas. Cytokine. 2008 Jun;42(3):312–6.

    CAS  PubMed  Google Scholar 

  • Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2005/12/13 ed. 2006;116(1):115–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, et al. Obesity is associated with macrophage accumulation. J Clin Invest. 2003/12/18 ed. 2003;112(12):1796–808.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011/04/12 ed. Nature Publishing Group; 2011 May;12(5):408–15.

    Google Scholar 

  • Wernstedt Asterholm I, Tao C, Morley TS, Wang Q a, Delgado-Lopez F, Wang Z V, et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. Elsevier Inc.; 2014 Jul 1;20(1):103–18

    Google Scholar 

  • WHO/IDF. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. 2006.

    Google Scholar 

  • Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009/07/28 ed. 2009;15(8):921–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012 Jul 20;150(2):366–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003/12/18 ed. 2003;112(12):1821–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001 Aug;7(8):941–6.

    CAS  PubMed  Google Scholar 

  • Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 Fatty Acids Prevent Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome Activation. Immunity. Elsevier Inc.; 2013 Jun;38(6):1154–63.

    Google Scholar 

  • Yang F, Oz HS, Barve S, de Villiers WJ, McClain CJ, Varilek GW. The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol. 2001 Sep;60(3):528–33.

    CAS  PubMed  Google Scholar 

  • Ye J. Regulation of PPARy function by TNF-alpha. Biochem Biophys Res Commun. 2009;374(3):405–8.

    Google Scholar 

  • Yki-Järvinen H. Thiazolidinediones. N. Engl. J. Med. 2004. p. 1106–18.

    Google Scholar 

  • Zahorska-Markiewicz B, Janowska J, Olszanecka-Glinianowicz M, Zurakowski A. Serum concentrations of TNF- a and soluble TNF- a receptors in obesity. Int. J. Obes. 2000;(24):1392–5.

    CAS  Google Scholar 

  • Zeng L, Tang WJ, Yin JJ, Zhou BJ. Signal transductions and nonalcoholic fatty liver: A mini-review. Int. J. Clin. Exp. Med. 2014;7(7):1624–31.

    PubMed Central  PubMed  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001;108(8):1167–74.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maeve A. McArdle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

McArdle, M.A., Kennedy, E.B., Roche, H.M. (2015). Linking Inflammation, Obesity and Diabetes. In: Ahima, R. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-12125-3_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12125-3_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12125-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics