Skip to main content

Microbial Cytochromes P450

  • Chapter
  • First Online:
Cytochrome P450

Abstract

The microbial P450s perform an array of oxidative and other chemical reactions that are both crucial for the viability of the bacterial, archaeal, and fungal hosts, and which have numerous important applications. The soluble nature of the bacterial and archaeal P450s has facilitated their expression and purification in high yields, and has enabled the determination of the crystal structures of several important members of the P450 superfamily. Many of the major breakthroughs in our knowledge of the catalytic mechanisms of the P450s have been made through spectroscopic and transient kinetic studies on the microbial P450s, including recent research that has definitively identified the highly reactive P450 iron–oxo species compound I and has demonstrated its catalytic potency. This chapter describes our current knowledge on the structural and functional properties of the microbial P450s, including their involvement in pathways for production of industrially important molecules such as antibiotics. Aspects such as engineering of these P450s for novel reaction chemistry are also detailed, along with emerging data for novel P450 enzymes fused to both redox and nonredox partner proteins, and novel systems that bypass the requirement for redox partner proteins altogether. The microbial P450s provide a rich source of catalysts that continue to provide new information on the versatility of the P450s as well as novel activities with applications in the biomedical, biofuels, and bioremediation fields. This chapter highlights recent breakthroughs and developments that will ensure that microbial P450s remain center stage for biotechnology applications in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omura T, Sato R (1964) Carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    Google Scholar 

  2. Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75:376–386

    Google Scholar 

  3. Cooper DY, Estabrook RW, Rosenthal O (1963) The stoichiometry of C21 hydroxylation of steroids by adrenocortical microsomes. J Biol Chem 238:1320–1323

    Google Scholar 

  4. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-Å crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130

    Google Scholar 

  5. Liu HI, Sono M, Kadkhodayan S, Hager LP, Hedman B, Hodgson KO, Dawson JH (1995) X-ray absorption near edge studies of cytochrome P-450-cam, chloroperoxidase, and myoglobin. Direct evidence for the electron releasing character of a cysteine thiolate proximal ligand. J Biol Chem 270:10544–10550

    Google Scholar 

  6. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Google Scholar 

  7. Capdevila JH, Falck JR, Imig JD (2007) Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney Int 72:683–689

    Google Scholar 

  8. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351

    Google Scholar 

  9. The Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  10. Alvarez LAJ, Bourke B, Pircalabioru G, Georgiev AY, Knaus UG, Daff S, Corcionivoschi N (2013) Cj1411c encodes for a cytochrome P450 involved in Campylobacter jejuni 81–176 pathogenicity. PLoS One 8

    Google Scholar 

  11. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Google Scholar 

  12. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700

    Google Scholar 

  13. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, C-H bond activation kinetics. Science 330:933–937

    Google Scholar 

  14. Kelly S, Kelly D, Jackson C, Warrilow A, Lamb D (2005) The diversity and importance of microbial cytochromes P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 585–617

    Google Scholar 

  15. Kelly DE, Krasevec N, Mullins J, Nelson DR (2009) The CYPome (cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet Biol 46:S53–S61

    Google Scholar 

  16. Loffler J, Kelly SL, Hebart H, Schumacher U, LassFlorl C, Einsele H (1997) Molecular analysis of CYP51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett 151:263–268

    Google Scholar 

  17. Brodhun F, Schneider S, Gobel C, Hornung E, Feussner I (2010) PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J 425:553–565

    Google Scholar 

  18. Nelson DR (1998) Cytochrome P450 nomenclature. Methods Mol Biol 107:15–24

    Google Scholar 

  19. Nelson DR (2009) The cytochrome P450 homepage Hum Genomics 4:59–65

    Google Scholar 

  20. Nelson DR (2011) Progress in tracing the evolutionary paths of cytochrome P450. Biochim Biophys Acta 1814:14–18

    Google Scholar 

  21. McLean KJ, Warman AJ, Seward HE, Marshall KR, Girvan HM, Cheesman MR, Waterman MR, Munro AW (2006) Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions. Biochemistry 45:8427–8443

    Google Scholar 

  22. Aoyama Y, Horiuchi T, Gotoh O, Noshiro M, Yoshida Y (1998) CYP51-like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51. J Biochem 124:694–696

    Google Scholar 

  23. Lepesheva GI, Waterman MR (2004) CYP51—the omnipotent P450. Mol Cell Endocrinol 215:165–170

    Google Scholar 

  24. Poulos TL, Jonson EF (2005) Structures of cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 87–114

    Google Scholar 

  25. Sezutsu H, Le Goff G, Feyereisen R (2013) Origins of P450 diversity. Philos Trans R Soc B Biol Sci 368:20120428

    Google Scholar 

  26. Guengerich FP, Tang Z, Cheng Q, Salamanca-Pinzon SG (2011) Approaches to deorphanization of human and microbial cytochrome P450 enzymes. Biochim Biophys Acta 1814:139–145

    Google Scholar 

  27. Schalk M, Croteau R (2000) A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (-)-limonene hydroxylase from a C6- to a C3-hydroxylase. Proc Natl Acad Sci U S A 97:11948–11953

    Google Scholar 

  28. Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TWB, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC et al (2002) P450BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 27:250–257

    Google Scholar 

  29. Whitehouse CJC, Bell SG, Wong L-L (2012) P450(BM3) (CYP102A1): connecting the dots. Chem Soc Rev 41:1218–1260

    Google Scholar 

  30. Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala. Biochemistry 30:11420–11429

    Google Scholar 

  31. Imai M, Shimada H, Watanabe Y, Matsushimahibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine—a possible role of the hydroxy amino-acid in oxygen activation. Proc Natl Acad Sci U S A 86:7823–7827

    Google Scholar 

  32. Hishiki T, Shimada H, Nagano S, Egawa T, Kanamori Y, Makino R, Park SY, Adachi S, Shiro Y, Ishimura Y (2000) X-ray crystal structure and catalytic properties of Thr252Ile mutant of cytochrome P450cam: roles of Thr252 and water in the active center. J Biochem 128:965–974

    Google Scholar 

  33. Yeom H, Sligar SG, Li H, Poulos TL, Fulco AJ (1995) The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry 34:14733–14740

    Google Scholar 

  34. Cupp-Vickery JR, Poulos TL (1995) Structure of cytochrome P450EryF involved in erythromycin biosynthesis. Nat Struct Biol 2:144–153

    Google Scholar 

  35. Cupp-Vickery JR, Han O, Hutchinson CR, Poulos TL (1996) Substrate-assisted catalysis in cytochrome P450EryF. Nat Struct Biol 3:632–637

    Google Scholar 

  36. Cupp-Vickery J, Anderson R, Hatziris Z (2000) Crystal structures of ligand complexes of P450EryF exhibiting homotropic cooperativity. Proc Natl Acad Sci U S A 97:3050–3055

    Google Scholar 

  37. Xiang H, Tschirret-Guth RA, Ortiz de Montellano PR (2000) An A245T mutation conveys on cytochrome P450(EryF) the ability to oxidize alternative substrates. J Biol Chem 275:35999–36006

    Google Scholar 

  38. Hawkes DB, Adams GW, Burlingame AL, Ortiz de Montellano PR, De Voss JJ (2002) Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization. J Biol Chem 277:27725–27732

    Google Scholar 

  39. Stok JE, Yamada S, Farlow AJ, Slessor KE, De Voss JJ (2013) Cytochrome P450(cin) (CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s. Biochim Biophys Acta 1834:688–696

    Google Scholar 

  40. Slessor KE, Farlow AJ, Cavaignac SM, Stok JE, De Voss JJ (2011) Oxygen activation by P450(cin): protein and substrate mutagenesis. Arch Biochem Biophys 507:154–162

    Google Scholar 

  41. Hatae T, Hara S, Yokoyama C, Yabuki T, Inoue H, Ullrich V, Tanabe T (1996) Site-directed mutagenesis of human prostacyclin synthase: alteration of Cys441 of the Cys-pocket, and Glu347 and Arg350 of the EXXR motif. FEBS Lett 389:268–272

    Google Scholar 

  42. Rupasinghe S, Schuler MA, Kagawa N, Yuan H, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC (2006) The cytochrome P450 gene family CYP157 does not contain EXXR in the K-helix reducing the absolute conserved P450 residues to a single cysteine. FEBS Lett 580:6338–6342

    Google Scholar 

  43. Lamb DC, Waterman MR (2013) Unusual properties of the cytochrome P450 superfamily. Philos Trans R Soc B Biol Sci 368

    Google Scholar 

  44. Li ZZ, Li XF, Yang W, Dong X, Yu J, Zhu SL, Li M, Xie L, Tong WY (2013) Identification and functional analysis of cytochrome P450 complement in Streptomyces virginiae IBL14. BMC Genomics 14:130

    Google Scholar 

  45. Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H (1993) Cytochrome P-450-55A1 (P-450dnir) acts as nitric-oxide reductase employing NADH as the direct electron-donor. J Biol Chem 268:8350–8355

    Google Scholar 

  46. Kahn RA, Durst F (2000) Function and evolution of plant cytochrome P450. In: Romeo JT, Ibrahim R, Varin L, DeLuca V (eds) Evolution of metabolic pathways, recent advances in phytochemistry, vol 34. Kluwer Academic Publisher, The Netherlands, pp 151–189

    Google Scholar 

  47. Lee D-S, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–U327

    Google Scholar 

  48. Wickramashighe RH, Villee CA (1975) Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature 256:509–510

    Google Scholar 

  49. Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc B Biol Sci 368:20120476

    Google Scholar 

  50. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–U1109

    Google Scholar 

  51. Lombard J, Lopez-Garcia P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515

    Google Scholar 

  52. Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    Google Scholar 

  53. Yoshida Y, Aoyama Y, Noshiro M, Gotoh O (2000) Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily. Biochem Biophys Res Commun 273:799–804

    Google Scholar 

  54. Nelson DR (2013) A world of cytochrome P450s. Philos Trans R Soc B Biol Sci 368:20120430

    Google Scholar 

  55. Nelson DR, Goldstone JV, Stegeman JJ (2013) The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philos Trans R Soc B Biol Sci 368:20120474

    Google Scholar 

  56. Rezen T, Debeljak N, Kordis D, Rozman D (2004) New aspects on lanosterol 14 alpha-demethylase and cytochrome P450 evolution: lanosterol/cycloartenol diversification and lateral transfer. J Mol Evol 59:51–58

    Google Scholar 

  57. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, ColladoVides J, Glasner JD, Rode CK, Mayhew GF et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453

    Google Scholar 

  58. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Google Scholar 

  59. Lechat P, Hummel L, Rousseau S, Moszer I (2008) Genolist: an integrated environment for comparative analysis of microbial genomes. Nucleic Acids Res 36:D469–474

    Google Scholar 

  60. Furuya T, Shibata D, Kino K (2009) Phylogenetic analysis of Bacillus P450 monooxygenases and evaluation of their activity towards steroids. Steroids 74:906–912

    Google Scholar 

  61. Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The genomes online database (gold) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40:D571–579

    Google Scholar 

  62. Girvan HM, Waltham TN, Neeli R, Collins HF, McLean KJ, Scrutton NS, Leys D, Munro AW (2006) Flavocytochrome P450BM3 and the origin of CYP102 fusion species. Biochem Soc Trans 34:1173–1177

    Google Scholar 

  63. Virus C, Lisurek M, Simgen B, Hannemann F, Bernhardt R (2006) Function and engineering of the 15beta-hydroxylase CYP106A2. Biochem Soc Trans 34:1215–1218

    Google Scholar 

  64. Stok JE, De Voss J (2000) Expression, purification, and characterization of Biol: a carbon–carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch Biochem Biophys 384:351–360

    Google Scholar 

  65. Belin P, Le Du MH, Fielding A, Lequin O, Jacquet M, Charbonnier J-B, Lecoq A, Thai R, Courcon M, Masson C et al (2009) Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 106:7426–7431

    Google Scholar 

  66. Kishi Y (2011) Chemistry of mycolactones, the causative toxins of Buruli ulcer. Proc Natl Acad Sci U S A 108:6703–6708

    Google Scholar 

  67. Lamb DC, Ikeda H, Nelson DR, Ishikawa J, Skaug T, Jackson C, Omura S, Waterman MR, Kelly SL (2003) Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 307:610–619

    Google Scholar 

  68. Strep DB The Streptomyces annotation server. http://strepdb.Streptomyces.Org.Uk/

  69. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Google Scholar 

  70. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB et al (2008) The genome sequence of Bifidobacterium longum subsp infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 105:18964–18969

    Google Scholar 

  71. Diez J, Martinez JP, Mestres J, Sasse F, Frank R, Meyerhans A (2012) Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 11

    Google Scholar 

  72. Khatri Y, Hannemann F, Perlova O, Mueller R, Bernhardt R (2011) Investigation of cytochromes P450 in myxobacteria: excavation of cytochromes P450 from the genome of Sorangium cellulosum so ce56. FEBS Lett 585:1506–1513

    Google Scholar 

  73. Subramanian V, Yadav JS (2008) Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme Microb Technol 43:205–213

    Google Scholar 

  74. Hirosue S, Tazaki M, Hiratsuka N, Yanai S, Kabumoto H, Shinkyo R, Arisawa A, Sakaki T, Tsunekawa H, Johdo O et al (2011) Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. Biochem Biophys Res Commun 407:118–123

    Google Scholar 

  75. Kasai N, Ikushiro S, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T (2010) Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 86:773–780

    Google Scholar 

  76. Syed K, Yadav JS (2012) P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit Rev Microbiol 38:339–363

    Google Scholar 

  77. Ichinose H (2012) Molecular and functional diversity of fungal cytochrome P450s. Biol Pharm Bull 35:833–837

    Google Scholar 

  78. Syed K, Nelson DR, Riley R, Yadav JS (2013) Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp and Phlebia brevispora. Mycologia 105:1445–1455

    Google Scholar 

  79. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain rp78. Nat Biotechnol 22:695–700

    Google Scholar 

  80. Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Google Scholar 

  81. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106:1954–1959

    Google Scholar 

  82. Fernandez-Fueyo E, Ruiz-Duenas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S et al (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A 109:5458–5463

    Google Scholar 

  83. Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I et al (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610

    Google Scholar 

  84. Cohen GN (2011) The archaea. Microbial biochemistry. Springer, The Netherlands, pp 133–137

    Google Scholar 

  85. Chan PP, Holmes AD, Smith AM, Tran D, Lowe TM (2012) The UCSC archaeal genome browser: 2012 update. Nucleic Acids Res 40:D646–652

    Google Scholar 

  86. Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343

    Google Scholar 

  87. Cavicchioli R (2011) Archaea—timeline of the third domain. Nat Rev Microbiol 9:51–61

    Google Scholar 

  88. Wright RL, Harris K, Solow B, White RH, Kennelly PJ (1996) Cloning of a potential cytochrome P450 from the archaeon Sulfolobus solfataricus. FEBS Lett 384:235–239

    Google Scholar 

  89. Koo LS, Ortiz de Montellano PR (1997) Heterologous expression and characterization of CYP119 from the archaeon, Sulfolobus solfataricus. FASEB J 11:A813–A813

    Google Scholar 

  90. McLean MA, Maves SA, Weiss KE, Krepich S, Sligar SG (1998) Characterization of a cytochrome P450 from the acidothermophilic archaea Sulfolobus solfataricus. Biochem Biophys Res Commun 252:166–172

    Google Scholar 

  91. Park SY, Yamane K, Adachi S, Shiro Y, Weiss KE, Maves SA, Sligar SG (2002) Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional properties. J Inorg Biochem 91:491–501

    Google Scholar 

  92. Yano JK, Koo LS, Schuller DJ, Li H, Ortiz de Montellano PR, Poulos TL (2000) Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J Biol Chem 275:31086–31092

    Google Scholar 

  93. Oku Y, Ohtaki A, Kamitori S, Nakamura N, Yohda M, Ohno H, Kawarabayasi Y (2004) Structure and direct electrochemistry of cytochrome P450 from the thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. J Inorg Biochem 98:1194–1199

    Google Scholar 

  94. Koo LS, Tschirret-Guth RA, Straub WE, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR (2000) The active site of the thermophilic CYP119 from Sulfolobus solfataricus. J Biol Chem 275:14112–14123

    Google Scholar 

  95. Puchkaev AV, Wakagi T, Ortiz de Montellano PR (2002) CYP119 plus a Sulfolobus tokodaii strain 7 ferredoxin and 2-oxoacid: ferredoxin oxidoreductase constitute a high-temperature cytochrome P450 catalytic system. J Am Chem Soc 124:12682–12683

    Google Scholar 

  96. Puchkaev AV, de Ortiz Montellano PR (2005) The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H-dependent cytochrome P450 system. Arch Biochem Biophys 434:169–177

    Google Scholar 

  97. Matsumura H, Matsuda K, Nakamura N, Ohtaki A, Yoshida H, Kamitori S, Yohda M, Ohno H (2011) Monooxygenation by a thermophilic cytochrome P450 via direct electron donation from NADH. Metallomics 3:389–395

    Google Scholar 

  98. Koo LS, Immoos CE, Cohen MS, Farmer PJ, Ortiz de Montellano PR (2002) Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J Am Chem Soc 124:5684–5691

    Google Scholar 

  99. Lim Y-R, Eun C-Y, Park H-G, Han S, Han J-S, Cho KS, Chun Y-J, Kim D (2010) Regioselective oxidation of lauric acid by CYP119, an orphan cytochrome P450 from Sulfolobus acidocaldarius. J Microbiol Biotechnol 20:574–578

    Google Scholar 

  100. Nishida CR, Ortiz de Montellano PR (2005) Thermophilic cytochrome P450 enzymes. Biochem Biophys Res Commun 338:437–445

    Google Scholar 

  101. Yano JK, Blasco F, Li HY, Schmid RD, Henne A, Poulos TL (2003) Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus. J Biol Chem 278:608–616

    Google Scholar 

  102. Goyal S, Banerjee S, Mazumdar S (2012) Oxygenation of monoenoic fatty acids by CYP175A1, an orphan cytochrome P450 from Thermus thermophilus HB27. Biochemistry 51:7880–7890

    Google Scholar 

  103. Ho WW, Li H, Nishida CR, Ortiz de Montellano PR, Poulos TL (2008) Crystal structure and properties of CYP231A2 from the thermoacidophilic archaeon Picrophilus torridus. Biochemistry 47:2071–2079

    Google Scholar 

  104. Sideso O, Smith KE, Welch SG, Williams RA (1997) Thermostable cytochrome P450 steroid hydroxylase from a thermophilic Bacillus strain. Biochem Soc Trans 25:17S

    Google Scholar 

  105. Sideso O, Williams RA, Welch SG, Smith KE (1998) Progesterone 6-hydroxylation is catalysed by cytochrome P-450 in the moderate thermophile Bacillus thermoglucosidasius strain 12060. J Steroid Biochem Mol Biol 67:163–169

    Google Scholar 

  106. Stinear TP, Pryor MJ, Porter JL, Cole ST (2005) Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology 151:683–692

    Google Scholar 

  107. Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, Krasnoff SB, Crane BR, Gibson DM, Loria R et al (2012) Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol 8:814–816

    Google Scholar 

  108. Podust LM, Ouellet H, von Kries JP, Ortiz de Montellano PR (2009) Interaction of Mycobacterium tuberculosis CYP130 with heterocyclic arylamines. J Biol Chem 284:25211–25219

    Google Scholar 

  109. Guengerich FP, Cheng Q (2011) Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 63:684–699

    Google Scholar 

  110. Cheng Q, Guengerich FP (2013) Identification of endogenous substrates of orphan cytochrome P450 enzymes through the use of untargeted metabolomics approaches. Methods Mol Biol 987:71–77

    Google Scholar 

  111. Cheng Q, Lamb DC, Kelly SL, Lei L, Guengerich FP (2010) Cyclization of a cellular dipentaenone by Streptomyces coelicolor cytochrome P450 154A1 without oxidation/reduction. J Am Chem Soc 132:15173–15175

    Google Scholar 

  112. Denisov IG, Shih AY, Sligar SG (2012) Structural differences between soluble and membrane bound cytochrome P450s. J Inorg Biochem 108:150–158

    Google Scholar 

  113. Munro AW, Girvan HM, McLean KJ (2007) Cytochrome P450—redox partner fusion enzymes. Biochim Biophys Acta 1770:345–359

    Google Scholar 

  114. Paine MJI, Scrutton NS, Munro AW, Gutierrez A, Roberts GCK, Wolf CR (2005) Electron transfer partners of cytochrome P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 115–148

    Google Scholar 

  115. Wang M, Roberts DL, Paschke R, Shea TM, Masters BSS, Kim JJP (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci U S A 94:8411–8416

    Google Scholar 

  116. Schenkman JB, Jansson I (2003) The many roles of cytochrome b(5). Pharmacol Ther 97:139–152

    Google Scholar 

  117. Katagiri M, Ganguli BN, Gunsalus IC (1968) A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem 243:3543-and

    Google Scholar 

  118. Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, Bartlam M, Wong L-L, Rao Z (2010) Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem 285:27372–27384

    Google Scholar 

  119. Yang W, Bell SG, Wang H, Zhou W, Bartlam M, Wong L-L, Rao Z (2011) The structure of CYP101D2 unveils a potential path for substrate entry into the active site. Biochem J 433:85–93

    Google Scholar 

  120. Hasemann CA, Ravichandran KG, Peterson JA, Deisenhofer J (1994) Crystal-structure and refinement of cytochrome P450(terp) at 2.3 Angstrom resolution. J Mol Biol 236:1169–1185

    Google Scholar 

  121. Meharenna YT, Li HY, Hawkes DB, Pearson AG, De Voss J, Poulos TL (2004) Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam. Biochemistry 43:9487–9494

    Google Scholar 

  122. Meharenna YT, Slessor KE, Cavaignac SM, Poulos TL, De Voss JJ (2008) The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in P450cin. J Biol Chem 283:10804–10812

    Google Scholar 

  123. Smits THM, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Anton Leeuw Int J G Mol Micro 84:193–200

    Google Scholar 

  124. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Rothlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Google Scholar 

  125. Funhoff EG, Bauer U, Garcia-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227

    Google Scholar 

  126. Zhou R, Huang C, Zhang A, Bell SG, Zhou W, Wong L-L (2011) Crystallization and preliminary X-ray analysis of CYP153C1 from Novosphingobium aromaticivorans DSM12444. Acta Crystallogr F-Struct Biol Crystalliz Commun 67:964–967

    Google Scholar 

  127. Wang W, Shao Z (2012) Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Appl Microbiol Biotechnol 94:437–448

    Google Scholar 

  128. Maier T, Forster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kda CYP153 from Acinetobacter sp EB104. Biochem Biophys Res Commun 286:652–658

    Google Scholar 

  129. Jung ST, Lauchli R, Arnold FH (2011) Cytochrome P450: taming a wild type enzyme. Curr Opin Biotechnol 22:809–817

    Google Scholar 

  130. Imai Y, Matsunaga I, Kusunose E, Ichihara K (2000) Unique heme environment at the putative distal region of hydrogen peroxide-dependent fatty acid alpha-hydroxylase from Sphingomonas paucimobilis (peroxygenase P450(SP alpha)). J Biochem 128:189–194

    Google Scholar 

  131. Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc Natl Acad Sci U S A 105:15696–15701

    Google Scholar 

  132. Schmitz D, Zapp J, Bernhardt R (2014) Steroid conversion with CYP106A2—production of pharmaceutically interesting DHEA metabolites. Microb Cell Fact 13:81–81

    Google Scholar 

  133. Brill E, Hannemann F, Zapp J, Bruening G, Jauch J, Bernhardt R (2014) A new cytochrome P450 system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-beta-boswellic acid (kba). Appl Microbiol Biotechnol 98:1703–1717

    Google Scholar 

  134. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Google Scholar 

  135. Sabbadin F, Jackson R, Haider K, Tampi G, Turkenburg JP, Hart S, Bruce NC, Grogan G (2009) The 1.5-Å, structure of XplA-heme, an unusual cytochrome P450 heme domain that catalyzes reductive biotransformation of royal demolition explosive. J Biol Chem 284:28467–28475

    Google Scholar 

  136. Halasz A, Manno D, Perreault NN, Sabbadin F, Bruce NC, Hawari J (2012) Biodegradation of RDX nitroso products MNX and TNX by cytochrome P450 XplA. Environ Sci Technol 46:7245–7251

    Google Scholar 

  137. Bui SH, McLean KJ, Cheesman MR, Bradley JM, Rigby SEJ, Levy CW, Leys D, Munro AW (2012) Unusual spectroscopic and ligand binding properties of the cytochrome P450-flavodoxin fusion enzyme XplA. J Biol Chem 287:19699–19714

    Google Scholar 

  138. Nagy I, Compernolle F, Ghys K, Vanderleyden J, Demot R (1995) A single cytochrome-P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp strain ni86/21. Appl Environ Microbiol 61:2056–2060

    Google Scholar 

  139. Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, Demot R (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp strain ni86/21 involve an inducible cytochrome-P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

    Google Scholar 

  140. Shao ZQ, Behki R (1996) Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains. Appl Environ Microbiol 62:403–407

    Google Scholar 

  141. Warman AJ, Robinson JW, Luciakova D, Lawrence AD, Marshall KR, Warren MJ, Cheesman MR, Rigby SEJ, Munro AW, McLean KJ (2012) Characterization of Cupriavidus metallidurans CYP116B1-a thiocarbamate herbicide oxygenating P450-phthalate dioxygenase reductase fusion protein. FEBS J 279:1675–1693

    Google Scholar 

  142. Hunter DJ, Roberts GA, Ost TW, White JH, Muller S, Turner NJ, Flitsch SL, Chapman SK (2005) Analysis of the domain properties of the novel cytochrome P450 RhF. FEBS Lett 579:2215–2220

    Google Scholar 

  143. Celik A, Roberts GA, White JH, Chapman SK, Turner NJ, Flitsch SL (2006) Probing the substrate specificity of the catalytically self-sufficient cytochrome P450RhF from a Rhodococcus sp. Chem Commun 4492–4494

    Google Scholar 

  144. McLean KJ, Belcher J, Driscoll MD, Fernandez CC, Le Van D, Bui S, Golovanova M, Munro AW (2010) The Mycobacterium tuberculosis cytochromes P450: physiology, biochemistry and molecular intervention. Future Med Chem 2:1339–1353

    CAS  PubMed  Google Scholar 

  145. Tian Z, Cheng Q, Yoshimoto FK, Lei L, Lamb DC, Guengerich FP (2013) Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor. Arch Biochem Biophys 530:101–107

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Hopwood DA (1999) Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology-UK 145:2183–2202

    CAS  Google Scholar 

  147. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Google Scholar 

  148. Okeefe DP, Harder PA (1991) Occurrence and biological function of cytochrome-P450 monooxygenases in the actinomycetes. Mol Microbiol 5:2099–2105

    CAS  Google Scholar 

  149. Podust LM, Sherman DH (2012) Diversity of P450 enzymes in the biosynthesis of natural products. Nat Prod Rep 29:1251–1266

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Zhang C, Kong L, Liu Q, Lei X, Zhu T, Yin J, Lin B, Deng Z, You D (2013) In vitro characterization of echinomycin biosynthesis: formation and hydroxylation of L-tryptophanyl-S-enzyme and oxidation of (2S,3S) beta-hydroxytryptophan. PLoS One 8:e56772

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Walczak RJ, Hines JV, Strohl WR, Priestley ND (2001) Bioconversion of the anthracycline analogue desacetyladriamycin by recombinant DoxA, a p450-monooxygenase from Streptomyces sp strain C5. Org Lett 3:2277–2279

    CAS  PubMed  Google Scholar 

  152. Tang L, Shah S, Chung L, Carney J, Katz L, Khosla C, Julien B (2000) Cloning and heterologous expression of the epothilone gene cluster. Science 287:640–642

    CAS  PubMed  Google Scholar 

  153. Liu X-j, Kong R-x, Niu M-s, Qiu R-g, Tang L (2013) Identification of the post-polyketide synthase modification enzymes for fostriecin biosynthesis in Streptomyces pulveraceus. J Nat Prod 76:524–529

    CAS  PubMed  Google Scholar 

  154. Makino M, Sugimoto H, Shiro Y, Asamizu S, Onaka H, Nagano S (2007) Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proc Natl Acad Sci U S A 104:11591–11596

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Wang F, Kong R, Liu B, Zhao J, Qiu R, Tang L (2012) Functional characterization of the genes tauO, tauK, and tauI in the biosynthesis of tautomycetin. J Microbiol 50:770–776

    CAS  PubMed  Google Scholar 

  156. Chen D, Zhang Q, Zhang Q, Cen P, Xu Z, Liu W (2012) Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl Environ Microbiol 78:5093–5103

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Molnar I, Aparicio JF, Haydock SF, Khaw LE, Schwecke T, Konig A, Staunton J, Leadlay PF (1996) Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169:1–7

    CAS  PubMed  Google Scholar 

  158. Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A 96:9509–9514

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Xie Z, Niu G, Li R, Liu G, Tan H (2007) Identification and characterization of SanH and SanI involved in the hydroxylation of pyridyl residue during nikkomycin biosynthesis in Streptomyces ansochromogenes. Curr Microbiol 55:537–542

    CAS  PubMed  Google Scholar 

  160. Mendes MV, Anton N, Martin JF, Aparicio JF (2005) Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin. Biochem J 386:57–62

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Caffrey P, Lynch S, Flood E, Finnan S, Oliynyk M (2001) Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem Biol 8:713–723

    CAS  PubMed  Google Scholar 

  162. Mellado E, Lorenzana LM, Rodriguez-Saiz M, Diez B, Liras P, Barredo JL (2002) The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus: genetic organization of the region upstream of the car gene. Microbiology-Sgm 148:1427–1438

    CAS  Google Scholar 

  163. Rodriguez AM, Olano C, Mendez C, Hutchinson CR, Salas JA (1995) A cytochrome P450-like gene possibly involved in oleandomycin biosynthesis by streptomyces-antibioticus. FEMS Microbiol Lett 127:117–120

    CAS  PubMed  Google Scholar 

  164. Xue YQ, Wilson D, Zhao LS, Liu HW, Sherman DH (1998) Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the PikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem Biol 5:661–667

    CAS  PubMed  Google Scholar 

  165. Fischer M, Knoll M, Sirim D, Wagner F, Funke S, Pleiss J (2007) The cytochrome P450 engineering database: a navigation and prediction tool for the cytochrome P450 protein family. Bioinformatics 23:2015–2017

    CAS  PubMed  Google Scholar 

  166. Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K (2004) Conversion of vitamin D-3 to 1 alpha,25-dihydroxyvitamin D-3 by Streptomyces griseolus cytochrome P450SU-1. Biochem Biophys Res Commun 320:156–164

    CAS  PubMed  Google Scholar 

  167. Xu L-H, Fushinobu S, Takamatsu S, Wakagi T, Ikeda H, Shoun H (2010) Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J Biol Chem 285:16844–16853

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Xu LH, Fushinobu S, Ikeda H, Wakagi T, Shoun H (2009) Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J Bacteriol 191:1211–1219

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Lim Y-R, Hong M-K, Kim J-K, Thanh Thi Ngoc D, Kim D-H, Yun C-H, Chun Y-J, Kang L-W, Kim D (2012) Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch Biochem Biophys 528:111–117

    CAS  PubMed  Google Scholar 

  170. Shrestha P, Oh T-J, Liou K, Sohng JK (2008) Cytochrome P450 (cyp105f2) from Streptomyces peucetius and its activity with oleandomycin. Appl Microbiol Biotechnol 79:555–562

    CAS  PubMed  Google Scholar 

  171. Lee SK, Park JW, Park SR, Ahn JS, Choi CY, Yoon YJ (2006) Hydroxylation of indole by PikC cytochrome P450 from Streptomyces venezuelae and engineering its catalytic activity by site-directed mutagenesis. J Microbiol Biotechnol 16:974–978

    CAS  Google Scholar 

  172. Zhang H, Chen J, Wang H, Xie Y, Ju J, Yan Y, Zhang H (2013) Structural analysis of HmtT and HmtN involved in the tailoring steps of himastatin biosynthesis. FEBS Lett 587:1675–1680

    CAS  PubMed  Google Scholar 

  173. Zhao B, Waterman MR (2007) Novel properties of P450s in Streptomyces coelicolor. Drug Metab Rev 39:343–352

    CAS  PubMed  Google Scholar 

  174. Sugimoto H, Shinkyo R, Hayashi K, Yoneda S, Yamada M, Kamakura M, Ikushiro S-I, Shiro Y, Sakaki T (2008) Crystal structure of Streptomyces griseolus CYP105A1 catalyzing vitamin D hydroxylation. Vitamins (Kyoto) 82:497–502

    CAS  Google Scholar 

  175. Sugimoto H, Shinkyo R, Hayashi K, Yoneda S, Yamada M, Kamakura M, Ikushiro S-I, Shiro Y, Sakaki T (2008) Crystal structure of CYP105A1 (P450SU-1) in complex with 1 alpha,25-dihydroxyvitamin D-3. Biochemistry 47:4017–4027

    CAS  PubMed  Google Scholar 

  176. Hayashi K, Sugimoto H, Shinkyo R, Yamada M, Ikeda S, Ikushiro S, Kamakura M, Shiro Y, Sakaki T (2008) Structure-based design of a highly active vitamin D hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry 47:11964–11972

    CAS  PubMed  Google Scholar 

  177. Xu L-H, Fushinobu S, Takamatsu S, Wakagi T, Ikeda H, Shoun H (2011) Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J Biol Chem 285:16844–16853

    Google Scholar 

  178. Hesketh A, Kock H, Mootien S, Bibb M (2009) The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 74:1427–1444

    CAS  PubMed  Google Scholar 

  179. Zhao B, Moody SC, Hider RC, Lei L, Kelly SL, Waterman MR, Lamb DC (2012) Structural analysis of cytochrome P450 105N1 involved in the biosynthesis of the zincophore, coelibactin. Int J Mol Sci 13:8500–8513

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Podust LM, Bach H, Kim Y, Lamb DC, Arase M, Sherman DH, Kelly SL, Waterman MR (2004) Comparison of the 1.85 Å, structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Sci 13:255–268

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Brash AR (2009) Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 70:1522–1531

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Hecker M, Ullrich V (1989) On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem 264:141–150

    CAS  PubMed  Google Scholar 

  183. Song WC, Brash AR (1991) Purification of an allene oxide synthase and identification of the enzyme as a cytochrome-P-450. Science 253:781–784

    CAS  PubMed  Google Scholar 

  184. Song WC, Funk CD, Brash AR (1993) Molecular-cloning of an allene oxide synthase—a cytochrome-P450 specialized for the metabolism of fatty-acid hydroperoxides. Proc Natl Acad Sci U S A 90:8519–8523

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Song WC, Baertschi SW, Boeglin WE, Harris TM, Brash AR (1993) Formation of epoxyalcohols by a purified allene oxide synthase—implications for the mechanism of allene oxide synthesis. J Biol Chem 268:6293–6298

    CAS  PubMed  Google Scholar 

  186. Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Leys D, Mowat CG, McLean KJ, Richmond A, Chapman SK, Walkinshaw MD, Munro AW (2003) Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 Å reveals novel features of cytochrome P450. J Biol Chem 278:5141–5147

    CAS  PubMed  Google Scholar 

  188. Podust LM, Kim Y, Arase M, Neely BA, Beck BJ, Bach H, Sherman DH, Lamb DC, Kelly SL, Waterman MR (2003) The 1.92-Angstrom structure of Streptomyces coelicolor A3(2) CYP154C1—a new monooxygenase that functionalizes macrolide ring systems. J Biol Chem 278:12214–12221

    CAS  PubMed  Google Scholar 

  189. Choi K-Y, Park H-Y, Kim B-G (2010) Characterization of bi-functional CYP154 from Nocardia farcinica IFM10152 in the o-dealkylation and ortho-hydroxylation of formononetin. Enzyme Microb Technol 47:327–334

    CAS  Google Scholar 

  190. von Buehler C, Le-Huu P, Urlacher VB (2013) Cluster screening: an effective approach for probing the substrate space of uncharacterized cytochrome P450s. Chem Bio Chem 14:2189–2198

    CAS  Google Scholar 

  191. von Buehler CJ, Urlacher VB (2014) A novel P450-based biocatalyst for the selective production of chiral 2-alkanols. Chem Commun 50:4089–4091

    CAS  Google Scholar 

  192. Agematu H, Matsumoto N, Fujii Y, Kabumoto H, Doi S, Machida K, Ishikawa J, Arisawa A (2006) Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci Biotechnol Biochem 70:307–311

    CAS  PubMed  Google Scholar 

  193. Bracco P, Janssen DB, Schallmey A (2013) Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb Cell Fact 12

    Google Scholar 

  194. Schallmey A, den Besten G, Teune IGP, Kembaren RF, Janssen DB (2011) Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca. Appl Microbiol Biotechnol 89:1475–1485

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Zhao B, Lamb DC, Lei L, Kelly SL, Yuan H, Hachey DL, Waterman MR (2007) Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2. Biochemistry 46:8725–8733

    CAS  PubMed  Google Scholar 

  196. Funa N, Funabashi M, Yoshimura E, Horinouchi S (2005) A novel quinone-forming monooxygenase family involved in modification of aromatic polyketides. J Biol Chem 280:14514–14523

    CAS  PubMed  Google Scholar 

  197. Zhao B, Guengerich FP, Bellamine A, Lamb DC, Izumikawa M, Lei L, Podust LM, Sundaramoorthy M, Kalaitzis JA, Reddy LM et al (2005) Binding of two flaviolin substrate molecules, oxidative coupling, crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J Biol Chem 280:11599–11607

    CAS  PubMed  Google Scholar 

  198. Zhao B, Guengerich FP, Voehler M, Waterman MR (2005) Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer. J Biol Chem 280:42188–42197

    CAS  PubMed  Google Scholar 

  199. Zhao B, Bellamine A, Lei L, Waterman MR (2012) The role of Ile87 of CYP158A2 in oxidative coupling reaction. Arch Biochem Biophys 518:127–132

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Yosca TH, Rittle J, Krest CM Onderko EL, Silakov A, Calixto JC, Behan RK, Green MT (2013) Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C–H bond activation by cytochrome P450. Science 342:825–829

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Lin X, Cane DE (2009) Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor. Mechanism and stereochemistry of the enzymatic formation of epi-isozizaene. JACS 131:6332–6333

    CAS  Google Scholar 

  202. Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE (2008) Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem 283:8183–8189

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Zhao B, Lei L, Vassylyev DG, Lin X, Cane DE, Kelly SL, Yuan H, Lamb DC, Waterman MR (2009) Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J Biol Chem 284:36711–36719

    PubMed Central  CAS  PubMed  Google Scholar 

  204. Rynkiewicz MJ, Cane DE, Christianson DW (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci U S A 98:13543–13548

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Takamatsu S, Lin X, Nara A, Komatsu M, Cane DE, Ikeda H (2011) Characterization of a silent sesquiterpenoid biosynthetic pathway in Streptomyces avermitilis controlling epi-isozizaene albaflavenone biosynthesis and isolation of a new oxidized epi-isozizaene metabolite. Microbial Biotechnol 4:184–191

    CAS  Google Scholar 

  206. Moody SC, Zhao B, Lei L, Nelson DR, Mullins JGL, Waterman MR, Kelly SL, Lamb DC (2012) Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in streptomycetes. FEBS J 279:1640–1649

    CAS  PubMed  Google Scholar 

  207. Xue YQ, Zhao LS, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A 95:12111–12116

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, Podust LM (2006) The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J Biol Chem 281:26289–26297

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Zhang QB, Sherman DH (2001) Isolation and structure determination of novamethymycin, a new bioactive metabolite of the methymycin biosynthetic pathway in Streptomyces venezuelae. J Nat Prod 64:1447–1450

    CAS  PubMed  Google Scholar 

  210. Li S, Ouellet H, Sherman DH, Podust LM (2009) Analysis of transient and catalytic desosamine-binding pockets in cytochrome P-450 PikC from Streptomyces venezuelae. J Biol Chem 284:5723–5730

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Li S, Chaulagain MR, Knauff AR, Podust LM, Montgomery J, Sherman DH (2009) Selective oxidation of carbolide C–H bonds by an engineered macrolide P450 mono-oxygenase. Proc Natl Acad Sci U S A 106:18463–18468

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Negretti S, Narayan ARH, Chiou KC, Kells PM, Stachowski JL, Hansen DA, Podust LM, Montgomery J, Sherman DH (2014) Directing group-controlled regioselectivity in an enzymatic C–H bond oxygenation. J Am Chem Soc 136:4901–4904

    CAS  PubMed  Google Scholar 

  213. Kittendorf JD, Sherman DH (2009) The methymycin/pikromycin pathway: a model for metabolic diversity in natural product biosynthesis. Biorg Med Chem 17:2137–2146

    CAS  Google Scholar 

  214. Ma J, Wang Z, Huang H, Luo M, Zuo D, Wang B, Sun A, Cheng Y-Q, Zhang C, Ju J (2011) Biosynthesis of himastatin: assembly line and characterization of three cytochrome P450 enzymes involved in the post-tailoring oxidative steps. Angew Chemie Int Ed 50:7797–7802

    CAS  Google Scholar 

  215. Leet JE, Schroeder DR, Golik J, Matson JA, Doyle TW, Lam KS, Hill SE, Lee MS, Whitney JL, Krishnan BS (1996) Himastatin, a new antitumor antibiotic from Streptomyces hygroscopicus. 3. Structural elucidation. J Antibiot 49:299–311

    CAS  PubMed  Google Scholar 

  216. Kells PM, Ouellet H, Santos-Aberturas J, Aparicio JF, Podust LM (2010) Structure of cytochrome P450 PimD suggests epoxidation of the polyene macrolide pimaricin occurs via a hydroperoxoferric intermediate. Chem Biol 17:841–851

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Mendes MV, Recio E, Fouces R, Luiten R, Martin JF, Aparicio JF (2001) Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem Biol 8:635–644

    CAS  PubMed  Google Scholar 

  218. Hirata Y, Nakata H, Okuhara K, Naito T, Yamada K (1961) Structure of aureothin, a nitro compound obtained from Streptomyces thioluteus. Tetrahedron 14:252–274

    CAS  Google Scholar 

  219. Schwartz JL, Tishler M, Arison BH, Shafer HM, Omura S (1976) Identification of mycolutein and pulvomycin as aureothin and labilomycin respectively. J Antibiot 29:236–241

    CAS  PubMed  Google Scholar 

  220. He X, Ortiz de Montellano PR (2004) Radical rebound mechanism in cytochrome P-450-catalyzed hydroxylation of the multifaceted radical clocks alpha- and beta-thujone. J Biol Chem 279:39479–39484

    CAS  PubMed  Google Scholar 

  221. Muller M, He J, Hertweck C (2006) Dissection of the late steps in aureothin biosynthesis. ChemBioChem 7:37–39

    PubMed  Google Scholar 

  222. He J, Hertweck C (2003) Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem Biol 10:1225–1232

    CAS  PubMed  Google Scholar 

  223. He J, Muller M, Hertweck C (2004) Formation of the aureothin tetrahydrofuran ring by a bifunctional cytochrome P450 monooxygenase. J Am Chem Soc 126:16742–16743

    CAS  PubMed  Google Scholar 

  224. Werneburg M, Busch B, He J, Richter ME, Xiang L, Moore BS, Roth M, Dahse HM, Hertweck C (2010) Exploiting enzymatic promiscuity to engineer a focused library of highly selective antifungal and antiproliferative aureothin analogues. J Am Chem Soc 132:10407–10413

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Richter ME, Traitcheva N, Knupfer U, Hertweck C (2008) Sequential asymmetric polyketide heterocyclization catalyzed by a single cytochrome P450 monooxygenase (AurH). Angew Chem Int Ed 47:8872–8875

    CAS  Google Scholar 

  226. Zocher G, Richter ME, Mueller U, Hertweck C (2011) Structural fine-tuning of a multifunctional cytochrome P450 monooxygenase. J Am Chem Soc 133:2292–2302

    CAS  PubMed  Google Scholar 

  227. Traitcheva N, Jenke-Kodama H, He J, Dittmann E, Hertweck C (2007) Non-colinear polyketide biosynthesis in the aureothin and neoaureothin pathways: an evolutionary perspective. Chembiochem 8:1841–1849

    CAS  PubMed  Google Scholar 

  228. Choi YS, Johannes TW, Simurdiak M, Shao Z, Lu H, Zhao H (2010) Cloning and heterologous expression of the spectinabilin biosynthetic gene cluster from Streptomyces spectabilis. Mol Biosyst 6:336–338

    CAS  PubMed  Google Scholar 

  229. Cojocaru V, Winn PJ, Wade RC (2007) The ins and outs of cytochrome P450s. Biochim Biophys Acta 1770:390–401

    CAS  PubMed  Google Scholar 

  230. McCoy JG, Johnson HD, Singh S, Bingman CA, Lei IK, Thorson JS, Phillips GN Jr (2009) Structural characterization of CalO2: a putative orsellinic acid P450 oxidase in the calicheamicin biosynthetic pathway. Proteins 74:50–60

    PubMed Central  CAS  PubMed  Google Scholar 

  231. Richter M, Busch B, Ishida K, Moore BS, Hertweck C (2012) Pyran formation by an atypical CYP-mediated four-electron oxygenation-cyclization cascade in an engineered aureothin pathway. Chembiochem 13:2196–2199

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Werneburg M, Hertweck C (2008) Chemoenzymatic total synthesis of the antiproliferative polyketide (+)-(R)-aureothin. Chembiochem 9:2064–2066

    CAS  PubMed  Google Scholar 

  233. Pohle S, Appelt C, Roux M, Fiedler H-P, Suessmuth RD (2011) Biosynthetic gene cluster of the non-ribosomally synthesized cyclodepsipeptide skyllamycin: deciphering unprecedented ways of unusual hydroxylation reactions. J Am Chem Soc 133:6194–6205

    CAS  PubMed  Google Scholar 

  234. Toki S, Agatsuma T, Ochiai K, Saitoh Y, Ando K, Nakanishi S, Lokker NA, Giese NA, Matsuda Y (2001) RP-1776, a novel cyclic peptide produced by Streptomyces sp, inhibits the binding of PDGF to the extracellular domain of its receptor. J Antibiot 54:405–414

    CAS  PubMed  Google Scholar 

  235. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312

    PubMed Central  CAS  PubMed  Google Scholar 

  236. Uhlmann S, Suessmuth RD, Cryle MJ (2013) Cytochrome P450(sky) interacts directly with the nonribosomal peptide synthetase to generate three amino acid precursors in skyllamycin biosynthesis. ACS Chem Biol 8:2586–2596

    CAS  PubMed  Google Scholar 

  237. Cryle MJ, Meinhart A, Schlichting I (2010) Structural characterization of OxyD, a cytochrome P450 involved in beta-hydroxytyrosine formation in vancomycin biosynthesis. J Biol Chem 285:24562–24574

    PubMed Central  CAS  PubMed  Google Scholar 

  238. Puk O, Bischoff D, Kittel C, Pelzer S, Weist S, Stegmann, E, Sussmuth RD, Wohlleben, W. (2004) Biosynthesis of chloro-beta-hydroxytyrosine, a nonproteinogenic amino acid of the peptidic backbone of glycopeptide antibiotics. J Bacteriol 186:6093–6100

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Li Z, Rupasinghe SG, Schuler MA, Nair SK (2011) Crystal structure of a phenol-coupling P450 monooxygenase involved in teicoplanin biosynthesis. Proteins 79:1728–1738

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Cryle MJ, Staaden J, Schlichting I (2011) Structural characterization of CYP165D3, a cytochrome P450 involved in phenolic coupling in teicoplanin biosynthesis. Arch Biochem Biophys 507:163–173

    CAS  PubMed  Google Scholar 

  241. Zettler J, Xia H, Burkard N, Kulik A, Grond S, Heide L, Apel AK (2014) New aminocoumarins from the rare actinomycete Catenulispora acidiphila DSM 44928: identification, structure elucidation, and heterologous production. Chembiochem 15:612–621

    CAS  PubMed  Google Scholar 

  242. Copeland A, Lapidus A, Del Rio TG, Nolan M, Lucas S, Chen F, Tice H, Cheng J.-F, Bruce D, Goodwin L et al (2009) Complete genome sequence of Catenulispora acidiphila type strain (id 139908(t)). Stand Genomic Sci 1:119–125

    PubMed Central  PubMed  Google Scholar 

  243. Chen HW, Walsh CT (2001) Coumarin formation in novobiocin biosynthesis: beta-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. Chem Biol 8:301–312

    CAS  PubMed  Google Scholar 

  244. Pojer F, Li SM, Heide L (2002) Molecular cloning and sequence analysis of the clorobiocin biosynthetic gene cluster: new insights into the biosynthesis of aminocoumarin antibiotics. Microbiology-Sgm 148:3901–3911

    CAS  Google Scholar 

  245. Wang ZX, Li SM, Heide L (2000) Identification of the coumermycin a(1) biosynthetic gene cluster of Streptomyces rishiriensis DSM 40489. Antimicrob Agents Chemother 44:3040–3048

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Galm U, Schimana J, Fiedler HP, Schmidt J, Li SM, Heide L (2002) Cloning and analysis of the simocyclinone biosynthetic gene cluster of Streptomyces antibioticus to 6040. Arch Microbiol 178:102–114

    CAS  PubMed  Google Scholar 

  247. Trefzer A, Pelzer S, Schimana J, Stockert S, Bihlmaier C, Fiedler HP, Welzel K, Vente A, Bechthold A (2002) Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob Agents Chemother 46:1174–1182

    PubMed Central  CAS  PubMed  Google Scholar 

  248. Zerbe K, Pylypenko O, Vitali F, Zhang WW, Rouse S, Heck M, Vrijbloed JW, Bischoff D, Bister B, Sussmuth RD et al (2002) Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J Biol Chem 277:47476–47485

    CAS  PubMed  Google Scholar 

  249. Pylypenko O, Vitali F, Zerbe K, Robinson JA, Schlichting I (2003) Crystal structure of OxyC, a cytochrome P450 implicated in an oxidative C-C coupling reaction during vancomycin biosynthesis. J Biol Chem 278:46727–46733

    CAS  PubMed  Google Scholar 

  250. Cryle MJ (2010) Selectivity in a barren landscape: the P450(BioI)-ACP complex. Biochem Soc Trans 38:934–939

    CAS  PubMed  Google Scholar 

  251. Cryle MJ (2011) Carrier protein substrates in cytochrome P450-catalysed oxidation. Metallomics 3:323–326

    CAS  PubMed  Google Scholar 

  252. Haslinger K, Brieke C, Uhlmann S, Sieverling L, Sussmuth RD, Cryle MJ (2014) The structure of a transient complex of a nonribosomal peptide synthetase and a cytochrome P450 monooxygenase. Angew Chem Int Ed Engl

    Google Scholar 

  253. Onaka H, Taniguchi S, Igarashi Y, Furumai T (2003) Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem 67:127–138

    CAS  PubMed  Google Scholar 

  254. Onaka H, Taniguchi S, Igarashi Y, Furumai T (2002) Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp TP-A0274 and its heterologous expression in Streptomyces lividans. J Antibiot 55:1063–1071

    CAS  PubMed  Google Scholar 

  255. Nettleton DE, Doyle TW, Krishnan B, Matsumoto GK, Clardy J. (1985) Isolation and structure of rebeccamycin—a new antitumor antibiotic from Nocardia aerocoligenes. Tetrahedron Lett 26:4011–4014

    CAS  Google Scholar 

  256. Golik J, Doyle TW, Krishnan B, Dubay G, Matson JA (1989) AT2433-A1, AT2433-A2, AT2433-B1 and AT2433-B2 novel antitumor compounds produced by Actinomadura melliaura. 2. Structure determination. J Antibiot 42:1784–1789

    CAS  PubMed  Google Scholar 

  257. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Staurosporine, a potent inhibitor of phospholipid/Ca++ dependent protein kinase. Biochem Biophys Res Commun 135:397–402

    CAS  PubMed  Google Scholar 

  258. Lassota P, Singh G, Kramer R (1996) Mechanism of topoisomerase II inhibition by staurosporine and other protein kinase inhibitors. J Biol Chem 271:26418–26423

    CAS  PubMed  Google Scholar 

  259. Yoshinari T, Yamada A, Uemura D, Nomura K, Arakawa H, Kojiri K, Yoshida E, Suda H, Okura A (1993) Induction of topoisomerase I-mediated DNA cleavage by a new indolocarbazole, ed-110. Cancer Res 53:490–494

    CAS  PubMed  Google Scholar 

  260. Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    PubMed Central  CAS  PubMed  Google Scholar 

  261. Sánchez C, Méndez C, Salas JA (2006) Indolocarbazole natural products: occurrence, biosynthesis, biological activity. Nat Prod Rep 23:1007–1045

    PubMed  Google Scholar 

  262. Furusaki A, Hashiba N, Matsumoto T, Hirano A, Iwai Y, Omura S. (1978) X-ray crystal structure of staurosporine: a new alkaloid from a Streptomyces strain. J Chem Soc Chem Commun 800–801

    Google Scholar 

  263. Omura S, Tanaka H, Oiwa R, Awaya J, Masuma R, Tanaka K (1977) New antitumor antibiotics, OS-4742 A1, A2, B1 and B2 produced by a strain of Streptomyces. J Antibiot 30:908–916

    CAS  PubMed  Google Scholar 

  264. Nakano H, Omura S (2009) Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J Antibiot 62:17–26

    CAS  PubMed  Google Scholar 

  265. Ryan KS, Drennan CL (2009) Divergent pathways in the biosynthesis of bisindole natural products. Chem Biol 16:351–364

    PubMed Central  CAS  PubMed  Google Scholar 

  266. Onaka H, Asamizu S, Igarashi Y, Yoshida R, Furumai T (2005) Cytochrome P450 homolog is responsible for c-N bond formation between aglycone and deoxysugar in the staurosporine biosynthesis of Streptomyces sp TP-A0274. Biosci Biotechnol Biochem 69:1753–1759

    CAS  PubMed  Google Scholar 

  267. Sanchez C, Zhu L, Brana AF, Salas AP, Rohr J, Mendez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci U S A 102:461–466

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Howard-Jones AR, Walsh CT (2007) Nonenzymatic oxidative steps accompanying action of the cytochrome P450 enzymes StaP and RebP in the biosynthesis of staurosporine and rebeccamycin. J Am Chem Soc 129:11016–11017

    CAS  PubMed  Google Scholar 

  269. Howard-Jones AR, Walsh CT (2006) Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, RebC on chromopyrrolic acid. J Am Chem Soc 128:12289–12298

    CAS  PubMed  Google Scholar 

  270. Goldman PJ, Ryan KS, Hamill MJ, Howard-Jones AR, Walsh CT, Elliott SJ, Drennan CL (2012) An unusual role for a mobile flavin in StaC-like indolocarbazole biosynthetic enzymes. Chem Biol 19:855–865

    PubMed Central  CAS  PubMed  Google Scholar 

  271. Li H, Poulos TL (1997) The structure of the cytochrome P450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4:140–146

    CAS  PubMed  Google Scholar 

  272. Wang Y, Chen H, Makino M, Shiro Y, Nagano S, Asamizu S, Onaka H, Shaik S (2009) Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules. J Am Chem Soc 131:6748–6762

    CAS  PubMed  Google Scholar 

  273. Gao Q, Zhang C, Blanchard S, Thorson JS (2006) Deciphering indolocarbazole and enediyne aminodideoxypentose biosynthesis through comparative genomics: insights from the AT2433 biosynthetic locus. Chem Biol 13:733–743

    CAS  PubMed  Google Scholar 

  274. Salas AP, Zhu LL, Sanchez C, Brana AF, Rohr J, Mendez C, Salas JA (2005) Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol Microbiol 58:17–27

    PubMed Central  CAS  PubMed  Google Scholar 

  275. Healy FG, Krasnoff SB, Wach M, Gibson DM, Loria R (2002) Involvement of a cytochrome P450 monooxygenase in thaxtomin—a biosynthesis by Streptomyces acidiscabies. J Bacteriol 184:2019–2029

    PubMed Central  CAS  PubMed  Google Scholar 

  276. Loria R, Bignell DR, Moll S, Huguet-Tapia JC, Joshi MV, Johnson EG, Seipke RF, Gibson DM (2008) Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek 94:3–10

    PubMed  Google Scholar 

  277. Guan D, Grau BL, Clark CA, Taylor CM, Loria R, Pettis GS (2012) Evidence that thaxtomin c is a pathogenicity determinant of Streptomyces ipomoeae, the causative agent of Streptomyces soil rot disease of sweet potato. Mol Plant-Microbe Interact 25:393–401

    CAS  PubMed  Google Scholar 

  278. Yu F, Li M, Xu C, Wang Z, Zhou H, Yang M, Chen Y, Tang L, He J (2013) Structural insights into the mechanism for recognizing substrate of the cytochrome P450 enzyme TxtE. PLoS One 8

    Google Scholar 

  279. Barry SM, Challis GL (2012) Tailoring reactions catalyzed by heme-dependent enzymes: spectroscopic characterization of the L-tryptophan-nitrating cytochrome P450TxtE. Methods Enzymol 516:171–194

    CAS  PubMed  Google Scholar 

  280. Lawrence CH, Clark MC, King RR (1990) Induction of common scab symptoms in aseptically cultured potato-tubers by the vivotoxin, thaxtomin. Phytopathology 80:606–608

    CAS  Google Scholar 

  281. Healy FG, Wach M, Krasnoff SB, Gibson DM, Loria R (2000) The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin—a production and pathogenicity. Mol Microbiol 38:794–804

    CAS  PubMed  Google Scholar 

  282. King RR, Lawrence CH, Embleton J, Calhoun LA (2003) More chemistry of the thaxtomin phytotoxins. Phytochemistry 64:1091–1096

    CAS  PubMed  Google Scholar 

  283. King RR, Calhoun LA (2009) The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 70:833–841

    CAS  PubMed  Google Scholar 

  284. Kers JA, Cameron KD, Joshi MV, Bukhalid RA, Morello JE, Wach MJ, Gibson DM, Loria R (2005) A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol Microbiol 55:1025–1033

    CAS  PubMed  Google Scholar 

  285. Munro AW, Girvan HM, Mason AE, Dunford AJ, McLean KJ (2013) What makes a P450 tick? Trends Biochem Sci 38:140–150

    CAS  PubMed  Google Scholar 

  286. Johnson EG, Krasnoff SB, Bignell DR, Chung WC, Tao T, Parry RJ, Loria R, Gibson DM (2009) 4-nitrotryptophan is a substrate for the non-ribosomal peptide synthetase TxtB in the thaxtomin—a biosynthetic pathway. Mol Microbiol 73:409–418

    CAS  PubMed  Google Scholar 

  287. Zhang H, Ning X, Hang H, Ru X, Li H, Li Y, Wang L, Zhang X, Yu S, Qiao Y et al (2013) Total synthesis of thaxtomin—a and its stereoisomers and findings of their biological activities. Org Lett 15:5670–5673

    CAS  PubMed  Google Scholar 

  288. Johnson HD, Thorson JS (2008) Characterization of CalE10, the N-oxidase involved in calicheamicin hydroxyaminosugar formation. J Am Chem Soc 130:17662–17663

    PubMed Central  CAS  PubMed  Google Scholar 

  289. Nicolaou KC, Boddy CNC, Brase, S, Winssinger, N. (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed 38:2096–2152

    Google Scholar 

  290. Myers AG, Cohen SB, Kwon BM (1994) A study of the reaction of calicheamicin gamma1 with glutathione in the presence of double-stranded DNA. J Am Chem Soc 116:1255–1271

    CAS  Google Scholar 

  291. Zein N, Sinha AM, McGahren WJ, Ellestad GA (1988) Calicheamicin-gamma-1-I—an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240:1198–1201

    CAS  PubMed  Google Scholar 

  292. De Voss JJ, Townsend CA, Ding WD, Morton GO, Ellestad GA, Zein N, Tabor AB, Schreiber SL (1990) Site-specific atom transfer from DNA to a bound ligand defines the geometry of a DNA calicheamicin gamma-1I complex. J Am Chem Soc 112:9669–9670

    CAS  Google Scholar 

  293. Nicolaou KC, Stabila P, Esmaeli-Azad B, Wrasidlo W, Hiatt A (1993) Cell-specific regulation of apoptosis by designed enediynes. Proc Natl Acad Sci U S A 90:3142–3146

    PubMed Central  CAS  PubMed  Google Scholar 

  294. De Voss JJ, Hangeland JJ, Townsend CA (1990) Characterization of the in-vitro cyclization chemistry of calicheamicin and its relation to DNA cleavage. J Am Chem Soc 112:4554–4556

    CAS  Google Scholar 

  295. Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, Huang KX, Fonstein L, Czisny A, Whitwam RE et al (2002) The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 297:1173–1176

    CAS  PubMed  Google Scholar 

  296. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    CAS  PubMed  Google Scholar 

  297. Damle NK (2004) Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452

    CAS  PubMed  Google Scholar 

  298. Liu W, Christenson SD, Standage S, Shen B (2002) Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297:1170–1173

    CAS  PubMed  Google Scholar 

  299. Basch J, Chiang S-J (2007) Cloning and expression of a cytochrome P450 hydroxylase gene from Amycolatopsis orientalis: hydroxylation of epothilone B for the production of epothilone F. J Ind Microbiol Biotechnol 34:171–176

    CAS  PubMed  Google Scholar 

  300. Chang A, Singh S, Bingman CA, Thorson JS, Phillips GN Jr (2011) Structural characterization of CalO1: a putative orsellinic acid methyltransferase in the calicheamicin-biosynthetic pathway. Acta Crystallogr D Biol Crystallogr 67:197–203

    PubMed Central  CAS  PubMed  Google Scholar 

  301. Satoi S, Muto N, Hayashi M, Fujii T, Otani M (1980) Mycinamicins, new macrolide antibiotics. I. Taxonomy, production, isolation, characterization and properties. J Antibiot 33:364–376

    CAS  PubMed  Google Scholar 

  302. Kinoshita K, Takenaka S, Suzuki H, Morohoshi T, Hayashi M (1992) Mycinamicins, new macrolide antibiotics.13. Isolation and structures of novel fermentation products from Micromonospora griseorubida (ferm bp-705). J Antibiot 45:1–9

    CAS  PubMed  Google Scholar 

  303. Edelstein PH, Pasiecznik KA, Yasui VK, Meyer RD (1982) Susceptibility of Legionella spp to mycinamicin-I and mycinamicin-II and other macrolide antibiotics—effects of media composition and origin of organisms. Antimicrob Agents Chemother 22:90–93

    PubMed Central  CAS  PubMed  Google Scholar 

  304. Anzai Y, Salto N, Tanaka M, Kinoshita K, Koyama Y, Kato F (2003) Organization of the biosynthetic gene cluster for the polyketide macrolide mycinamicin in Micromonospora griseorubida. FEMS Microbiol Lett 218:135–141

    CAS  PubMed  Google Scholar 

  305. Anzai Y, Tsukada S, Sakai A, Masuda R, Harada C, Domeki A, Li S, Kinoshita K, Sherman DH, Kato F (2012) Function of cytochrome P450 enzymes MycCI and MycG in Micromonospora griseorubida, a producer of the macrolide antibiotic mycinamicin. Antimicrob Agents Chemother 56:3648–3656

    PubMed Central  CAS  PubMed  Google Scholar 

  306. Anzai Y, Li S, Chaulagain MR, Kinoshita K, Kato F, Montgomery J, Sherman DH (2008) Functional analysis of MycCI and MycG, cytochrome P450 enzymes involved in biosynthesis of mycinamicin macrolide antibiotics. Chem Biol 15:950–959

    PubMed Central  CAS  PubMed  Google Scholar 

  307. Baltz RH, Seno ET (1981) Properties of Streptomyces-fradiae mutants blocked in biosynthesis of the macrolide antibiotic tylosin. Antimicrob Agents Chemother 20:214–225

    PubMed Central  CAS  PubMed  Google Scholar 

  308. Ward SL, Hu ZH, Schirmer A, Reid R, Revill P, Reeves CD, Petrakovsky OV, Dong SD, Katz L (2004) Chalcomycin biosynthesis gene cluster from Streptomyces bikiniensis: novel features of an unusual ketolide produced through expression of the Chm polyketide synthase in Streptomyces fradiae. Antimicrob Agents Chemother 48:4703–4712

    PubMed Central  CAS  PubMed  Google Scholar 

  309. Carlson JC, Li S, Gunatilleke SS, Anzai Y, Burr DA, Podust LM, Sherman DH (2011) Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem 3:628–633

    PubMed Central  CAS  PubMed  Google Scholar 

  310. Kudo F, Motegi A, Mizoue K, Eguchi T (2010) Cloning and characterization of the biosynthetic gene cluster of 16-membered macrolide antibiotic FD-891: involvement of a dual functional cytochrome P450 monooxygenase catalyzing epoxidation and hydroxylation (vol 11, p 1574, 2010). ChemBioChem 11:1798–1798

    CAS  Google Scholar 

  311. Li S, Tietz DR, Rutaganira FU, Kells PM, Anzai Y, Kato F, Pochapsky TC, Sherman DH, Podust LM (2012) Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. J Biol Chem 287

    Google Scholar 

  312. Brigham RB, Pittenger RC (1956) Streptomyces orientalis, n. Sp, the source of vancomycin. Antibiot Chemother 6:642–647

    CAS  Google Scholar 

  313. Nadkarni SR, Patel MV, Chatterjee S, Vijayakumar EKS, Desikan KR, Blumbach J, Ganguli BN, Limbert M (1994) Balhimycin, a new glycopeptide antibiotic produced by Amycolatopsis sp Y-86,21022—taxonomy, production, isolation and biological-activity. J Antibiot 47:334–341

    CAS  PubMed  Google Scholar 

  314. Borghi A, Coronelli C, Faniuolo L, Allievi G, Pallanza R, Gallo GG (1984) Teichomycins, new antibiotics from Actinoplanes-teichomyceticus nov-sp4. Separation and characterization of the components of teichomycin (teicoplanin). J Antibiot 37:615–620

    CAS  PubMed  Google Scholar 

  315. Yim G, Thaker MN, Koteva K, Wright G (2014) Glycopeptide antibiotic biosynthesis. J Antibiot 67:31–41

    CAS  PubMed  Google Scholar 

  316. Barna JCJ, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357

    CAS  PubMed  Google Scholar 

  317. Bischoff D, Bister B, Bertazzo M, Pfeifer V, Stegmann E, Nicholson GJ, Keller S, Pelzer S, Wohlleben W, Sussmuth RD (2005) The biosynthesis of vancomycin-type glycopeptide antibiotics—a model for oxidative side-chain cross-linking by oxygenases coupled to the action of peptide synthetases. ChemBioChem 6:267–272

    CAS  PubMed  Google Scholar 

  318. Zerbe K, Woithe K, Li DB, Vitali F, Bigler L, Robinson JA (2004) An oxidative phenol coupling reaction catalyzed by OxyB, a cytochrome P450 from the vancomycin-producing microorganism. Angew Chem Int Ed 43:6709–6713

    CAS  Google Scholar 

  319. Woithe K, Geib N, Zerbe K, Li DB, Heck M, Fournier-Rousset S, Meyer O, Vitali F, Matoba N, Abou-Hadeed K et al (2007) Oxidative phenol coupling reactions catalyzed by OxyB: a cytochrome P450 from the vancomycin producing organism. Implications for vancomycin biosynthesis. J Am Chem Soc 129:6887–6895

    CAS  PubMed  Google Scholar 

  320. Woithe K, Geib N, Meyer O, Woertz T, Zerbe K, Robinson JA (2008) Exploring the substrate specificity of OxyB, a phenol coupling P450 enzyme involved in vancomycin biosynthesis. Org Biomol Chem 6:2861–2867

    CAS  PubMed  Google Scholar 

  321. Stegmann E, Pelzer S, Bischoff D, Puk O, Stockert S, Butz D, Zerbe K, Robinson J, Suessmuth RD, Wohlleben W (2006) Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes. J Biotechnol 124:640–653

    CAS  PubMed  Google Scholar 

  322. Pelzer S, Sussmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    PubMed Central  CAS  PubMed  Google Scholar 

  323. Holding AN, Spencer JB (2008) Investigation into the mechanism of phenolic couplings during the biosynthesis of glycopeptide antibiotics. Chembiochem 9:2209–2214

    CAS  PubMed  Google Scholar 

  324. Hadatsch B, Butz D, Schmiederer T, Steudle J, Wohlleben W, Suessmuth R, Stegmann E (2007) The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of P450 mono-oxygenases to side chain cyclizations of glycopeptide A47934. Chem Biol 14:1078–1089

    CAS  PubMed  Google Scholar 

  325. Bischoff D, Pelzer S, Holtzel A, Nicholson GJ, Stockert S, Wohlleben W, Jung G, Sussmuth RD (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics—new insights into the cyclization steps. Angew Chem Int Ed 40:1693–1696

    CAS  Google Scholar 

  326. Bischoff D, Pelzer S, Bister B, Nicholson GJ, Stockert S, Schirle M, Wohlleben W, Jung G, Sussmuth RD (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics—the order of the cyclization steps. Angew Chem Int Ed 40:4688–4691

    CAS  Google Scholar 

  327. Park SY, Shimizu H, Adachi S, Nakagawa A, Tanaka I, Nakahara K, Shoun H, Obayashi E, Nakamura H, Iizuka T et al (1997) Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum. Nat Struct Biol 4:827–832

    CAS  PubMed  Google Scholar 

  328. Oshima R, Fushinobu S, Su F, Zhang L, Takaya N, Shoun H (2004) Structural evidence for direct hydride transfer from NADH to cytochrome P450nor. J Mol Biol 342:207–217

    CAS  PubMed  Google Scholar 

  329. Sosio M, Stinchi S, Beltrametti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549

    CAS  PubMed  Google Scholar 

  330. Butz D, Schmiederer T, Hadatsch B, Wohlleben W, Weber T, Suessmuth RD (2008) Module extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic balhimycin produced by Amycolatopsis balhimycina. Chembiochem 9:1195–1200

    CAS  PubMed  Google Scholar 

  331. Weist S, Kittel C, Bischoff D, Bister B, Pfeifer V, Nicholson GJ, Wohlleben W, Sussmuth RD (2004) Mutasynthesis of glycopeptide antibiotics: variations of vancomycin’s AB-ring amino acid 3,5-dihydroxyphenylglycine. J Am Chem Soc 126:5942–5943

    CAS  PubMed  Google Scholar 

  332. Puk O, Huber P, Bischoff D, Recktenwald J, Jung G, Sussmuth RD, van Pee KH, Wohlleben W, Pelzer S. (2002) Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908: function of a halogenase and a haloperoxidase/perhydrolase. Chem Biol 9:225–235

    CAS  PubMed  Google Scholar 

  333. Recktenwald J, Shawky R, Puk O, Pfennig F, Keller U, Wohlleben W, Pelzer S (2002) Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiology 148:1105–1118

    CAS  PubMed  Google Scholar 

  334. Mulyani S, Egel E, Kittel C, Turkanovic S, Wohlleben W, Sussmuth RD, van Pee KH (2010) The thioesterase Bhp is involved in the formation of beta-hydroxytyrosine during balhimycin biosynthesis in Amycolatopsis balhimycina. ChemBioChem 11:266–271

    CAS  PubMed  Google Scholar 

  335. Lauer B, Russwurm R, Bormann C (2000) Molecular characterization of two genes from Streptomyces tendae Tu901 required for the formation of the 4-formyl-4-imidazolin-2-one-containing nucleoside moiety of the peptidyl nucleoside antibiotic nikkomycin. Eur J Biochem 267:1698–1706

    CAS  PubMed  Google Scholar 

  336. Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L (2000) Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44:1214–1222

    PubMed Central  CAS  PubMed  Google Scholar 

  337. Kitagawa W, Ozaki T, Nishioka T, Yasutake Y, Hata M, Nishiyama M, Kuzuyama T, Tamura T (2013) Cloning and heterologous expression of the aurachin RE biosynthesis gene cluster afford a new cytochrome P450 for quinoline N-hydroxylation. Chembiochem 14:1085–1093

    CAS  PubMed  Google Scholar 

  338. Kitagawa W, Tamura T (2008) A quinoline antibiotic from Rhodococcus erythropolis JCM 6824. J Antibiot (Tokyo) 61:680–682

    CAS  Google Scholar 

  339. Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, Kurosu M (2012) Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem 55:3739–3755

    PubMed Central  CAS  PubMed  Google Scholar 

  340. Dhiman RK, Mahapatra S, Slayden RA, Boyne ME, Lenaerts A, Hinshaw JC, Angala SK, Chatterjee D, Biswas K, Narayanasamy P et al (2009) Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 72:85–97

    CAS  PubMed  Google Scholar 

  341. Kurosu M, Crick DC (2009) MenA is a promising drug target for developing novel lead molecules to combat Mycobacterium tuberculosis. Med Chem 5:197–207

    CAS  PubMed  Google Scholar 

  342. Kurosu M, Narayanasamy P, Biswas K, Dhiman R, Crick DC (2007) Discovery of 1,4-dihydroxy-2-naphthoate prenyltransferase inhibitors: new drug leads for multidrug-resistant Gram-positive pathogens. J Med Chem 50:3973–3975

    PubMed Central  CAS  PubMed  Google Scholar 

  343. Kunze B, Hofle G, Reichenbach H (1987) The aurachins, new quinoline antibiotics from myxobacteria: production, physico-chemical and biological properties. J Antibiot (Tokyo) 40:258–265

    CAS  Google Scholar 

  344. Nachtigall J, Schneider K, Nicholson G, Goodfellow M, Zinecker H, Imhoff JF, Sussmuth RD, Fiedler HP (2010) Two new aurachins from Rhodococcus sp Acta 2259. J Antibiot (Tokyo) 63:567–569

    CAS  Google Scholar 

  345. Pistorius D, Li Y, Sandmann A, Muller R (2011) Completing the puzzle of aurachin biosynthesis in Stigmatella aurantiaca sg-a15. Mol Biosyst 7:3308–3315

    CAS  PubMed  Google Scholar 

  346. Yasutake Y, Kitagawa W, Hata M, Nishioka T, Ozaki T, Nishiyama M, Kuzuyama T, Tamura T (2014) Structure of the quinoline N-hydroxylating cytochrome P450 RauA, an essential enzyme that confers antibiotic activity on aurachin alkaloids. FEBS Lett 588:105–110

    CAS  PubMed  Google Scholar 

  347. Ouellet H, Johnston JB, Ortiz de Montellano PR (2010) The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys 493:82–95

    PubMed Central  CAS  PubMed  Google Scholar 

  348. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    CAS  PubMed  Google Scholar 

  349. Kendall SL, Rison SC, Movahedzadeh F, Frita R, Stoker NG (2004) What do microarrays really tell us about M. tuberculosis? Trends Microbiol 12:537–544

    CAS  PubMed  Google Scholar 

  350. McLean KJ, Carroll P, Lewis DG, Dunford AJ, Seward HE, Neeli R, Cheesman MR, Marsollier L, Douglas P, Smith WE et al (2008) Characterization of active site structure in CYP121 a cytochrome P450 essential for viability of Mycobacterium tuberculosis H37Rv. J Biol Chem 283:33406–33416

    PubMed Central  CAS  PubMed  Google Scholar 

  351. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    CAS  PubMed  Google Scholar 

  352. Wei J, Liang J, Shi Q, Yuan P, Meng R, Tang X, Yu L, Guo N (2014) Genome-wide transcription analyses in Mycobacterium tuberculosis treated with lupulone. Braz J Microbiol 45:333–341

    PubMed Central  PubMed  Google Scholar 

  353. Holsclaw CM, Sogi KM, Gilmore SA, Schelle MW, Leavell MD, Bertozzi CR, Leary JA (2008) Structural characterization of a novel sulfated menaquinone produced by stf3 from Mycobacterium tuberculosis. ACS Chem Biol 3:619–624

    CAS  PubMed  Google Scholar 

  354. Mougous JD, Senaratne RH, Petzold CJ, Jain M, Lee DH, Schelle MW, Leavell MD, Cox JS, Leary JA, Riley LW et al (2006) A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103:4258–4263

    PubMed Central  CAS  PubMed  Google Scholar 

  355. Gilmore SA, Schelle MW, Holsclaw CM, Leigh CD, Jain M, Cox JS, Leary JA, Bertozzi CR (2012) Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages. ACS Chem Biol 7:863–870

    PubMed Central  CAS  PubMed  Google Scholar 

  356. Chang JC, Miner MD, Pandey AK, Gill WP, Harik NS, Sassetti CM, Sherman DR (2009) Igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191:5232–5239

    PubMed Central  CAS  PubMed  Google Scholar 

  357. Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, Bertozzi CR, Sassetti CM (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19:218–227

    PubMed Central  CAS  PubMed  Google Scholar 

  358. Pandey AK, Sassetti CM (2008) Mycobacterial persistance requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105:4376–4380

    PubMed Central  CAS  PubMed  Google Scholar 

  359. Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW et al (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104:1947–1952

    PubMed Central  PubMed  Google Scholar 

  360. McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW (2009) The structure of Mycobacterium tuberculosis CYP125 molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem 284:35524–35533

    PubMed Central  CAS  PubMed  Google Scholar 

  361. Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, Okamoto S, Jacobs WR Jr, Eltis LD, Mohn WW (2009) Mycobacterial cytochrome P450 125 (CYP125) catalyzes the terminal hydroxylation of C27 steroids. J Biol Chem 284:35534–35542

    PubMed Central  CAS  PubMed  Google Scholar 

  362. Driscoll MD, McLean KJ, Levy C, Mast N, Pikuleva IA, Lafite P, Rigby SE, Leys D, Munro AW (2010) Structural and biochemical characterization of Mycobacterium tuberculosis CYP142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem 285:38270–38282

    PubMed Central  CAS  PubMed  Google Scholar 

  363. Ouellet H, Guan S, Johnston JB, Chow ED, Kells PM, Burlingame AL, Cox JS, Podust LM, Ortiz de Montellano PR (2010) Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol Microbiol 77:730–742

    PubMed Central  CAS  PubMed  Google Scholar 

  364. Johnston JB, Ouellet H, Ortiz de Montellano PR (2010) Functional redundancy of steroid C-26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem 285:36352–36360

    PubMed Central  CAS  PubMed  Google Scholar 

  365. Sivaramakrishnan S, Ouellet H, Matsumura H, Guan S, Moenne-Loccoz P, Burlingame AL, Ortiz de Montellano PR (2012) Proximal ligand electron donation and reactivity of the cytochrome P450 ferric-peroxo anion. J Am Chem Soc 134:6673–6684

    PubMed Central  CAS  PubMed  Google Scholar 

  366. Kondo E, Kanai K (1976) Accumulation of cholesterol esters in macrophages incubated with mycobacteria in vitro. Jpn J Med Sci Biol 29:123–137

    CAS  PubMed  Google Scholar 

  367. Garcia-Fernandez E, Frank DJ, Galan B, Kells PM, Podust LM, Garcia JL, Ortiz de Montellano PR (2013) A highly conserved mycobacterial cholesterol catabolic pathway. Environ Microbiol 15:2342–2359

    PubMed Central  CAS  PubMed  Google Scholar 

  368. Rosloniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD (2009) Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74:1031–1043

    PubMed  Google Scholar 

  369. van der Geize R, Grommen AW, Hessels GI, Jacobs AA, Dijkhuizen L (2011) The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Path 7:e1002181

    Google Scholar 

  370. Drzyzga O, Fernandez de las Heras L, Morales V, Navarro Llorens JM, Perera J (2011) Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol 77:4802–4810

    PubMed Central  CAS  PubMed  Google Scholar 

  371. Merino E, Barrientos A, Rodriguez J, Naharro G, Luengo JM, Olivera ER (2013) Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biotechnol 97:891–904

    CAS  PubMed  Google Scholar 

  372. Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650

    CAS  PubMed  Google Scholar 

  373. Pieters J (2001) Entry and survival of pathogenic mycobacteria in macrophages. Microb Infect 3:249–255

    CAS  Google Scholar 

  374. Griffin JE, Gawronski JD, DeJesus MA, Ioerger TR, Akerley BJ, Sassetti CM (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Path 7:e1002251

    CAS  Google Scholar 

  375. Nesbitt NM, Yang X, Fontan P, Kolesnikova I, Smith I, Sampson NS, Dubnau E (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78:275–282

    PubMed Central  CAS  PubMed  Google Scholar 

  376. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994

    PubMed Central  CAS  PubMed  Google Scholar 

  377. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704

    PubMed Central  CAS  PubMed  Google Scholar 

  378. Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD et al (2008) Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One 3:e1403

    PubMed Central  PubMed  Google Scholar 

  379. Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T, Takatsu K, Ernst JD (2007) Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179:2509–2519

    CAS  PubMed  Google Scholar 

  380. Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS (2011) Pathway profiling in Mycobacterium tuberculosis elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J Biol Chem 286:43668–43678

    PubMed Central  CAS  PubMed  Google Scholar 

  381. Chang JC, Harik NS, Liao RP, Sherman DR (2007) Identification of mycobacterial genes that alter growth and pathology in macrophages and in mice. J Infect Dis 196:788–795

    CAS  PubMed  Google Scholar 

  382. Azad AK, Sirakova TD, Fernandes ND, Kolattukudy PE (1997) Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 272:16741–16745

    CAS  PubMed  Google Scholar 

  383. Yu J, Tran V, Li M, Huang X, Niu C, Wang D, Zhu J, Wang J, Gao Q, Liu J (2012) Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum. Infect Immun 80:1381–1389

    PubMed Central  CAS  PubMed  Google Scholar 

  384. Garcia-Fernandez E, Medrano FJ, Galan B, Garcia JL (2014) Deciphering the transcriptional regulation of cholesterol catabolic pathway in mycobacteria: identification of the inducer of KstR repressor. J Biol Chem 289:17576–17588

    CAS  PubMed  Google Scholar 

  385. Kendall SL, Burgess P, Balhana R, Withers M, ten Bokum A, Lott JS, Gao C, Uhia-Castro I, Stoker NG (2010) Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: KstR and KstR2. Microbiology-Sgm 156:1362–1371

    CAS  Google Scholar 

  386. Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courcon M et al (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol 5:414–420

    CAS  PubMed  Google Scholar 

  387. Nishanth KS, Dileep C, Mohandas C, Nambisan B, Ca J (2014) Cyclo(D-Tyr-D-phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp N strain associated with a rhabditid entomopathogenic nematode. J Pept Sci 20:173–185

    Google Scholar 

  388. Borthwick AD (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716

    CAS  PubMed  Google Scholar 

  389. Cornacchia C, Cacciatore I, Baldassarre L, Mollica A, Feliciani F, Pinnen F (2012) 2,5-Diketopiperazines as neuroprotective agents. Mini Rev Med Chem 12:2–12

    CAS  PubMed  Google Scholar 

  390. de Carvalho MP, Abraham WR (2012) Antimicrobial and biofilm inhibiting diketopiperazines. Curr Med Chem 19:3564–3577

    CAS  PubMed  Google Scholar 

  391. Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, de la Salmoniere YOL, Aman K, Kato-Maeda M, Small PM (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A 101:4865–4870

    PubMed Central  CAS  PubMed  Google Scholar 

  392. Gao Q, Kripke KE, Saldanha AJ, Yan WH, Holmes S, Small PM (2005) Gene expression diversity among Mycobacterium tuberculosis clinical isolates. Microbiology-Sgm 151:5–14

    CAS  Google Scholar 

  393. Cryle MJ, Bell SG, Schlichting I (2010) Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochemistry 49:7282–7296

    CAS  PubMed  Google Scholar 

  394. Bonnefond L, Arai T, Sakaguchi Y, Suzuki T, Ishitani R, Nureki O (2011) Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc Natl Acad Sci U S A 108:3912–3917

    PubMed Central  CAS  PubMed  Google Scholar 

  395. Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR (2009) Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 106:20687–20692

    PubMed Central  CAS  PubMed  Google Scholar 

  396. Lew JM, Kapopoulou A, Jones LM, Cole ST (2011) Tuberculist–10 years after. Tuberculosis (Edinb) 91:1–7

    Google Scholar 

  397. George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, Small PL (1999) Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283:854–857

    CAS  PubMed  Google Scholar 

  398. Stinear TP, Mve-Obiang A, Small PL, Frigui W, Pryor MJ, Brosch R, Jenkin GA, Johnson PD, Davies JK, Lee RE et al (2004) Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci U S A 101:1345–1349

    PubMed Central  CAS  PubMed  Google Scholar 

  399. Hong H, Demangel C, Pidot SJ, Leadlay PF, Stinear T (2008) Mycolactones: immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria. Nat Prod Rep 25:447–454

    PubMed Central  CAS  PubMed  Google Scholar 

  400. Hall BS, Hill K, McKenna M, Ogbechi J, High S, Willis AE, Simmonds RE (2014) The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER. PLoS Path 10:e1004061

    Google Scholar 

  401. Mve-Obiang A, Lee RE, Portaels F, Small PL (2003) Heterogeneity of mycolactones produced by clinical isolates of Mycobacterium ulcerans: implications for virulence. Infect Immun 71:774–783

    PubMed Central  CAS  PubMed  Google Scholar 

  402. Mve-Obiang A, Lee RE, Umstot ES, Trott KA, Grammer TC, Parker JM, Ranger BS, Grainger R, Mahrous EA, Small PL (2005) A newly discovered mycobacterial pathogen isolated from laboratory colonies of Xenopus species with lethal infections produces a novel form of mycolactone, the Mycobacterium ulcerans macrolide toxin. Infect Immun 73:3307–3312

    PubMed Central  CAS  PubMed  Google Scholar 

  403. George KM, Pascopella L, Welty DM, Small PL (2000) A Mycobacterium ulcerans toxin, mycolactone, causes apoptosis in guinea pig ulcers and tissue culture cells. Infect Immun 68:877–883

    PubMed Central  CAS  PubMed  Google Scholar 

  404. Chany AC, Tresse C, Casarotto V, Blanchard N (2013) History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 30:1527–1567

    CAS  PubMed  Google Scholar 

  405. Cox RA, Garcia MJ (2013) Adaptation of mycobacteria to growth conditions: a theoretical analysis of changes in gene expression revealed by microarrays. PLoS One 8:e59883

    PubMed Central  CAS  PubMed  Google Scholar 

  406. Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS et al (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65:684–699

    PubMed Central  CAS  PubMed  Google Scholar 

  407. Lin K, Kuang Y, Joseph JS, Kolatkar PR (2002) Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Nucleic Acids Res 30:2599–2607

    PubMed Central  CAS  PubMed  Google Scholar 

  408. Podust LM, Poulos TL, Waterman MR (2001) Crystal structure of cytochrome P450 14 alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci U S A 98:3068–3073

    PubMed Central  CAS  PubMed  Google Scholar 

  409. Ouellet H, Podust LM, Ortiz de Montellano PR (2008) Mycobacterium tuberculosis CYP130—crystal structure, biophysical characterization, and interactions with antifungal azole drugs. J Biol Chem 283:5069–5080

    PubMed Central  CAS  PubMed  Google Scholar 

  410. Ouellet H, Kells PM, Ortiz de Montellano PR, Podust LM (2011) Reverse type I inhibitor of Mycobacterium tuberculosis CYP125A1. Biorg Med Chem Lett 21:332–337

    CAS  Google Scholar 

  411. Uhia I, Galan B, Kendall SL, Stoker NG, Garcia JL (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Rep 4:168–182

    CAS  PubMed  Google Scholar 

  412. Agnew CR, Warrilow AG, Burton NM, Lamb DC, Kelly SL, Brady RL (2012) An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae. Antimicrob Agents Chemother 56:391–402

    PubMed Central  CAS  PubMed  Google Scholar 

  413. Singh P, Cole ST (2011) Mycobacterium leprae: genes, pseudogenes and genetic diversity. Future Microbiol 6:57–71

    PubMed Central  CAS  PubMed  Google Scholar 

  414. Seward HE, Roujeinikova A, McLean KJ, Munro AW, Leys D (2006) Crystal structure of the Mycobacterium tuberculosis P450CYP121-fluconazole complex reveals new azole drug-P450 binding mode. J Biol Chem 281:39437–39443

    CAS  PubMed  Google Scholar 

  415. Fonvielle M, Le Du M-H, Lequin O, Lecoq A, Jacquet M, Thai R, Dubois S, Grach G, Gondry M, Belin P (2013) Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121 insights from biochemical studies and crystal structures. J Biol Chem 288:17347–17359

    PubMed Central  CAS  PubMed  Google Scholar 

  416. McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K, Kieser T, Gurcha SS, Besra GS, Munro AW (2002) Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology-Sgm 148:2937–2949

    CAS  Google Scholar 

  417. Ahmad Z, Sharma S, Khuller GK (2006) Azole antifungals as novel chemotherapeutic agents against murine tuberculosis. FEMS Microbiol Lett 261:181–186

    CAS  PubMed  Google Scholar 

  418. Ahmad Z, Sharma S, Khuller GK (2006) The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol Lett 258:200–203

    CAS  PubMed  Google Scholar 

  419. Ahmad Z, Sharma S, Khuller GK (2005) In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H(37)Rv. FEMS Microbiol Lett 251:19–22

    CAS  PubMed  Google Scholar 

  420. Hudson SA, McLean KJ, Surade S, Yang Y-Q, Leys D, Ciulli A, Munro AW, Abell C (2012) Application of fragment screening and merging to the discovery of inhibitors of the Mycobacterium tuberculosis cytochrome P450 CYP121. Angew Chem Int Ed 51:9311–9316

    CAS  Google Scholar 

  421. Brosch R, Gordon SV, Pym A, Eiglmeier K, Garnier T, Cole ST (2000) Comparative genomics of the mycobacteria. Int J Med Microbiol 290:143–152

    CAS  PubMed  Google Scholar 

  422. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523

    CAS  PubMed  Google Scholar 

  423. McLean KJ, Dunford AJ, Neeli R, Driscoll MD, Munro AW (2007) Structure, function and drug targeting in Mycobacterium tuberculosis cytochrome P450 systems. Arch Biochem Biophys 464:228–240

    CAS  PubMed  Google Scholar 

  424. Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R (2004) ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12:500–508

    CAS  PubMed  Google Scholar 

  425. Yoshida Y, Noshiro M, Aoyama Y, Kawamoto T, Horiuchi T, Gotoh O (1997) Structural and evolutionary studies on sterol 14-demethylase P450 (CYP51), the most conserved P450 monooxygenase. II. Evolutionary analysis of protein and gene structures. J Biochem 122:1122–1128

    CAS  PubMed  Google Scholar 

  426. Lepesheva GI, Waterman MR (2011) Structural basis for conservation in the CYP51 family. Biochim Biophys Acta 1814:88–93

    PubMed Central  CAS  PubMed  Google Scholar 

  427. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    CAS  PubMed  Google Scholar 

  428. Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56:i5–i11

    CAS  PubMed  Google Scholar 

  429. Raviglione MC, Snider DE Jr, Kochi A (1995) Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. J Am Med Assoc 273:220–226

    CAS  Google Scholar 

  430. Bellamine A, Mangla AT, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14 alpha-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 96:8937–8942

    PubMed Central  CAS  PubMed  Google Scholar 

  431. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 100:7213–7218

    PubMed Central  CAS  PubMed  Google Scholar 

  432. Podust LM, Stojan J, Poulos TL, Waterman MR (2001) Substrate recognition sites in 14 alpha-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. J Inorg Biochem 87:227–235

    CAS  PubMed  Google Scholar 

  433. Xiao L, Madison V, Chau AS, Loebenberg D, Palermo RE, McNicholas PM (2004) Three-dimensional models of wild-type and mutated forms of cytochrome P450 14 alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother 48:568–574

    PubMed Central  CAS  PubMed  Google Scholar 

  434. Dunford AJ, McLean KJ, Sabri M, Seward HE, Heyes DJ, Scrutton NS, Munro AW (2007) Rapid P450 heme iron reduction by laser photoexcitation of Mycobacterium tuberculosis CYP121 and CYP51B1—analysis of CO complexation reactions and reversibility of the P450/P420 equilibrium. J Biol Chem 282:24816–24824

    CAS  PubMed  Google Scholar 

  435. Jennings GK, Modi A, Elenewski JE, Ritchie CM, Nguyen T, Ellis KC, Hackett JC (2014) Spin equilibrium and O2-binding kinetics of Mycobacterium tuberculosis CYP51 with mutations in the histidine-threonine dyad. J Inorg Biochem 136:81–91

    CAS  PubMed  Google Scholar 

  436. Podust LM, von Kries JP, Eddine AN, Kim Y, Yermalitskaya LV, Kuehne R, Ouellet H, Warrier T, Altekoester M, Lee J-S et al (2007) Small-molecule scaffolds for CYP51 inhibitors identified by high-throughput screening and defined by X-ray crystallography. Antimicrob Agents Chemother 51:3915–3923

    PubMed Central  CAS  PubMed  Google Scholar 

  437. Podust LM, Yermalitskaya LV, Lepesheva GI, Podust VN, Dalmasso EA, Waterman MR (2004) Estriol bound and ligand-free structures of sterol 14 alpha-demethylase. Structure 12:1937–1945

    CAS  PubMed  Google Scholar 

  438. Eddine AN, von Kries JP, Podust MV, Warrier T, Kaufmann SHE, Podust LM (2008) X-ray structure of 4,4′-dihydroxybenzophenone mimicking sterol substrate in the active site of sterol 14 alpha-demethylase (CYP51). J Biol Chem 283:15152–15159

    PubMed Central  CAS  PubMed  Google Scholar 

  439. Chen C-K, Doyle PS, Yermalitskaya LV, Mackey ZB, Ang KKH, McKerrow JH, Podust LM (2009) Trypanosoma cruzi CYP51 inhibitor derived from a Mycobacterium tuberculosis screen hit. PLoS Negl Trop Dis 3:e372

    PubMed Central  PubMed  Google Scholar 

  440. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson, D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    CAS  PubMed  Google Scholar 

  441. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  442. Lisitsa AV, Gusev SA, Karuzina II, Archakov AI, Koymans L (2001) Cytochrome P450 database. SAR QSAR Environ Res 12:359–366

    CAS  PubMed  Google Scholar 

  443. Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee Y-H, Kang S (2012) Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13:525

    PubMed Central  CAS  PubMed  Google Scholar 

  444. Aoyama Y, Noshiro M, Gotoh O, Imaoka S, Funae Y, Kurosawa N, Horiuchi T, Yoshida Y (1996) Sterol 14-demethylase P450 (P45014DM*) is one of the most ancient and conserved P450 species. J Biochem 119:926–933

    CAS  PubMed  Google Scholar 

  445. Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Parks LW, Kelly DE (1995) Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol delta 22-desaturase. FEBS Lett 377:217–220

    CAS  PubMed  Google Scholar 

  446. Črešnar B, Petrič Š (2011) Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta 1814:29–35

    PubMed  Google Scholar 

  447. Lepesheva GI, Waterman MR (2007) Sterol 14 alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta 1770:467–477

    PubMed Central  CAS  PubMed  Google Scholar 

  448. Deng J, Carbone I, Dean RA (2007) The evolutionary history of cytochrome P450 genes in four filamentous ascomycetes. BMC Evol Biol 7:30

    PubMed Central  PubMed  Google Scholar 

  449. Nazir KHMNH, Ichinose H, Wariishi H (2010) Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae. Arch Microbiol 192:395–408

    Google Scholar 

  450. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    PubMed  Google Scholar 

  451. Chen W, Lee MK, Jefcoate C, Kim SC, Chen F, Yu JH (2014) Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, evolutionary origin. Genome Biol Evol 6:1759–6653

    Google Scholar 

  452. Waterman MR, Lepesheva GI (2005) Sterol 14 alpha-demethylase, an abundant and essential mixed-function oxidase. Biochem Biophys Res Commun 338:418–422

    CAS  PubMed  Google Scholar 

  453. Kelly SL, Lamb DC, Baldwin BC, Corran AJ, Kelly DE (1997) Characterization of Saccharomyces cerevisiae CYP61, sterol delta(22)-desaturase, and inhibition by azole antifungal agents. J Biol Chem 272:9986–9988

    CAS  PubMed  Google Scholar 

  454. Hlavica P (2013) Evaluation of structural features in fungal cytochromes P450 predicted to rule catalytic diversification. Biochim Biophys Acta 1834:205–220

    CAS  PubMed  Google Scholar 

  455. Farkas J, Schricker R, Briza P, Eckerstorfer M, Breitenbach M (1997) The enzymatic properties of Dit2p (CYP56) from Saccharomyces cerevisiae. FASEB J 11:A827–A827

    Google Scholar 

  456. Briza P, Eckerstorfer M, Breitenbach M (1994) The sporulation-specific enzymes encoded by the Dit1 and Dit2 genes catalyze a 2-step reaction leading to a soluble ll-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci U S A 91:4524–4528

    PubMed Central  CAS  PubMed  Google Scholar 

  457. Melo NR, Moran GP, Warrilow AGS, Dudley E, Smith SN, Sullivan DJ, Lamb DC, Kelly DE, Coleman DC, Kelly SL (2008) CYP56 (Dit2p) in Candida albicans: characterization and investigation of its role in growth and antifungal drug susceptibility. Antimicrob Agents Chemother 52:3718–3724

    PubMed Central  CAS  PubMed  Google Scholar 

  458. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    CAS  PubMed  Google Scholar 

  459. Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology-Sgm 151:1809–1821

    CAS  Google Scholar 

  460. Bomke C, Rojas MC, Gong F, Hedden P, Tudzynski B (2008) Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl Environ Microbiol 74:5325–5339

    PubMed Central  PubMed  Google Scholar 

  461. Malonek S, Bomke C, Bornberg-Bauer E, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005) Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry 66:1296–1311

    CAS  PubMed  Google Scholar 

  462. Tudzynski B, Rojas MC, Gaskin P, Hedden P (2002) The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase. J Biol Chem 277:21246–21253

    CAS  PubMed  Google Scholar 

  463. Tudzynski B, Hedden P, Carrera E, Gaskin P (2001) The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway. Appl Environ Microbiol 67:3514–3522

    PubMed Central  CAS  PubMed  Google Scholar 

  464. Ahmad N, Hamayun M, Khan SA, Khan AL, Lee IJ, Shin DH (2010) Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 20:1744–1749

    CAS  PubMed  Google Scholar 

  465. Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    PubMed Central  CAS  PubMed  Google Scholar 

  466. Syed K, Porollo A, Lam YW, Yadav JS (2011) A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324). PLoS One 6:e28286

    PubMed Central  CAS  PubMed  Google Scholar 

  467. Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JDA, O’Connell JD III, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS et al (2014) Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A 111:3865–3870

    PubMed Central  CAS  PubMed  Google Scholar 

  468. Wolf DH (1986) Cellular control in the eukaryotic cell through action of proteinases: the yeast Saccharomyces cerevisiae as a model organism. Microbiol Sci 3:107–111, 114

    CAS  PubMed  Google Scholar 

  469. Loper JC (1992) Cytochrome P450 lanosterol 14alpha-demethylase (CYP51): insights from molecular genetic analysis of the Erg11 gene in Saccharomyces cerevisiae. J Steroid Biochem Mol Biol 43:1107–1116

    CAS  PubMed  Google Scholar 

  470. Lepesheva GI, Hargrove TY, Kleshchenko Y, Nes WD, Villalta F, Waterman MR (2008) CYP51: a major drug target in the cytochrome P450 superfamily. Lipids 43:1117–1125

    PubMed Central  CAS  PubMed  Google Scholar 

  471. Scott EE, Spatzenegger M, Halpert JR (2001) A truncation of 2B subfamily cytochromes P450 yields increased expression levels, increased solubility, and decreased aggregation while retaining function. Arch Biochem Biophys 395:57–68

    CAS  PubMed  Google Scholar 

  472. Nakayama K, Puchkaev A, Pikuleva IA (2001) Membrane binding and substrate access merge in cytochrome P450 7A1, a key enzyme in degradation of cholesterol. J Biol Chem 276:31459–31465

    CAS  PubMed  Google Scholar 

  473. Headlam MJ, Wilce MCJ, Tuckey RC (2003) The F-G loop region of cytochrome P450scc (CYP11A1) interacts with the phospholipid membrane. Biochim Biophys Acta 1617:96–108

    CAS  PubMed  Google Scholar 

  474. Murtazina D, Puchkaev AV, Schein CH, Oezguen N, Braun W, Nanavati A, Pikuleva IA (2002) Membrane-protein interactions contribute to efficient 27-hydroxylation of cholesterol by mitochondrial cytochrome P450 27A1. J Biol Chem 277:37582–37589

    CAS  PubMed  Google Scholar 

  475. Xiang MJ, Liu JY, Ni PH, Wang S, Shi C, Wei B, Ni YX, Ge HL (2013) Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res 13:386–393

    CAS  PubMed  Google Scholar 

  476. Goldman GH, da Silva Ferreira ME, dos Reis Marques E, Savoldi M, Perlin D, Park S, Godoy Martinez PC, Goldman MH, Colombo AL (2004) Evaluation of fluconazole resistance mechanisms in Candida albicans clinical isolates from HIV-infected patients in brazil. Diagn Microbiol Infect Dis 50:25–32

    CAS  PubMed  Google Scholar 

  477. Becher R, Wirsel SGR (2012) Fungal cytochrome P450 sterol 14 alpha-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol 95:825–840

    CAS  PubMed  Google Scholar 

  478. Champe SP, el-Zayat AA (1989) Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol 171:3982–3988

    PubMed Central  CAS  PubMed  Google Scholar 

  479. Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353

    CAS  PubMed  Google Scholar 

  480. Tsitsigiannis DI, Keller NP (2006) Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol 59:882–892

    CAS  PubMed  Google Scholar 

  481. Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    CAS  PubMed  Google Scholar 

  482. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    CAS  PubMed  Google Scholar 

  483. Pohl CH, Kock JL (2014) Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 19:1273–1285

    PubMed  Google Scholar 

  484. Christensen SA, Kolomiets MV (2011) The lipid language of plant-fungal interactions. Fungal Genet Biol 48:4–14

    CAS  PubMed  Google Scholar 

  485. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  486. Tsitsigiannis DI, Bok JW, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) Aspergillus cyclooxygenase-like enzymes are associated with prostaglandin production and virulence. Infect Immun 73:4548–4559

    PubMed Central  CAS  PubMed  Google Scholar 

  487. Garscha U, Jerneren F, Chung D, Keller NP, Hamberg M, Oliw EH (2007) Identification of dioxygenases required for Aspergillus development. Studies of products, stereochemistry, and the reaction mechanism. J Biol Chem 282:34707–34718

    CAS  PubMed  Google Scholar 

  488. Brodhun F, Gobel C, Hornung E, Feussner I (2009) Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a cytochrome P450. J Biol Chem 284:11792–11805

    PubMed Central  CAS  PubMed  Google Scholar 

  489. Jerneren F, Garscha U, Hoffmann I, Hamberg M, Oliw EH (2010) Reaction mechanism of 5,8-linoleate diol synthase, 10R-dioxygenase, and 8,11-hydroperoxide isomerase of Aspergillus clavatus. Biochim Biophys Acta 1801:503–507

    CAS  PubMed  Google Scholar 

  490. Vicente J, Cascon T, Vicedo B, Garcia-Agustin P, Hamberg M, Castresana C (2012) Role of 9-lipoxygenase and alpha-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol Plant 5:914–928

    CAS  PubMed  Google Scholar 

  491. Koch C, Tria G, Fielding AJ, Brodhun F, Valerius O, Feussner K, Braus GH, Svergun DI, Bennati M, Feussner I (2013) A structural model of PpoA derived from SAXS-analysis-implications for substrate conversion. Biochim Biophys Acta 1831:1449–1457

    CAS  PubMed  Google Scholar 

  492. Guengerich FP (2005) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic, New York, pp 377–530

    Google Scholar 

  493. Li L, Chang Z, Pan Z, Fu ZQ, Wang X (2008) Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci U S A 105:13883–13888

    PubMed Central  CAS  PubMed  Google Scholar 

  494. Hoffmann I, Oliw EH (2013) 7,8- and 5,8-linoleate diol synthases support the heterolytic scission of oxygen-oxygen bonds by different amide residues. Arch Biochem Biophys 539:87–91

    CAS  PubMed  Google Scholar 

  495. Wadman MW, de Vries RP, Kalkhove SIC, Veldink GA, Vliegenthart JFG (2009) Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger. BMC Microbiol 9

    Google Scholar 

  496. Jerneren F, Oliw EH (2012) The fatty acid 8,11-diol synthase of Aspergillus fumigatus is inhibited by imidazole derivatives and unrelated to PpoB. Lipids 47:707–717

    CAS  PubMed  Google Scholar 

  497. Dagenais TR, Chung D, Giles SS, Hull CM, Andes D, Keller NP (2008) Defects in conidiophore development and conidium-macrophage interactions in a dioxygenase mutant of Aspergillus fumigatus. Infect Immun 76:3214–3220

    PubMed Central  CAS  PubMed  Google Scholar 

  498. Gallo A, Epifani F, Bonsegna S, Pascale M, Santino A, Perrone G (2010) Analysis of genes early expressed during Aspergillus flavus colonisation of hazelnut. Int J Food Microbiol 137:111–115

    CAS  PubMed  Google Scholar 

  499. Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60:71–81

    CAS  PubMed  Google Scholar 

  500. Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555–565

    CAS  PubMed  Google Scholar 

  501. Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100

    CAS  PubMed  Google Scholar 

  502. Ide M, Ichinose H, Wariishi H (2012) Molecular identification and functional characterization of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta. Arch Microbiol 194:243–253

    CAS  PubMed  Google Scholar 

  503. Subramanian V, Doddapaneni H, Syed K, Yadav JS (2010) P450 redox enzymes in the white rot fungus Phanerochaete chrysosporium: gene transcription, heterologous expression, and activity analysis on the purified proteins. Curr Microbiol 61:306–314

    PubMed Central  CAS  PubMed  Google Scholar 

  504. Kitazume T, Takaya N, Nakayama N, Shoun H (2000) Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic: counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem 275:39734–39740

    CAS  PubMed  Google Scholar 

  505. Ichinose H, Wariishi H (2012) Heterologous expression and mechanistic investigation of a fungal cytochrome P450 (CYP5150A2): involvement of alternative redox partners. Arch Biochem Biophys 518:8–15

    CAS  PubMed  Google Scholar 

  506. Ichinose H, Wariishi H (2013) High-level heterologous expression of fungal cytochrome P450s in Escherichia coli. Biochem Biophys Res Commun 438:289–294

    CAS  PubMed  Google Scholar 

  507. Kelly SL, Lamb DC, Kelly DE (1997) Sterol 22-desaturase, cytochrome P45061, possesses activity in xenobiotic metabolism. FEBS Lett 412:233–235

    CAS  PubMed  Google Scholar 

  508. Lamb DC, Maspahy S, Kelly DE, Manning NJ, Geber A, Bennett JE, Kelly SL (1999) Purification, reconstitution, and inhibition of cytochrome P-450 sterol delta(22)-desaturase from the pathogenic fungus Candida glabrata. Antimicrob Agents Chemother 43:1725–1728

    PubMed Central  CAS  PubMed  Google Scholar 

  509. Sanglard D, Loper JC (1989) Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene 76:121–136

    CAS  PubMed  Google Scholar 

  510. Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    CAS  PubMed  Google Scholar 

  511. Van Bogaert IN, De Mey M, Develter D, Soetaert W, Vandamme EJ (2009) Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS Yeast Res 9:87–94

    CAS  PubMed  Google Scholar 

  512. Ehrlich KC, Chang PK, Yu J, Cotty PJ (2004) Aflatoxin biosynthesis cluster gene cypA is required for G-aflatoxin formation. Appl Environ Microbiol 70:6518–6524

    PubMed Central  CAS  PubMed  Google Scholar 

  513. Wen Y, Hatabayashi H, Arai H, Kitamoto HK, Yabe K (2005) Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 71:3192–3198

    PubMed Central  CAS  PubMed  Google Scholar 

  514. Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123

    CAS  PubMed  Google Scholar 

  515. Takahashi-Ando N, Ochiai N, Tokai T, Ohsato S, Nishiuchi T, Yoshida M, Fujimura M, Kimura M (2008) A screening system for inhibitors of trichothecene biosynthesis: hydroxylation of trichodiene as a target. Biotechnol Lett 30:1055–1059

    CAS  PubMed  Google Scholar 

  516. Kudo T, Tomura D, Liu DL, Dai XQ, Shoun H (1996) Two isozymes of P450nor of Cylindrocarpon tonkinense: molecular cloning of the cDNAs and genes, expressions in the yeast, and the putative NAD(P)H-binding site. Biochimie 78:792–799

    CAS  PubMed  Google Scholar 

  517. Kizawa H, Tomura D, Oda M, Fukamizu A, Hoshino T, Gotoh O, Yasui T, Shoun H (1991) Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporum. J Biol Chem 266:10632–10637

    CAS  PubMed  Google Scholar 

  518. Mingot JM, Penalva MA, Fernandez-Canon JM (1999) Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J Biol Chem 274:14545–14550

    CAS  PubMed  Google Scholar 

  519. Ferrer-Sevillano F, Fernandez-Canon JM (2007) Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities. Eukaryot Cell 6:514–520

    PubMed Central  CAS  PubMed  Google Scholar 

  520. Denisov IG, Sligar SG (2011) Cytochromes P450 in nanodiscs. Biochim Biophys Acta 1814:223–229

    PubMed Central  CAS  PubMed  Google Scholar 

  521. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    CAS  PubMed  Google Scholar 

  522. Munro AW, Girvan HM, McLean KJ (2007) Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609

    CAS  PubMed  Google Scholar 

  523. Sevrioukova IF, Poulos TL (2011) Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system. Arch Biochem Biophys 507:66–74

    PubMed Central  CAS  PubMed  Google Scholar 

  524. Annalora AJ, Goodin DB, Hong WX, Zhang Q, Johnson EF, Stout CD (2010) Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 396:441–451

    PubMed Central  CAS  PubMed  Google Scholar 

  525. Heinz A, Hannemann F, Muller JJ, Heinemann U, Bernhardt R (2005) The interaction domain of the redox protein adrenodoxin is mandatory for binding of the electron acceptor CYP11A1, but is not required for binding of the electron donor adrenodoxin reductase. Biochem Biophys Res Commun 338:491–498

    CAS  PubMed  Google Scholar 

  526. Ewen KM, Kleser M, Bernhardt R (2011) Adrenodoxin: the archetype of vertebrate-type 2Fe-2S cluster ferredoxins. Biochim Biophys Acta 1814:111–125

    CAS  PubMed  Google Scholar 

  527. Pandey AV, Flueck CE (2013) NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 138:229–254

    CAS  PubMed  Google Scholar 

  528. Govindaraj S, Poulos TL (1996) Probing the structure of the linker connecting the reductase and heme domains of cytochrome P450BM-3 using site-directed mutagenesis. Protein Sci 5:1389–1393

    PubMed Central  CAS  PubMed  Google Scholar 

  529. Govindaraj S, Poulos TL (1995) Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3. Biochemistry 34:11221–11226

    CAS  PubMed  Google Scholar 

  530. Munro AW, Daff S, Coggins JR, Lindsay JG, Chapman SK (1996) Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem 239:403–409

    CAS  PubMed  Google Scholar 

  531. Neeli R, Girvan HM, Lawrence A, Warren MJ, Leys D, Scrutton NS, Munro AW (2005) The dimeric form of flavocytochrome P450BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett 579:5582–5588

    CAS  PubMed  Google Scholar 

  532. Kitazume T, Haines DC, Estabrook RW, Chen B, Peterson JA (2007) Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry 46:11892–11901

    CAS  PubMed  Google Scholar 

  533. Palmer CN, Axen E, Hughes V, Wolf CR (1998) The repressor protein, bm3r1, mediates an adaptive response to toxic fatty acids in Bacillus megaterium. J Biol Chem 273:18109–18116

    CAS  PubMed  Google Scholar 

  534. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S et al (2012) Database resources of the national center for biotechnology information. Nucleic Acids Res 40:D13–D25

    PubMed Central  CAS  PubMed  Google Scholar 

  535. Tyson CA, Lipscomb JD, Gunsalus IC (1972) The role of putidaredoxin and P450 cam in methylene hydroxylation. J Biol Chem 247:5777–5784

    CAS  PubMed  Google Scholar 

  536. Reipa V, Holden MJ, Vilker VL (2007) Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex. Biochemistry 46:13235–13244

    CAS  PubMed  Google Scholar 

  537. Sligar SG and Gunsalus IC (1976) Thermodynamic model of regulation—modulation of redox equilibria in camphor monoxygenase. Proc Natl Acad Sci U S A 73:1078–1082

    PubMed Central  CAS  PubMed  Google Scholar 

  538. Sasaki M, Akahira A, Oshiman K, Tsuchido T, Matsumura Y (2005) Purification of cytochrome P450 and ferredoxin, involved in bisphenol A degradation, from Sphingomonas sp strain AO1. Appl Environ Microbiol 71:8024–8030

    PubMed Central  CAS  PubMed  Google Scholar 

  539. Makino T, Katsuyama Y, Otomatsu T, Misawa N, Ohnishi Y (2014) Regio- and stereospecific hydroxylation of various steroids at the 16 alpha position of the D ring by the Streptomyces griseus cytochrome P450 cyp154c3. Appl Environ Microbiol 80:1371–1379

    PubMed Central  CAS  PubMed  Google Scholar 

  540. McLean KJ, Munro AW (2008) Structural biology and biochemistry of cytochrome P450 systems in Mycobacterium tuberculosis. Drug Metab Rev 40:427–446

    CAS  PubMed  Google Scholar 

  541. Chun Y-J, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC, Guengerich FP (2007) Electron transport pathway for a streptomyces cytochrome P450—cytochrome P450 105D5 catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J Biol Chem 282:17486–17500

    CAS  PubMed  Google Scholar 

  542. Green AJ, Rivers SL, Cheesman M, Reid GA, Quaroni LG, Macdonald IDG, Chapman SK, Munro AW (2001) Expression, purification and characterization of cytochrome P450 BioI: a novel P450 involved in biotin synthesis in Bacillus subtilis. J Biol Inorg Chem 6:523–533

    CAS  PubMed  Google Scholar 

  543. Green AJ, Munro AW, Cheesman MR, Reid GA, von Wachenfeldt C, Chapman SK (2003) Expression, purification and characterisation of a Bacillus subtilis ferredoxin: a potential electron transfer donor to cytochrome P450. BioI J Inorg Biochem 93:92–99

    CAS  Google Scholar 

  544. Zhang T, Zhang A, Bell SG, Wong LL, Zhou W (2014) The structure of a novel electron-transfer ferredoxin from Rhodopseudomonas palustris HaA2 which contains a histidine residue in its iron-sulfur cluster-binding motif. Acta Crystallogr D Biol Crystallogr 70:1453–1464

    CAS  PubMed  Google Scholar 

  545. Jackson CJ, Lamb DC, Marezylo TH, Warrilow AGS, Manning NJ, Lowe DJ, Kelly DE, Kelly SL (2002) A novel sterol 14 alpha-demethylase/ferredoxin fusion protein (MCCYP51FX) from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J Biol Chem 277:46959–46965

    CAS  PubMed  Google Scholar 

  546. Sancho J (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci 63:855–864

    CAS  PubMed  Google Scholar 

  547. Jenkins CM, Waterman MR (1994) Flavodoxin and NADPH-flavodoxin reductase from Escherichia coli support bovine cytochrome P450C17 hydroxylase activities. J Biol Chem 269:27401–27408

    CAS  PubMed  Google Scholar 

  548. Jenkins CM, Waterman MR (1998) NADPH-flavodoxin reductase and flavodoxin from Escherichia coli: characteristics as a soluble microsomal P450 reductase. Biochemistry 37:6106–6113

    CAS  PubMed  Google Scholar 

  549. McIver L, Leadbeater C, Campopiano DJ, Baxter RL, Daff SN, Chapman SK, Munro AW (1998) Characterisation of flavodoxin NADP(+) oxidoreductase and flavodoxin; key components of electron transfer in Escherichia coli. Eur J Biochem 257:577–585

    CAS  PubMed  Google Scholar 

  550. Quaderer R, Omura S, Ikeda H, Cane DE (2006) Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtII, a cytochrome P450 of Streptomyces avermitilis. J Am Chem Soc 128:13036–13037

    PubMed Central  CAS  PubMed  Google Scholar 

  551. Girhard M, Schuster S, Dietrich M, Dürre P, Urlacher VB (2007) Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new α-fatty acid hydroxylase. Biochem Biophys Res Commun 362:114–119

    CAS  PubMed  Google Scholar 

  552. Bower S, Perkins JB, Yocum RR, Howitt CL, Rahaim P, Pero J (1996) Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol 178:4122–4130

    PubMed Central  CAS  PubMed  Google Scholar 

  553. Green AJ, Munro AW, Rivers SL, Reid GA, Chapman SK (2001) Reconstituting the electron transport system in cytochrome P450. BioI Biochem Soc Trans 29:A34–A34

    Google Scholar 

  554. Cryle MJ, Matovic NJ, De Voss JJ (2003) Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids. Org Lett 5:3341–3344

    CAS  PubMed  Google Scholar 

  555. Cryle MJ, De Voss JJ (2004) Carbon-carbon bond cleavage by cytochrome P450(BioI) (CYP107H1). Chem Commun 86–87

    Google Scholar 

  556. Lawson RJ, von Wachenfeldt C, Haq I, Perkins J, Munro AW (2004) Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450. BioI Biochem 43:12390–12409

    CAS  Google Scholar 

  557. Lawson RJ, Leys D, Sutcliffe MJ, Kemp CA, Cheesman MR, Smith SJ, Clarkson J, Smith WE, Haq I, Perkins JB et al (2004) Thermodynamic and biophysical characterization of cytochrome p450 BioI from Bacillus subtilis. Biochemistry 43:12410–12426

    CAS  PubMed  Google Scholar 

  558. Madrona Y, Hollingsworth SA, Tripathi S, Fields JB, Rwigema J-CN, Tobias DJ, Poulos TL (2014) Crystal structure of cindoxin, the P450cin redox partner. Biochemistry 53:1435–1446

    PubMed Central  CAS  PubMed  Google Scholar 

  559. Kimmich N, Das A, Sevrioukova I, Meharenna Y, Sligar SG, Poulos TL (2007) Electron transfer between cytochrome P450cin and its FMN-containing redox partner, cindoxin. J Biol Chem 282:27006–27011

    CAS  PubMed  Google Scholar 

  560. Malca SH, Girhard M, Schuster S, Durre P, Urlacher VB (2011) Expression, purification and characterization of two Clostridium acetobutylicum flavodoxins: potential electron transfer partners for CYP152A2. Biochim Biophys Acta 1814:257–264

    PubMed  Google Scholar 

  561. Dubourdieu M, le Gall J, Favaudon V (1975) Physicochemical properties of flavodoxin from Desulfovibrio vulgaris. Biochim Biophys Acta 376:519–532

    CAS  PubMed  Google Scholar 

  562. Hanley SC, Ost TW, Daff S (2004) The unusual redox properties of flavocytochrome P450 BM3 flavodoxin domain. Biochem Biophys Res Commun 325:1418–1423

    CAS  PubMed  Google Scholar 

  563. Murataliev MB, Klein M, Fulco A, Feyereisen R (1997) Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Biochemistry 36:8401–8412

    CAS  PubMed  Google Scholar 

  564. Mandai T, Fujiwara S, Imaoka S (2009) A novel electron transport system for thermostable CYP175A1 from Thermus thermophilus HB27. FEBS J 276:2416–2429

    CAS  PubMed  Google Scholar 

  565. Seo D, Sakurai H (2002) Purification and characterization of Ferredoxin-NAD(P)(+) reductase from the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1597:123–132

    CAS  PubMed  Google Scholar 

  566. Seo D, Kamino K, Inoue K, Sakurai H (2004) Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC. Arch Microbiol 182:80–89

    CAS  PubMed  Google Scholar 

  567. Mandai T, Fujiwara S, Imaoka S (2009) Construction and engineering of a thermostable self-sufficient cytochrome P450. Biochem Biophys Res Commun 384:61–65

    CAS  PubMed  Google Scholar 

  568. Rabe KS, Kiko K, Niemeyer CM (2008) Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius. Chembiochem 9:420–425

    CAS  PubMed  Google Scholar 

  569. Puchkaev AV, Koo LS, Ortiz de Montellano PR (2003) Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus. Arch Biochem Biophys 409:52–58

    CAS  PubMed  Google Scholar 

  570. Fukuda E, Kino H, Matsuzawa H, Wakagi T (2001) Role of a highly conserved YPITP motif in 2-oxoacid:ferredoxin oxidoreductase: heterologous expression of the gene from Sulfolobus sp strain 7, characterization of the recombinant and variant enzymes. Eur J Biochem 268:5639–5646

    CAS  PubMed  Google Scholar 

  571. Hayakawa S, Matsumura H, Nakamura N, Yohda M, Ohno H (2014) Identification of the rate-limiting step of the peroxygenase reactions catalyzed by the thermophilic cytochrome P450 from Sulfolobus tokodaii strain 7. FEBS J 281:1409–1416

    CAS  PubMed  Google Scholar 

  572. Ogura H, Nishida CR, Hoch UR, Perera R, Dawson JH, Ortiz de Montellano PR (2004) Epok, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones a and B. Substrate-mediated rescue of a P450 enzyme. Biochemistry 43:14712–14721

    CAS  PubMed  Google Scholar 

  573. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277

    CAS  PubMed  Google Scholar 

  574. Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727

    PubMed Central  CAS  PubMed  Google Scholar 

  575. Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SEJ, Nelson DR, Potts D, Baynham MT, Parker DA et al (2014) Structure and biochemical properties of the alkene producing cytochrome P450 OleTje (CYP152L1) from the Jeotgalicoccus sp 8456 bacterium. J Biol Chem 289:6535–6550

    PubMed Central  CAS  PubMed  Google Scholar 

  576. Matsunaga I, Yamada A, Lee DS, Obayashi E, Fujiwara N, Kobayashi K, Ogura H, Shiro Y (2002) Enzymatic reaction of hydrogen peroxide-dependent peroxygenase cytochrome P450s: kinetic deuterium isotope effects and analyses by resonance Raman spectroscopy. Biochemistry 41:1886–1892

    CAS  PubMed  Google Scholar 

  577. Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis—crystallographic, spectroscopic, mutational studies. J Biol Chem 278:9761–9767

    CAS  PubMed  Google Scholar 

  578. Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y (2011) Crystal structure of H2O2-dependent cytochrome P450SPalpha with its bound fatty acid substrate: insight into the regioselective hydroxylation of fatty acids at the alpha position. J Biol Chem 286:29941–29950

    PubMed Central  CAS  PubMed  Google Scholar 

  579. Shoji O, Watanabe Y (2014) Peroxygenase reactions catalyzed by cytochromes P450. J Biol Inorg Chem 19:529–539

    CAS  PubMed  Google Scholar 

  580. Netto LE, Stadtman ER (1996) The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Arch Biochem Biophys 333:233–242

    CAS  PubMed  Google Scholar 

  581. Daff SN, Chapman SK, Turner KL, Holt RA, Govindaraj S, Poulos TL, Munro AW (1997) Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry 36:13816–13823

    CAS  PubMed  Google Scholar 

  582. Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S (2014) Hydrogen peroxide-independent production of alpha-alkenes by OleTje P450 fatty acid decarboxylase. Biotechnol Biofuels 7:28

    PubMed Central  PubMed  Google Scholar 

  583. Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K (2000) Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for alpha-hydroxylation. Lipids 35:365–371

    CAS  PubMed  Google Scholar 

  584. Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K (1997) Molecular cloning and expression of fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. J Biol Chem 272:23592–23596

    CAS  PubMed  Google Scholar 

  585. Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450. Lipids 34:841–846

    CAS  PubMed  Google Scholar 

  586. Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSbeta. Angew Chem Int Ed Engl 46:3656–3659

    CAS  PubMed  Google Scholar 

  587. Fujishiro T, Shoji O, Kawakami N, Watanabe T, Sugimoto H, Shiro Y, Watanabe Y (2012) Chiral-substrate-assisted stereoselective epoxidation catalyzed by H2O2-dependent cytochrome P450SPalpha. Chem Asian J 7:2286–2293

    CAS  PubMed  Google Scholar 

  588. Kawakami N, Shoji O, Watanabe Y (2013) Direct hydroxylation of primary carbons in small alkanes by wild-type cytochrome P450BM3 containing perfluorocarboxylic acids as decoy molecules. Chem Sci 4:2344–2348

    CAS  Google Scholar 

  589. Shoji O, Kunimatsu T, Kawakami N, Watanabe Y (2013) Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angew Chem Int Ed 52:6606–6610

    CAS  Google Scholar 

  590. Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125

    CAS  PubMed  Google Scholar 

  591. Yi X, Mroczko M, Manoj KM, Wang X, Hager LP (1999) Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue. Proc Natl Acad Sci U S A 96:12412–12417

    PubMed Central  CAS  PubMed  Google Scholar 

  592. Beckwith JR, Clark R, Hager LP (1963) Biological chlorination. VII. Studies on the biosynthesis of caldariomycin. J Biol Chem 238:3086–3090

    CAS  PubMed  Google Scholar 

  593. Morris DR, Hager LP (1966) Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241:1763–1768

    CAS  PubMed  Google Scholar 

  594. Morgan JA, Lu ZQ, Clark DS (2002) Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid: oxidation of 1,4-benzenedimethanol. J Mol Catal B 18:147–154

    CAS  Google Scholar 

  595. Seelbach K, van Deurzen MP, van Rantwijk F, Sheldon RA, Kragl U (1997) Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation. Biotechnol Bioeng 55:283–288

    CAS  PubMed  Google Scholar 

  596. Ullrich R, Nuske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581

    PubMed Central  CAS  PubMed  Google Scholar 

  597. Grobe G, Ullrich R, Pecyna MJ, Kapturska D, Friedrich S, Hofrichter M, Scheibner K (2011) High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula. AMB Express 1:31

    PubMed Central  PubMed  Google Scholar 

  598. Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485

    PubMed Central  CAS  PubMed  Google Scholar 

  599. Omura T (2005) Heme-thiolate proteins. Biochem Biophys Res Commun 338:404–409

    CAS  PubMed  Google Scholar 

  600. Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897

    CAS  PubMed  Google Scholar 

  601. Piontek K, Strittmatter E, Ullrich R, Groebe G, Pecyna MJ, Kluge M, Scheibner K, Hofrichter M, Plattner DA (2013) Structural basis of substrate conversion in a new aromatic peroxygenase cytochrome P450 functionality with benefits. J Biol Chem 288:34767–34776

    PubMed Central  CAS  PubMed  Google Scholar 

  602. Kinne M, Zeisig C, Ullrich R, Kayser G, Hammel KE, Hofrichter M (2010) Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase. Biochem Biophys Res Commun 397:18–21

    CAS  PubMed  Google Scholar 

  603. Poraj-Kobielska M, Kinne M, Ullrich R, Scheibner K, Kayser G, Hammel KE, Hofrichter M (2011) Preparation of human drug metabolites using fungal peroxygenases. Biochem Pharmacol 82:789–796

    CAS  PubMed  Google Scholar 

  604. Poraj-Kobielska M, Atzrodt J, Holla W, Sandvoss M, Grobe G, Scheibner K, Hofrichter M (2013) Preparation of labeled human drug metabolites and drug-drug interaction-probes with fungal peroxygenases. J Labelled Comp Radiopharm 56:513–519

    CAS  PubMed  Google Scholar 

  605. Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett 582:4100–4106

    CAS  PubMed  Google Scholar 

  606. Wang X, Peter S, Kinne M, Hofrichter M, Groves JT (2012) Detection and kinetic characterization of a highly reactive heme-thiolate peroxygenase compound I. J Am Chem Soc 134:12897–12900

    PubMed Central  CAS  PubMed  Google Scholar 

  607. Bordeaux M, Galarneau A, Drone J (2012) Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges. Angew Chem Int Ed 51:10712–10723

    CAS  Google Scholar 

  608. Daiber A, Shoun H, Ullrich V (2005) Nitric oxide reductase (P450nor) from Fusarium oxysporum. J Inorg Biochem 99:185–193

    CAS  PubMed  Google Scholar 

  609. Shoun H, Tanimoto T (1991) Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem 266:11078–11082

    CAS  PubMed  Google Scholar 

  610. Shoun H, Fushinobu S, Jiang L, Kim S-W, Wakagi T (2012) Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos Trans R Soc B Biol Sci 367:1186–1194

    CAS  Google Scholar 

  611. Usuda K, Toritsuka N, Matsuo Y, Kim DH, Shoun H (1995) Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl Environ Microbiol 61:883–889

    PubMed Central  CAS  PubMed  Google Scholar 

  612. Nakahara K, Shoun H (1996) N-terminal processing and amino acid sequence of two isoforms of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum. J Biochem 120:1082–1087

    CAS  PubMed  Google Scholar 

  613. Zhang L, Takaya N, Kitazume T, Kondo T, Shoun H (2001) Purification and cDNA cloning of nitric oxide reductase cytochrome P450nor (CYP55A4) from Trichosporon cutaneum. Eur J Biochem 268:3198–3204

    CAS  PubMed  Google Scholar 

  614. Shiro Y, Fujii M, Iizuka T, Adachi S, Tsukamoto K, Nakahara K, Shoun H (1995) Spectroscopic and kinetic-studies on reaction of cytochrome p450nor with nitric-oxide—implication for its nitric-oxide reduction-mechanism. J Biol Chem 270:1617–1623

    CAS  PubMed  Google Scholar 

  615. Lehnert N, Praneeth VKK, Paulat F (2006) Electronic structure of iron(II)-porphyrin nitroxyl complexes: molecular mechanism of fungal nitric oxide reductase (P450nor). J Comput Chem 27:1338–1351

    CAS  PubMed  Google Scholar 

  616. Su F, Fushinobu S, Takaya N, Shoun H (2004) Involvement of a Glu71-Arg64 couple in the access channel for NADH in cytochrome P450nor. Biosci Biotechnol Biochem 68:1156–1159

    CAS  PubMed  Google Scholar 

  617. Zhang L, Kudo T, Takaya N, Shoun H (2002) The B′ helix determines cytochrome P450nor specificity for the electron donors NADH and NADPH. J Biol Chem 277:33842–33847

    CAS  PubMed  Google Scholar 

  618. Shimizu H, Park SY, Lee DS, Shoun H, Shiro Y (2000) Crystal structures of cytochrome P450nor and its mutants (Ser286 -> Val, Thr) in the ferric resting state at cryogenic temperature: a comparative analysis with monooxygenase cytochrome P450s. J Inorg Biochem 81:191–205

    CAS  PubMed  Google Scholar 

  619. Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys 143:66–79

    CAS  PubMed  Google Scholar 

  620. Correia MA, Mannering GJ (1973) Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. II Role of the type I drug-binding site of cytochrome P-450. Mol Pharmacol 9:470–485

    CAS  PubMed  Google Scholar 

  621. Stiborova M, Indra R, Moserova M, Cerna V, Rupertova M, Martinek V, Eckschlager T, Kizek R, Frei E (2012) Cytochrome b5 increases cytochrome P450 3A4-mediated activation of anticancer drug ellipticine to 13-hydroxyellipticine whose covalent binding to DNA is elevated by sulfotransferases and N,O-acetyltransferases. Chem Res Toxicol 25:1075–1085

    CAS  PubMed  Google Scholar 

  622. Voice MW, Zhang Y, Wolf CR, Burchell B, Friedberg T (1999) Effects of human cytochrome b5 on CYP3A4 activity and stability in vivo. Arch Biochem Biophys 366:116–124

    CAS  PubMed  Google Scholar 

  623. Dong MS, Lee SB, Kim HJ (2013) Co-expression of human cytochrome b5 increases expression of cytochrome P450 3A4 in Escherichia coli by stabilizing mRNA. Protein Expr Purif 89:44–50

    CAS  PubMed  Google Scholar 

  624. Katagiri M, Kagawa N, Waterman MR (1995) The role of cytochrome b5 in the biosynthesis of androgens by human P450C17. Arch Biochem Biophys 317:343–347

    CAS  PubMed  Google Scholar 

  625. Lee-Robichaud P, Kaderbhai MA, Kaderbhai N, Wright JN, Akhtar M (1997) Interaction of human CYP17 (P-450(17alpha), 17alpha-hydroxylase-17,20-lyase) with cytochrome b5: importance of the orientation of the hydrophobic domain of cytochrome b5. Biochem J 321(Pt 3):857–863

    PubMed Central  CAS  PubMed  Google Scholar 

  626. Akhtar M, Wright JN, Lee-Robichaud P (2011) A review of mechanistic studies on aromatase (CYP19) and 17alpha-hydroxylase-17,20-lyase (CYP17). J Steroid Biochem Mol Biol 125:2–12

    CAS  PubMed  Google Scholar 

  627. Storbeck KH, Swart AC, Goosen P, Swart P (2013) Cytochrome b5: novel roles in steroidogenesis. Mol Cell Endocrinol 371:87–99

    CAS  PubMed  Google Scholar 

  628. Funk WD, Lo TP, Mauk MR, Brayer GD, MacGillivray RT, Mauk AG (1990) Mutagenic, electrochemical, and crystallographic investigation of the cytochrome b5 oxidation-reduction equilibrium: involvement of asparagine-57, serine-64, and heme propionate-7. Biochemistry 29:5500–5508

    CAS  PubMed  Google Scholar 

  629. Guzov VM, Houston HL, Murataliev MB, Walker FA, Feyereisen R (1996) Molecular cloning, overexpression in Escherichia coli, structural and functional characterization of house fly cytochrome b5. J Biol Chem 271:26637–26645

    CAS  PubMed  Google Scholar 

  630. Das A, Grinkova YV, Sligar SG (2007) Redox potential control by drug binding to cytochrome P450 3A4. J Am Chem Soc 129:13778–13779

    PubMed Central  CAS  PubMed  Google Scholar 

  631. Venkateswarlu K, Lamb DC, Kelly DE, Manning NJ, Kelly SL (1998) The N-terminal membrane domain of yeast NADPH-cytochrome P450 (CYP) oxidoreductase is not required for catalytic activity in sterol biosynthesis or in reconstitution of CYP activity. J Biol Chem 273:4492–4496

    CAS  PubMed  Google Scholar 

  632. Lamb DC, Kelly DE, Manning NJ, Kaderbhai MA, Kelly SL (1999) Biodiversity of the P450 catalytic cycle: yeast cytochrome b(5)/NADH cytochrome b(5) reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction. FEBS Lett 462:283–288

    CAS  PubMed  Google Scholar 

  633. Syed K, Kattamuri C, Thompson TB, Yadav JS (2011) Cytochrome b(5) reductase-cytochrome b(5) as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys 509:26–32

    PubMed Central  CAS  PubMed  Google Scholar 

  634. Henderson CJ, McLaughlin LA, Wolf CR (2013) Evidence that cytochrome b5 and cytochrome b5 reductase can act as sole electron donors to the hepatic cytochrome P450 system. Mol Pharmacol 83:1209–1217

    CAS  PubMed  Google Scholar 

  635. Kostanjevecki V, Leys D, Van Driessche G, Meyer TE, Cusanovich MA, Fischer U, Guisez Y, Van Beeumen J (1999) Structure and characterization of Ectothiorhodospira vacuolata cytochrome b(558), a prokaryotic homologue of cytochrome b(5). J Biol Chem 274:35614–35620

    CAS  PubMed  Google Scholar 

  636. Noble MA, Girvan HM, Smith SJ, Smith WE, Murataliev M, Guzov VM, Feyereisen R, Munro AW (2007) Analysis of the interactions of cytochrome b(5) with flavocytochrome P450BM3 and its domains. Drug Metab Rev 39:599–617

    CAS  PubMed  Google Scholar 

  637. Stayton PS, Poulos TL, Sligar SG (1989) Putidaredoxin competitively inhibits cytochrome-b5-cytochrome-P-450CAM association—a proposed molecular-model for a cytochrome-P-450CAM electron-transfer complex. Biochemistry 28:8201–8205

    CAS  PubMed  Google Scholar 

  638. Rui L, Pochapsky SS, Pochapsky TC (2006) Comparison of the complexes formed by cytochrome P450cam with cytochrome b5 and putidaredoxin, two effectors of camphor hydroxylase activity. Biochemistry 45:3887–3897

    PubMed Central  CAS  PubMed  Google Scholar 

  639. Reid EL, Weynberg KD, Love J, Isupov MN, Littlechild JA, Wilson WH, Kelly SL, Lamb DC, Allen MJ (2013) Functional and structural characterisation of a viral cytochrome b5. FEBS Lett 587:3633–3639

    CAS  PubMed  Google Scholar 

  640. Butler CF, Peet C, Mason AE, Voice MW, Leys D, Munro AW (2013) Key mutations alter the cytochrome P450 BM3 conformational landscape and remove inherent substrate bias. J Biol Chem 288:25387–25399

    PubMed Central  CAS  PubMed  Google Scholar 

  641. Zhu S, Wu J, Du G, Zhou J, Chen J (2014) Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli. Appl Environ Microbiol 80:3072–3080

    PubMed Central  PubMed  Google Scholar 

  642. Sligar SG, Cinti DL, Gibson GG, Schenkman JB (1979) Spin state control of the hepatic cytochrome-P450 redox potential. Biochem Biophys Res Commun 90:925–932

    CAS  PubMed  Google Scholar 

  643. Hagen KD, Gillan JM, Im SC, Landefeld S, Mead G, Hiley M, Waskell LA, Hill MG, Udit AK (2013) Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films. J Inorg Biochem 129:30–34

    CAS  PubMed  Google Scholar 

  644. Faulkner KM, Shet MS, Fisher CW, Estabrook RW (1995) Electrocatalytically driven omega-hydroxylation of fatty acids using cytochrome P450 4A1. Proc Natl Acad Sci U S A 92:7705–7709

    PubMed Central  CAS  PubMed  Google Scholar 

  645. Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol 272:44–51

    CAS  PubMed  Google Scholar 

  646. Fantuzzi A, Fairhead M, Gilardi G (2004) Direct electrochemistry of immobilized human cytochrome P450 2E1. J Am Chem Soc 126:5040–5041

    CAS  PubMed  Google Scholar 

  647. Panicco P, Dodhia VR, Fantuzzi A, Gilardi G (2011) Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal Chem 83:2179–2186

    CAS  PubMed  Google Scholar 

  648. Aguey-Zinsou KF, Bernhardt PV, De Voss JJ, Slessor KE (2003) Electrochemistry of P450(cin): new insights into P450 electron transfer. Chem Commun 418–419

    Google Scholar 

  649. Fleming BD, Tian Y, Bell SG, Wong LL, Urlacher V, Hill HAO (2003) Redox properties of cytochrome P450(BM3) measured by direct methods. Eur J Biochem 270:4082–4088

    CAS  PubMed  Google Scholar 

  650. Udit AK, Hindoyan N, Hill MG, Arnold FH, Gray HB (2005) Protein-surfactant film voltammetry of wild-type and mutant cytochrome P450BM3. Inorg Chem 44:4109–4111

    CAS  PubMed  Google Scholar 

  651. Shumyantseva VV, Bulko TV, Kumetsova GP, Lisitsa AV, Ponomarenko EA, Karuzina II, Archakov AI (2007) Electrochemical reduction of sterol-14 alpha-demethylase from Mycobacterium tuberculosis (CYP51B1). Biochemistry-Moscow 72:658–663

    CAS  PubMed  Google Scholar 

  652. Asturias-Arribas L, Alonso-Lomillo MA, Dominguez-Renedo O, Arcos-Martinez MJ (2011) CYP450 biosensors based on screen-printed carbon electrodes for the determination of cocaine. Anal Chim Acta 685:15–20

    CAS  PubMed  Google Scholar 

  653. Wu Y, Liu X, Zhang L, Wang C (2011) An amperometric biosensor based on rat cytochrome P450 1A1 for benzo[a]pyrene determination. Biosens Bioelectron 26:2177–2182

    CAS  PubMed  Google Scholar 

  654. Iwuoha EI, Joseph S, Zhang Z, Smyth MR, Fuhr U, Ortiz de Montellano PR (1998) Drug metabolism biosensors: electrochemical reactivities of cytochrome P450cam immobilised in synthetic vesicular systems. J Pharm Biomed Anal 17:1101–1110

    CAS  PubMed  Google Scholar 

  655. Colas H, Ewen KM, Hannemann F, Bistolas N, Wollenberger U, Bernhardt R, de Oliveira P (2012) Direct and mediated electrochemical response of the cytochrome P450 106A2 from Bacillus megaterium ATCC 13368. Bioelectrochemistry 87:71–77

    CAS  PubMed  Google Scholar 

  656. Cronan JE, Lin S (2011) Synthesis of the α,ω-dicarboxylic acid precursor of biotin by the canonical fatty acid biosynthetic pathway. Curr Opin Chem Biol 15:407–413

    PubMed Central  CAS  PubMed  Google Scholar 

  657. Miller WL, Bose HS (2011) Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 52:2111–2135

    PubMed Central  CAS  PubMed  Google Scholar 

  658. Steffensky M, Li SM, Heide L (2000) Cloning, overexpression, purification of novobiocic acid synthetase from Streptomyces spheroides NCIMB 11891. J Biol Chem 275:21754–21760

    CAS  PubMed  Google Scholar 

  659. Bruntner C, Lauer B, Schwarz W, Mohrle V, Bormann C (1999) Molecular characterization of co-transcribed genes from Streptomyces tendae Tu901 involved in the biosynthesis of the peptidyl moiety of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet 262:102–114

    CAS  PubMed  Google Scholar 

  660. Thompson AM, Reddi AR, Shi X, Goldbeck RA, Moenne-Loccoz P, Gibney BR, Holman TR (2007) Measurement of the heme affinity for yeast Dap1p, and its importance in cellular function. Biochemistry 46:14629–14637

    PubMed Central  CAS  PubMed  Google Scholar 

  661. Ghosh K, Thompson AM, Goldbeck RA, Shi X, Whitman S, Oh E, Zhiwu Z, Vulpe C, Holman TR (2005) Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse Pgrmc1p. Biochemistry 44:16729–16736

    PubMed Central  CAS  PubMed  Google Scholar 

  662. Hand RA, Jia, N, Bard M, Craven RJ (2003) Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. Eukaryot Cell 2:306–317

    PubMed Central  CAS  PubMed  Google Scholar 

  663. Mallory JC, Crudden G, Johnson BL, Mo C, Pierson CA, Bard M, Craven RJ (2005) Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/CYP51p in Saccharomyces cerevisiae. Mol Cell Biol 25:1669–1679

    PubMed Central  CAS  PubMed  Google Scholar 

  664. Szczesna-Skorupa E, Kemper B (2008) Influence of protein-protein interactions on the cellular localization of cytochrome P450. Expert Opin Drug Metab Toxicol 4:123–136

    CAS  PubMed  Google Scholar 

  665. Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339:371–379

    PubMed Central  CAS  PubMed  Google Scholar 

  666. Ruettinger RT, Wen LP, Fulco AJ (1989) Coding nucleotide, 5′ regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264:10987–10995

    CAS  PubMed  Google Scholar 

  667. Ho PP, Fulco AJ (1976) Involvement of a single hydroxylase species in the hydroxylation of palmitate at the omega-1, omega-2 and omega-3 positions by a preparation from Bacillus megaterium. Biochim Biophys Acta 431:249–256

    CAS  PubMed  Google Scholar 

  668. Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  669. Narhi LO, Fulco AJ (1982) Phenobarbital induction of a soluble cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium. J Biol Chem 257:2147–2150

    CAS  PubMed  Google Scholar 

  670. Kille S, Zilly FE, Acevedo JP, Reetz MT (2011) Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 3:738–743

    CAS  PubMed  Google Scholar 

  671. Peters MW, Meinhold P, Glieder A, Arnold FH (2003) Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am Chem Soc 125:13442–13450

    CAS  PubMed  Google Scholar 

  672. Gutierrez A, Lian LY, Wolf CR, Scrutton NS, Roberts GC (2001) Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains. Biochemistry 40:1964–1975

    CAS  PubMed  Google Scholar 

  673. Vermilion JL, Ballou DP, Massey V, Coon MJ (1981) Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase. J Biol Chem 256:266–277

    CAS  PubMed  Google Scholar 

  674. Curley GP, Carr MC, Mayhew SG, Voordouw G (1991) Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (hildenborough). Eur J Biochem 202:1091–1100

    CAS  PubMed  Google Scholar 

  675. Smith WW, Burnett RM, Darling GD, Ludwig ML (1977) Structure of the semiquinone form of flavodoxin from Clostridum mp Extension of 1.8 Å resolution and some comparisons with the oxidized state. J Mol Biol 117:195–225

    CAS  PubMed  Google Scholar 

  676. Simondsen RP, Tollin G (1980) Structure-function relations in flavodoxins. Mol Cell Biochem 33:13–24

    CAS  PubMed  Google Scholar 

  677. Iyanagi T, Anan FK, Imai Y, Mason HS (1978) Studies on the microsomal mixed function oxidase system: redox properties of detergent-solubilized NADPH-cytochrome P-450 reductase. Biochemistry 17:2224–2230

    CAS  PubMed  Google Scholar 

  678. Vermilion JL, Coon MJ (1978) Purified liver microsomal NADPH-cytochrome P-450 reductase. Spectral characterization of oxidation-reduction states. J Biol Chem 253:2694–2704

    CAS  PubMed  Google Scholar 

  679. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL (1999) Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci U S A 96:1863–1868

    PubMed Central  CAS  PubMed  Google Scholar 

  680. Sevrioukova I, Shaffer C, Ballou DP, Peterson JA (1996) Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Biochemistry 35:7058–7068

    CAS  PubMed  Google Scholar 

  681. Haines DC, Sevrioukova IF, Peterson JA (2000) The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution. Biochemistry 39:9419–9429

    CAS  PubMed  Google Scholar 

  682. Scheps D, Malca SH, Richter SM, Marisch K, Nestl BM, Hauer B (2013) Synthesis of omega-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microb Biotechnol 6:694–707

    PubMed Central  CAS  PubMed  Google Scholar 

  683. Helvig C, Capdevila JH (2000) Biochemical characterization of rat P450 2C11 fused to rat or bacterial NADPH-P450 reductase domains. Biochemistry 39:5196–5205

    CAS  PubMed  Google Scholar 

  684. Fuziwara S, Sagami I, Rozhkova E, Craig D, Noble MA, Munro AW, Chapman SK, Shimizu T (2002) Catalytically functional flavocytochrome chimeras of P450BM3 and nitric oxide synthase. J Inorg Biochem 91:515–526

    CAS  PubMed  Google Scholar 

  685. Black SD, Martin ST (1994) Evidence for conformational dynamics and molecular aggregation in cytochrome P450 102 (BM-3). Biochemistry 33:12056–12062

    CAS  PubMed  Google Scholar 

  686. Girvan HM, Dunford AJ, Neeli R, Ekanem IS, Waltham TN, Joyce MG, Leys D, Curtis RA, Williams P, Fisher K et al (2011) Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty acid hydroxylase: implications for the mechanism of electron transfer in the P450 BM3 dimer. Arch Biochem Biophys 507:75–85

    CAS  PubMed  Google Scholar 

  687. Dohr O, Paine MJ, Friedberg T, Roberts GC, Wolf CR (2001) Engineering of a functional human NADH-dependent cytochrome P450 system. Proc Natl Acad Sci U S A 98:81–86

    PubMed Central  CAS  PubMed  Google Scholar 

  688. Siddhanta U, Presta A, Fan B, Wolan D, Rousseau DL, Stuehr DJ (1998) Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer. J Biol Chem 273:18950–18958

    CAS  PubMed  Google Scholar 

  689. Gustafsson MCU, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, von Wachenfeldt C, Munro AW (2004) Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450BM3 from Bacillus megaterium. Biochemistry 43:5474–5487

    CAS  PubMed  Google Scholar 

  690. Dietrich M, Eiben S, Asta C, Do TA, Pleiss J, Urlacher VB (2008) Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 79:931–940

    CAS  PubMed  Google Scholar 

  691. Chowdhary PK, Alemseghed M, Haines DC (2007) Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Arch Biochem Biophys 468:32–43

    CAS  PubMed  Google Scholar 

  692. Choi K-Y, Jung E, Jung D-H, Pandey BP, Yun H, Park H-Y, Kazlauskas RJ, Kim B-G (2012) Cloning, expression and characterization of CYP102D1, a self-sufficient P450 monooxygenase from Streptomyces avermitilis. FEBS J 279:1650–1662

    CAS  PubMed  Google Scholar 

  693. Nakayama N, Takemae, A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119:435–440

    CAS  PubMed  Google Scholar 

  694. Kitazume T, Tanaka A, Takaya N, Nakamura A, Matsuyama S, Suzuki T, Shoun H (2002) Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by an Escherichia coli expression system. Eur J Biochem 269:2075–2082

    CAS  PubMed  Google Scholar 

  695. De Mot R, Parret AHA (2002) A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. Trends Microbiol 10:502–508

    CAS  PubMed  Google Scholar 

  696. Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184:3898–3908

    PubMed Central  CAS  PubMed  Google Scholar 

  697. Correll CC, Batie CJ, Ballou DP, Ludwig ML (1992) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258:1604–1610

    CAS  PubMed  Google Scholar 

  698. Roberts GA, Celik A, Hunter DJB, Ost TWB, White JH, Chapman SK, Turner NJ, Flitsch SL (2003) A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a 2Fe-2S redox center. J Biol Chem 278:48914–48920

    CAS  PubMed  Google Scholar 

  699. Miles JS, Munro AW, Rospendowski BN, Smith WE, McKnight J, Thomson AJ (1992) Domains of the catalytically self-sufficient cytochrome-P-450 BM-3—genetic construction, overexpression, purification and spectroscopic characterization. Biochem J 288:503–509

    PubMed Central  CAS  PubMed  Google Scholar 

  700. Li HY, Darwish K, Poulos TL (1991) Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains. J Biol Chem 266:11909–11914

    CAS  PubMed  Google Scholar 

  701. Ravichandran KG, Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261:731–736

    CAS  PubMed  Google Scholar 

  702. Joyce MG, Ekanem IS, Roitel O, Dunford AJ, Neeli R, Girvan HM, Baker GJ, Curtis RA, Munro AW, Leys D (2012) The crystal structure of the FAD/NADPH-binding domain of flavocytochrome P450 BM3. FEBS J 279:1694–1706

    CAS  PubMed  Google Scholar 

  703. Liu L, Schmid RD, Urlacher VB (2006) Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Appl Microbiol Biotechnol 72:876–882

    CAS  PubMed  Google Scholar 

  704. Liu L, Schmid RD, Urlacher VB (2010) Engineering cytochrome P450 monooxygenase CYP 116B3 for high dealkylation activity. Biotechnol Lett 32:841–845

    CAS  PubMed  Google Scholar 

  705. Robin A, Roberts GA, Kisch J, Sabbadin F, Grogan G, Bruce N, Turner NJ, Flitsch SL (2009) Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chem Commun 2478–2480

    Google Scholar 

  706. Robin A, Kohler V, Jones A, Ali A, Kelly PP, O'Reilly E, Turner NJ, Flitsch SL (2011) Chimeric self-sufficient P450cam-RhFRed biocatalysts with broad substrate scope. Beilstein J Org Chem 7:1494–1498

    PubMed Central  CAS  PubMed  Google Scholar 

  707. Nodate M, Kubota M, Misawa N (2006) Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp NCIMB 9784. Appl Microbiol Biotechnol 71:455–462

    CAS  PubMed  Google Scholar 

  708. Li S, Sherman DH, Podust LM (2007) Structural basis for substrate flexibility and product diversity of cytochrome P450 PikC from Streptomyces venezuelae. Abstracts of Papers. Am Chem Soc 233:624–624

    Google Scholar 

  709. Zhang W, Liu Y, Yan J, Cao S, Bai F, Yang Y, Huang S, Yao L, Anzai Y, Kato F et al (2014) New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners. J Am Chem Soc 136:3640–3646

    PubMed Central  CAS  PubMed  Google Scholar 

  710. Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    PubMed Central  CAS  PubMed  Google Scholar 

  711. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp strain dn22. Appl Environ Microbiol 68:166–172

    PubMed Central  CAS  PubMed  Google Scholar 

  712. Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp strain dn22. Appl Environ Microbiol 69:1347–1351

    PubMed Central  CAS  PubMed  Google Scholar 

  713. Rylott EL, Jackson RG, Sabbadin F, Seth-Smith HM, Edwards J, Chong CS, Strand SE, Grogan G, Bruce NC (2011) The explosive-degrading cytochrome P450 XplA: biochemistry, structural features and prospects for bioremediation. Biochim Biophys Acta 1814:230–236

    CAS  PubMed  Google Scholar 

  714. Seth-Smith HM, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552

    PubMed Central  CAS  PubMed  Google Scholar 

  715. Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192:405–413

    CAS  PubMed  Google Scholar 

  716. Chang FC, Swenson RP (1999) The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Biochemistry 38:7168–7176

    CAS  PubMed  Google Scholar 

  717. Iyanagi T, Xia C, Kim JJ (2012) NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 528:72–89

    PubMed Central  CAS  PubMed  Google Scholar 

  718. Hecker M, Haurand M, Ullrich V, Diczfalusy U, Hammarstrom S (1987) Products, kinetics, and substrate specificity of homogeneous thromboxane synthase from human platelets: development of a novel enzyme assay. Arch Biochem Biophys 254:124–135

    CAS  PubMed  Google Scholar 

  719. Fielding AJ, Brodhun F, Koch C, Pievo R, Denysenkov V, Feussner I, Bennati M (2011) Multifrequency electron paramagnetic resonance characterization of PpoA, a CYP450 fusion protein that catalyzes fatty acid dioxygenation. J Am Chem Soc 133:9052–9062

    CAS  PubMed  Google Scholar 

  720. Hoffmann I, Jerneren F, Oliw EH (2013) Expression of fusion proteins of Aspergillus terreus reveals a novel allene oxide synthase. J Biol Chem 288:11459–11469

    PubMed Central  CAS  PubMed  Google Scholar 

  721. Hoffmann I, Oliw EH (2013) Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum. J Lipid Res 54:3471–3480

    PubMed Central  CAS  PubMed  Google Scholar 

  722. Hansen BG, Mnich E, Nielsen KF, Nielsen JB, Nielsen MT, Mortensen UH, Larsen TO, Patil KR (2012) Involvement of a natural fusion of a cytochrome P450 and a hydrolase in mycophenolic acid biosynthesis. Appl Environ Microbiol 78:4908–4913

    PubMed Central  CAS  PubMed  Google Scholar 

  723. Hedstrom L (2009) Imp dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109:2903–2928

    PubMed Central  CAS  PubMed  Google Scholar 

  724. Hansen BG, Salomonsen B, Nielsen MT, Nielsen JB, Hansen NB, Nielsen KF, Regueira TB, Nielsen J, Patil KR, Mortensen UH (2011) Versatile enzyme expression and characterization system for Aspergillus nidulans, with the Penicillium brevicompactum polyketide synthase gene from the mycophenolic acid gene cluster as a test case. Appl Environ Microbiol 77:3044–3051

    PubMed Central  CAS  PubMed  Google Scholar 

  725. Regueira TB, Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035–3043

    PubMed Central  CAS  PubMed  Google Scholar 

  726. Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623

    PubMed Central  CAS  PubMed  Google Scholar 

  727. Meinhold P, Peters MW, Chen MM, Takahashi K, Arnold FH (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. Chembiochem 6:1765–1768

    CAS  PubMed  Google Scholar 

  728. Coelho PS, Brustad EM, Kannan A, Arnold FH (2013) Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339:307–310

    CAS  PubMed  Google Scholar 

  729. Coelho PS, Wang ZJ, Ener ME, Baril SA, Kannan A, Arnold FH, Brustad EM (2013) A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat Chem Biol 9:485–U433

    PubMed Central  CAS  PubMed  Google Scholar 

  730. Tsotsou GE, Sideri A, Goyal A, Di Nardo G, Gilardi G (2012) Identification of mutant Asp251Gly/Gln307His of cytochrome P450 BM3 for the generation of metabolites of diclofenac, ibuprofen and tolbutamide. Chemistry (Easton) 18:3582–3588

    CAS  Google Scholar 

  731. van Vugt-Lussenburg BMA, Damsten MC, Maasdijk DM, Vermeulen NPE, Commandeur JNM (2006) Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450BM3. Biochem Biophys Res Commun 346:810–818

    CAS  PubMed  Google Scholar 

  732. Brustad EM, Lelyveld VS, Snow CD, Crook N, Jung ST, Martinez FM, Scholl TJ, Jasanoff A, Arnold FH (2012) Structure-guided directed evolution of highly selective P450-based magnetic resonance imaging sensors for dopamine and serotonin. J Mol Biol 422:245–262

    PubMed Central  CAS  PubMed  Google Scholar 

  733. Sasaki M, Tsuchido T, Matsumura Y (2008) Molecular cloning and characterization of cytochrome P450 and ferredoxin genes involved in bisphenol A degradation in Sphingomonas bisphenolicum strain AO1. J Appl Microbiol 105:1158–1169

    CAS  PubMed  Google Scholar 

  734. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863

    PubMed Central  CAS  PubMed  Google Scholar 

  735. Schneider E, Clark DS (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron 39:1–13

    CAS  PubMed  Google Scholar 

  736. Fantuzzi A, Capria E, Mak LH, Dodhia VR, Sadeghi SJ, Collins S, Somers G, Huq E, Gilardi G (2010) An electrochemical microfluidic platform for human P450 drug metabolism profiling. Anal Chem 82:10222–10227

    CAS  PubMed  Google Scholar 

  737. Luthra A, Gregory M, Grinkova YV, Denisov IG, Sligar SG (2013) Nanodiscs in the studies of membrane-bound cytochrome P450 enzymes. Methods Mol Biol 987:115–127

    PubMed Central  CAS  PubMed  Google Scholar 

  738. Mak PJ, Denisov IG, Grinkova YV, Sligar SG, Kincaid JR (2011) Defining CYP3A4 structural responses to substrate binding. Raman spectroscopic studies of a nanodisc-incorporated mammalian cytochrome P450. J Am Chem Soc 133:1357–1366

    PubMed Central  CAS  PubMed  Google Scholar 

  739. Baylon JL, Lenov IL, Sligar SG, Tajkhorshid E (2013) Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc 135:8542–8551

    PubMed Central  CAS  PubMed  Google Scholar 

  740. Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL (2001) Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 39:2431–2438

    PubMed Central  CAS  PubMed  Google Scholar 

  741. Keller NP, Segner S, Bhatnagar D, Adams TH (1995) StcS, a putative P-450 monooxygenase, is required for the conversion of versicolorin-A to sterigmatocystin in Aspergillus nidulans. Appl Environ Microbiol 61:3628–3632

    PubMed Central  CAS  PubMed  Google Scholar 

  742. Noble MA, Miles CS, Reid GA, Chapman SK, Munro AW (1999) Catalytic properties of key active site mutants of flavocytochrome P-450 BM3. Biochem Soc Trans 27:A44–A44

    Google Scholar 

  743. Lee DS, Yamada A, Matsunaga I, Ichihara K, Adachi S, Park SY, Shiro Y (2002) Crystallization and preliminary X-ray diffraction analysis of fatty-acid hydroxylase cytochrome P450BS beta from Bacillus subtilis. Acta Crystallogr D Biol Crystallogr 58:687–689

    PubMed  Google Scholar 

  744. Kirsch DR, Lai MH, Osullivan J (1988) Isolation of the gene for cytochrome-P450L1A1 (lanosterol 14-alpha-demethylase) from Candida albicans. Gene 68:229–237

    CAS  PubMed  Google Scholar 

  745. Park H-G, Han S, Lim Y-R, Eun C-Y, Kim D (2010) Functional expression and characterization of CYP51 from Candida albicans. FASEB J 24

    Google Scholar 

  746. Kim D, Cryle MJ, De Voss JJ, Ortiz de Montellano PR (2007) Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch Biochem Biophys 464:213–220

    PubMed Central  CAS  PubMed  Google Scholar 

  747. Miyazaki Y, Geber A, Miyazaki H, Falconer D, Parkinson T, Hitchcock C, Grimberg B, Nyswaner K, Bennett JE (1999) Cloning, sequencing, expression and allelic sequence diversity of Erg3 (C-5 sterol desaturase gene) in Candida albicans. Gene 236:43–51

    CAS  PubMed  Google Scholar 

  748. Morandini P, Offer J, Traynor D, Nayler O, Neuhaus D, Taylor GW, Kay RR (1995) The proximal pathway of metabolism of the chlorinated signal molecule differentiation-inducing factor-I (dif-1) in the cellular slime-mold Dictyostelium. Biochem J 306:735–743

    PubMed Central  CAS  PubMed  Google Scholar 

  749. Tomura D, Obika K, Fukamizu A, Shoun H (1994) Nitric-oxide reductase cytochrome-P-450 gene, CYP 55, of the fungus Fusarium-oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli. J Biochem 116:88–94

    CAS  PubMed  Google Scholar 

  750. Ma M, Bell SG, Yang W, Hao Y, Rees NH, Bartlam M, Zhou W, Wong L-L, Rao Z (2011) Structural analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444. Chembiochem 12:88–99

    CAS  PubMed  Google Scholar 

  751. Bell SG, Yang W, Yorke JA, Zhou W, Wang H, Harmer J, Copley R, Zhang A, Zhou R, Bartlam M et al (2012) Structure and function of CYP108D1 from Novosphingobium aromaticivorans DSM12444: an aromatic hydrocarbon-binding P450 enzyme. Acta Crystallogr D Biol Crystallogr 68:277–291

    CAS  PubMed  Google Scholar 

  752. El-Sayed AK, Hothersall J, Cooper SM, Stephens E, Simpson TJ, Thomas CM (2003) Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol 10:419–430

    CAS  PubMed  Google Scholar 

  753. Poulos TL, Raag R (1992) Cytochrome P450cam: crystallography, oxygen activation, and electron transfer. FASEB J 6:674–679

    CAS  PubMed  Google Scholar 

  754. Ropp JD, Gunsalus IC, Sligar SG (1993) Cloning and expression of a member of a new cytochrome P-450 family: cytochrome p-450lin (CYP111) from Pseudomonas incognita. J Bacteriol 175:6028–6037

    PubMed Central  CAS  PubMed  Google Scholar 

  755. Ullah AJ, Murray RI, Bhattacharyya PK, Wagner GC, Gunsalus IC (1990) Protein components of a cytochrome P-450 linalool 8-methyl hydroxylase. J Biol Chem 265:1345–1351

    CAS  PubMed  Google Scholar 

  756. Andersen JF, Tatsuta K, Gunji H, Ishiyama T, Hutchinson CR (1993) Substrate specificity of 6-deoxyerythronolide-b hydroxylase, a bacterial cytochrome-P450 of erythromycin-A biosynthesis. Biochemistry 32:1905–1913

    CAS  PubMed  Google Scholar 

  757. Savino C, Montemiglio LC, Sciara G, Miele AE, Kendrew SG, Jemth P, Gianni S, Vallone B (2009) Investigating the structural plasticity of a cytochrome P450 three-dimensional structures of P450 EryK and binding to its physiological substrate. J Biol Chem 284:29170–29179

    PubMed Central  CAS  PubMed  Google Scholar 

  758. Stassi DL, Donadio S, Staver MJ, Katz L (1993) EryK is the Saccharopolyspora erythraea gene responsible for the final hydroxylation step in erythromycin biosynthesis. In: Baltz RH, Hegeman GD, Skatrud PP (eds) Industrial microorganisms: basic and applied molecular genetics. American Society for Microbiology, Washington, DC, pp 280–280

    Google Scholar 

  759. Khatri Y, Hannemann F, Girhard M, Kappl R, Meme A, Ringle M, Janocha S, Leize-Wagner E, Urlacher VB, Bernhardt R (2013) Novel family members of CYP109 from Sorangium cellulosum so ce56 exhibit characteristic biochemical and biophysical properties. Biotechnol Appl Biochem 60:18–29

    CAS  PubMed  Google Scholar 

  760. Khatri Y, Girhard M, Romankiewicz A, Ringle M, Hannemann F, Urlacher VB, Hutter MC, Bernhardt R (2010) Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum so ce56. Appl Microbiol Biotechnol 88:485–495

    CAS  PubMed  Google Scholar 

  761. Nagano S, Li H, Shimizu H, Nishida C, Ogura H, Ortiz de Montellano PR, Poulos TL (2003) Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450EpoK. J Biol Chem 278:44886–44893

    CAS  PubMed  Google Scholar 

  762. Ly TTB, Khatri Y, Zapp J, Hutter MC, Bernhardt R (2012) CYP264B1 from Sorangium cellulosum so ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase. Appl Microbiol Biotechnol 95:123–133

    CAS  PubMed  Google Scholar 

  763. Khatri Y, Hannemann F, Ewen KM, Pistorius D, Perlova O, Kagawa N, Brachmann AO, Mueller R, Bernhardt R (2010) The CYPome of Sorangium cellulosum so ce56 and identification of CYP109D1 as a new fatty acid hydroxylase. Chem Biol 17:1295–1305

    CAS  PubMed  Google Scholar 

  764. Matsunaga I, Yamada M, Kusunose E, Miki T, Ichihara K (1998) Further characterization of hydrogen peroxide dependent fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. J Biochem 124:105–110

    CAS  PubMed  Google Scholar 

  765. Takamatsu S, Xu L-H, Fushinobu S, Shoun H, Komatsu M, Cane DE, Ikeda H (2011) Pentalenic acid is a shunt metabolite in the biosynthesis of the pentalenolactone family of metabolites: hydroxylation of 1-deoxypentalenic acid mediated by CYP105D7 (SAV_7469) of Streptomyces avermitilis. J Antibiot 64:65–71

    PubMed Central  CAS  PubMed  Google Scholar 

  766. Lamb DC, Lei L, Zhao B, Yuan H, Jackson CJ, Warrilow AG, Skaug T, Dyson PJ, Dawson ES, Kelly SL et al (2010) Streptomyces coelicolor A3(2) CYP102 protein, a novel fatty acid hydroxylase encoded as a heme domain without an N-terminal redox partner. Appl Environ Microbiol 76:1975–1980

    PubMed Central  CAS  PubMed  Google Scholar 

  767. Momoi K, Hofmann U, Schmid RD, Urlacher VB (2006) Reconstitution of beta-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase. Biochem Biophys Res Commun 339:331–336

    CAS  PubMed  Google Scholar 

  768. Blasco F, Kauffmann I, Schmid RD (2004) CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol 64:671–674

    CAS  PubMed  Google Scholar 

  769. Schlichting I, Jung C, Schulze H (1997) Crystal structure of cytochrome P-450cam complexed with the (1S)-camphor enantiomer. FEBS Lett 415:253–257

    CAS  PubMed  Google Scholar 

  770. Tripathi S, Li H, Poulos TL (2013) Structural basis for effector control and redox partner recognition in cytochrome P450. Science 340:1227–1230

    CAS  PubMed  Google Scholar 

  771. Haines DC, Tomchick DR, Machius M, Peterson JA (2001) Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40:13456–13465

    CAS  PubMed  Google Scholar 

  772. Kuper J, Wong TS, Roccatano D, Wilmanns M, Schwaneberg U (2007) Understanding a mechanism of organic cosolvent inactivation in heme monooxygenase P450 BM-3. J Am Chem Soc 129:5786–5787

    CAS  PubMed  Google Scholar 

  773. Cupp-Vickery JR, Garcia C, Hofacre A, McGee-Estrada K (2001) Ketoconazole-induced conformational changes in the active site of cytochrome P450EryF. J Mol Biol 311:101–110

    CAS  PubMed  Google Scholar 

  774. Shimizu H, Obayashi E, Gomi Y, Arakawa H, Park SY, Nakamura H, Adachi S, Shoun H, Shiro Y (2000) Proton delivery in NO reduction by fungal nitric-oxide reductase. Cryogenic crystallography, spectroscopy, and kinetics of ferric-NO complexes of wild-type and mutant enzymes. J Biol Chem 275:4816–4826

    CAS  PubMed  Google Scholar 

  775. Lee DS, Park SY, Yamane K, Obayashi E, Hori H, Shiro Y (2001) Structural characterization of n-butyl-isocyanide complexes of cytochromes P450nor and P450cam. Biochemistry 40:2669–2677

    PubMed  Google Scholar 

  776. Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y (2010) Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. J Biol Inorg Chem 15:1331–1339

    CAS  PubMed  Google Scholar 

  777. Madrona Y, Tripathi S, Li H, Poulos TL (2012) Crystal structures of substrate-free and nitrosyl cytochrome P450cin: implications for O2 activation. Biochemistry 51:6623–6631

    CAS  PubMed  Google Scholar 

  778. Bell SG, Yang W, Tan ABH, Zhou R, Johnson EOD, Zhang A, Zhou W, Rao Z, Wong L-L (2012) The crystal structures of 4-methoxybenzoate bound CYP199A2 and CYP199A4: structural changes on substrate binding and the identification of an anion binding site. Dalton Trans 41:8703–8714

    CAS  PubMed  Google Scholar 

  779. Bell SG, Xu F, Forward I, Bartlam M, Rao Z, Wong L-L (2008) Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. J Mol Biol 383:561–574

    CAS  PubMed  Google Scholar 

  780. Yasutake Y, Imoto N, Fujii Y, Fujii T, Arisawa A, Tamura T (2007) Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105). Biochem Biophys Res Commun 361:876–882

    CAS  PubMed  Google Scholar 

  781. Kuehnel K, Ke N, Cryle MJ, Sligar SG, Schuler MA, Schlichting I (2008) Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450CYP120A1. Biochemistry 47:6552–6559

    CAS  Google Scholar 

  782. Montemiglio LC, Gianni S, Vallone B, Savino C (2010) Azole drugs trap cytochrome P450 EryK in alternative conformational states. Biochemistry 49:9199–9206

    CAS  PubMed  Google Scholar 

  783. Batabyal D, Poulos TL (2013) Crystal structures and functional characterization of wild-type CYP101D1 and its active site mutants. Biochemistry 52:8898–8906

    PubMed Central  CAS  PubMed  Google Scholar 

  784. Yasutake Y, Fujii Y, Nishioka T, Cheon W-K, Arisawa A, Tamura T (2010) Structural evidence for enhancement of sequential vitamin D-3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D-3 hydroxylase. J Biol Chem 285:31193–31201

    PubMed Central  CAS  PubMed  Google Scholar 

  785. Pham SQ, Gao P, Li Z (2013) Engineering of recombinant E. coli cells co-expressing P450pyr monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng 110:363–373

    CAS  PubMed  Google Scholar 

  786. Bell SG, Zhou R, Yang W, Tan ABH, Gentleman AS, Wong L-L, Zhou W (2012) Investigation of the substrate range of CYP199A4: modification of the partition between hydroxylation and desaturation activities by substrate and protein engineering. Chem Eur J 18:16677–16688

    CAS  PubMed  Google Scholar 

  787. Gurtler H, Pedersen R, Anthoni U, Christophersen C, Nielsen PH, Wellington EMH, Pedersen C, Bock K (1994) Albaflavenone, a sesquiterpene ketone with a zizaene skeleton produced by a streptomycete with a new rope morphology. J Antibiot 47:434–439

    CAS  PubMed  Google Scholar 

  788. Agarwal R, Singh N (2006) Amphotericin B is still the drug of choice for invasive aspergillosis. Am J Respir Crit Care Med 174:102–102

    PubMed  Google Scholar 

  789. Ashy MA, Khalil A-E-G M, Abou-Zeid A-Z A (1980) Carbomycin a macrolide antibiotic. Zentralblatt fuer Bakteriol 135:541–551

    CAS  Google Scholar 

  790. Arisawa A, Tsunekawa H, Okamura K, Okamoto R (1995) Nucleotide-sequence analysis of the carbomycin biosynthetic genes including the 3-o-acyltransferase gene from Streptomyces thermotolerans. Biosci Biotechnol Biochem 59:582–588

    CAS  PubMed  Google Scholar 

  791. Goto LS, Hokka CO, Lima JF, Prieto T, Araujo APU, Nantes IL, Nascimento OR (2012) Structure and peroxidase activity of ferric Streptomyces clavuligerus orf10-encoded protein P450cla: UV-visible, CD, MCD and EPR spectroscopic characterization. J Braz Chem Soc 23:913–920

    CAS  Google Scholar 

  792. Li RF, Khaleeli N, Townsend CA (2000) Expansion of the clavulanic acid gene cluster: identification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus. J Bacteriol 182:4087–4095

    PubMed Central  CAS  PubMed  Google Scholar 

  793. Reading C, Cole M (1977) Clavulanic acid—beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 11:852–857

    PubMed Central  CAS  PubMed  Google Scholar 

  794. Jaffrezou JP, Levade T, Bettaieb A, Andrieu N, Bezombes C, Maestre N, Vermeersch S, Rousse A, Laurent G (1996) Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J 15:2417–2424

    PubMed Central  CAS  PubMed  Google Scholar 

  795. Walczak RJ, Dickens ML, Priestley ND, Strohl WR (1999) Purification, properties, and characterization of recombinant Streptomyces sp strain C5 DoxA, a cytochrome P-450 catalyzing multiple steps in doxorubicin biosynthesis. J Bacteriol 181:298–304

    PubMed Central  CAS  PubMed  Google Scholar 

  796. Dickens ML, Priestley ND, Strohl WR (1997) In vivo and in vitro bioconversion of epsilon-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK, and DoxA. J Bacteriol 179:2641–2650

    PubMed Central  CAS  PubMed  Google Scholar 

  797. Kataoka T, Yamada A, Bando M, Honma T, Mizoue K, Nagai K (2000) FD-891, a structural analogue of concanamycin-A that does not affect vacuolar acidification or perforin activity, yet potently prevents cytotoxic T-lymphocyte-mediated cytotoxicity through the blockage of conjugate formation. Immunology 100:170–177

    PubMed Central  CAS  PubMed  Google Scholar 

  798. Kong R, Liu X, Su C, Ma C, Qiu R, Tang L (2013) Elucidation of the biosynthetic gene cluster and the post-PKS modification mechanism for fostriecin in Streptomyces pulveraceus. Chem Biol 20:45–54

    PubMed  Google Scholar 

  799. Lauer B, Russwurm R, Schwarz W, Kalmanczhelyi A, Bruntner C, Rosemeier A, Bormann C (2001) Molecular characterization of co-transcribed genes from Streptomyces tendae Tu901 involved in the biosynthesis of the peptidyl moiety and assembly of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet 264:662–673

    CAS  PubMed  Google Scholar 

  800. Struyk AP, Hoette I, Drost G, Waisvisz JM, Van Eek T, Hoogerheide JC (1957) Pimaricin, a new antifungal antibiotic. Antibiot Annu 5:878–885

    PubMed  Google Scholar 

  801. Huang S, Bjornsti MA, Houghton PJ (2003) Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2:222–232

    CAS  PubMed  Google Scholar 

  802. Asamizu S, Igarashi Y, Onaka H (2009) Cytochrome P450 stan forms unusual C-N bond between aglycone and deoxysugar in the staurosporine biosynthesis. 16th International Conference on Cytochrome P450, Proceedings, pp 27–30

    Google Scholar 

  803. Kim D, Nah JH, Choi SS, Shin HS, Sherman DH, Kim ES (2012) Biological activities of an engineered tautomycetin analogue via disruption of tmcR-encoding hydroxylase in Streptomyces sp CK4412. J Ind Microbiol Biotechnol 39:1563–1568

    CAS  PubMed  Google Scholar 

  804. Merson-Davies LA, Cundliffe E (1994) Analysis of five tylosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome. Mol Microbiol 13:349–355

    Google Scholar 

  805. Fouces R, Mellado E, Diez B, Barredo JL (1999) The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology-Uk 145:855–868

    CAS  Google Scholar 

  806. Carlson JC, Fortman JL, Anzai Y, Li S, Burr DA, Sherman DH (2010) Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp 307–9. ChemBioChem 11:564–572

    PubMed Central  CAS  PubMed  Google Scholar 

  807. Betts JC, McLaren A, Lennon MG, Kelly FM, Lukey PT, Blakemore SJ, Duncan K (2003) Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:2903–2913

    PubMed Central  CAS  PubMed  Google Scholar 

  808. Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Young DB, Butcher PD (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138

    CAS  PubMed  Google Scholar 

  809. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330

    CAS  PubMed  Google Scholar 

  810. Murphy DJ, Brown JR (2007) Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 7:84

    PubMed Central  PubMed  Google Scholar 

  811. Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, Bradbury ARM, Chen X (2005) Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 16:396–404

    PubMed Central  CAS  PubMed  Google Scholar 

  812. Dubnau E, Chan J, Mohan VP, Smith I (2005) Responses of Mycobacterium tuberculosis to growth in the mouse lung. Infect Immun 73:3754–3757

    PubMed Central  CAS  PubMed  Google Scholar 

  813. de Souza GA, Leversen NA, Malen H, Wiker HG (2011) Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 75:502–510

    CAS  PubMed  Google Scholar 

  814. Recchi C, Sclavi B, Rauzier J, Gicquel B, Reyrat JM (2003) Mycobacterium tuberculosis Rv1395 is a class III transcriptional regulator of the AraC family involved in cytochrome P450 regulation. J Biol Chem 278:33763–33773

    CAS  PubMed  Google Scholar 

  815. Mehra S, Kaushal D (2009) Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor. J Bacteriol 191:3965–3980

    PubMed Central  CAS  PubMed  Google Scholar 

  816. Schwab U, Rohde KH, Wang Z, Chess PR, Notter RH, Russell DG (2009) Transcriptional responses of Mycobacterium tuberculosis to lung surfactant. Microb Pathog 46:185–193

    PubMed Central  CAS  PubMed  Google Scholar 

  817. Bacon J, Dover LG, Hatch KA, Zhang Y, Gomes JM, Kendall S, Wernisch L, Stoker NG, Butcher PD, Besra GS et al (2007) Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology 153:1435–1444

    PubMed Central  CAS  PubMed  Google Scholar 

  818. McLean KJ, Clift D, Lewis DG, Sabri M, Balding PR, Sutcliffe MJ, Leys D, Munro AW (2006) The preponderance of P450s in the Mycobacterium tuberculosis genome. Trends Microbiol 14:220–228

    CAS  PubMed  Google Scholar 

  819. Driscoll MD, McLean KJ, Cheesman MR, Jowitt TA, Howard M, Carroll P, Parish T, Munro AW (2011) Expression and characterization of Mycobacterium tuberculosis CYP144: common themes and lessons learned in the M. tuberculosis P450 enzyme family. Biochim Biophys Acta 1814:76–87

    CAS  PubMed  Google Scholar 

  820. Scheller U, Zimmer T, Kargel E, Schunck WH (1996) Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4. Arch Biochem Biophys 328:245–254

    CAS  PubMed  Google Scholar 

  821. Huang FC, Peter A, Schwab W (2014) Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from Starmerella bombicola. Appl Environ Microbiol 80:766–776

    PubMed Central  CAS  PubMed  Google Scholar 

  822. Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO (2012) CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J Biol Chem 287:13477–13486

    PubMed Central  CAS  PubMed  Google Scholar 

  823. Takai H, Iwama R, Kobayashi S, Horiuchi H, Fukuda R, Ohta A (2012) Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52. Fungal Genet Biol 49:58–64

    CAS  PubMed  Google Scholar 

  824. Kim D, Cryle MJ, De Voss JJ, Ortiz de Montellano PR (2007) Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch Biochem Biophys 464:213–220

    PubMed Central  CAS  PubMed  Google Scholar 

  825. Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to alpha, omega-dicarboxylic acids. Appl Environ Microbiol 69:5983–5991

    PubMed Central  CAS  PubMed  Google Scholar 

  826. Sumita T, Iida T, Hirata A, Horiuchi H, Takagi M, Ohta A (2002) Peroxisome deficiency represses the expression of n-alkane-inducible Ylalk1 encoding cytochrome p450alk1 in Yarrowia lipolytica. FEMS Microbiol Lett 214:31–38

    CAS  PubMed  Google Scholar 

  827. Korosec B, Sova M, Turk S, Krasevec N, Novak M, Lah L, Stojan J, Podobnik B, Berne S, Zupanec N et al (2014) Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J Appl Microbiol 116:955–966

    CAS  PubMed  Google Scholar 

  828. Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL, Rozman D, Komel R (2008) CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J Med Chem 51:3480–3486

    CAS  PubMed  Google Scholar 

  829. Fraser JA, Davis MA, Hynes MJ (2002) The genes gmdA, encoding an amidase, and bzuA, encoding a cytochrome P450, are required for benzamide utilization in Aspergillus nidulans. Fungal Genet Biol 35:135–146

    CAS  PubMed  Google Scholar 

  830. Matsuzaki F, Wariishi H (2005) Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporzum. Biochem Biophys Res Commun 334:1184–1190

    CAS  PubMed  Google Scholar 

  831. Kaya M, Matsumura K, Higashida K, Hata Y, Kawato A, Abe Y, Akita O, Takaya N, Shoun H (2004) Cloning and enhanced expression of the cytochrome P450nor gene (nicA; CYP55A5) encoding nitric oxide reductase from Aspergillus oryzae. Biosci Biotechnol Biochem 68:2040–2049

    CAS  PubMed  Google Scholar 

  832. Briza P, Kalchhauser H, Pittenauer E, Allmaier G, Breitenbach M (1996) N,N′-bisformyl dityrosine is an in vivo precursor of the yeast ascospore wall. Eur J Biochem 239:124–131

    CAS  PubMed  Google Scholar 

  833. George HL, Hirschi KD, VanEtten HD (1998) Biochemical properties of the products of cytochrome P450 genes (PDA) encoding pisatin demethylase activity in Nectria haematococca. Arch Microbiol 170:147–154

    CAS  PubMed  Google Scholar 

  834. Coleman JJ, Wasmann CC, Usami T, White GJ, Temporini ED, McCluskey K, VanEtten HD (2011) Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum. Mol Plant-Microbe Interact 24:1482–1491

    CAS  PubMed  Google Scholar 

  835. Maloney AP, Vanetten HD (1994) A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome-P450 family. Mol Gen Genet 243:506–514

    CAS  PubMed  Google Scholar 

  836. Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262

    PubMed Central  CAS  PubMed  Google Scholar 

  837. Yu J, Chang PK, Cary JW, Bhatnagar D, Cleveland TE (1997) Avna, a gene encoding a cytochrome P-450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol 63:1349–1356

    PubMed Central  CAS  PubMed  Google Scholar 

  838. Prieto R, Yousibova GL, Woloshuk CP (1996) Identification of aflatoxin biosynthesis genes by genetic complementation in an Aspergillus flavus mutant lacking the aflatoxin gene cluster. Appl Environ Microbiol 62:3567–3571

    PubMed Central  CAS  PubMed  Google Scholar 

  839. Nakamura R, Kondo R, Shen M-H, Ochiai H, Hisamatsu S, Sonoki S (2012) Identification of cytochrome P450 monooxygenase genes from the white-rot fungus Phlebia brevispora. AMB Express 2:8–8

    PubMed Central  PubMed  Google Scholar 

  840. Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RA (2006) Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem 54:2424–2430

    CAS  PubMed  Google Scholar 

  841. Bojja RS, Cerny RL, Proctor RH, Du L (2004) Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. J Agric Food Chem 52:2855–2860

    CAS  PubMed  Google Scholar 

  842. Tudzynski B, Mihlan M, Rojas MC, Linnemannstons P, Gaskin P, Hedden P (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi—Des and P450-3 encode GA(4) desaturase and the 13-hydroxylase, respectively. J Biol Chem 278:28635–28643

    CAS  PubMed  Google Scholar 

  843. Rojas MC, Hedden P, Gaskin P, Tudzynki B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci U S A 98:5838–5843

    PubMed Central  CAS  PubMed  Google Scholar 

  844. Malonek S, Rojas MC, Hedden P, Gaskin P, Hopkins P, Tudzynski B (2005) Functional characterization of two cytochrome P450 monooxygenase genes, P450-1 and P450-4, of the gibberellic acid gene cluster in Fusarium proliferatum (Gibberella fujikuroi mp-D). Appl Environ Microbiol 71:1462–1472

    PubMed Central  CAS  PubMed  Google Scholar 

  845. Kasai N, Ikushiro S-I, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Ohta M, Sakaki T (2009) Enzymatic properties of cytochrome P450 catalyzing 3′-hydroxylation of naringenin from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 387:103–108

    CAS  PubMed  Google Scholar 

  846. Kasai N, Ikushiro S, Hirosue S, Arisawa A, Ichinose H, Uchida Y, Wariishi H, Ohta M, Sakaki T (2010) Atypical kinetics of cytochromes P450 catalysing 3′-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J Biochem 147:117–125

    CAS  PubMed  Google Scholar 

  847. Daiber A, Neese F, Riplinger C, Bill E, Shoun H, Ullrich V (2009) Reaction mechanisms of P450nor. 16th International Conference on Cytochrome P450, Proceedings, pp 107–111

    Google Scholar 

  848. Sakaki T, Sugimoto H, Hayashi K, Yasuda K, Munetsuna E, Kamakura M, Ikushiro S, Shiro Y (2011) Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. Biochim Biophys Acta 1814:249–256

    CAS  PubMed  Google Scholar 

  849. Zhao B, Waterman MR, 2011, Moonlighting cytochrome P450 monooxygenases. IUBMB Life 63:473–477

    PubMed Central  CAS  PubMed  Google Scholar 

  850. Gao Q, Thorson JS (2008) The biosynthetic genes encoding for the production of the dynemicin enediyne core in Micromonospora chersina ATCC53710. FEMS Microbiol Lett 282:105–114

    CAS  PubMed  Google Scholar 

  851. Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191:6584–6591

    PubMed Central  CAS  PubMed  Google Scholar 

  852. Nes WR (1974) Role of sterols in membranes. Lipids 9:596–612

    CAS  PubMed  Google Scholar 

  853. Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399:492–497

    PubMed Central  CAS  PubMed  Google Scholar 

  854. Fulco AJ (1991) P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation. Annu Rev Pharmacol Toxicol 31:177–203

    CAS  PubMed  Google Scholar 

  855. Schewe H, Holtmann D, Schrader J (2009) P450(BM-3)-catalyzed whole-cell biotransformation of alpha-pinene with recombinant Escherichia coli in an aqueous-organic two-phase system. Appl Microbiol Biotechnol 83:849–857

    CAS  PubMed  Google Scholar 

  856. Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    CAS  PubMed  Google Scholar 

  857. Meinhold P, Peters MW, Hartwick A, Hernandez AR, Arnold FH (2006) Engineering cytochrome P450BM3 for terminal alkane hydroxylation. Adv Synth Catal 348:763–772

    CAS  Google Scholar 

  858. Appel D, Lutz-Wahl S, Fischer P, Schwaneberg U, Schmid RD (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J Biotechnol 88:167–171

    CAS  PubMed  Google Scholar 

  859. Munzer DF, Meinhold P, Peters MW, Feichtenhofer S, Griengl H, Arnold FH, Glieder A, de Raadt A (2005) Stereoselective hydroxylation of an achiral cyclopentanecarboxylic acid derivative using engineered P450s BM-3. Chem Commun 2597–2599

    Google Scholar 

  860. Butler CF, Peet C, McLean KJ, Baynham MT, Blankley RT, Fisher K, Rigby SE, Leys D, Voice MW, Munro AW (2014) Human P450-like oxidation of diverse proton pump inhibitor drugs by ‘gatekeeper’ mutants of flavocytochrome P450 BM3. Biochem J 460:247–259

    CAS  PubMed  Google Scholar 

  861. Kubo T, Peters MW, Meinhold P, Arnold FH (2006) Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450BM-3. Chem Eur J 12:1216–1220

    CAS  PubMed  Google Scholar 

  862. Tee KL, Schwaneberg U (2006) A screening system for the directed evolution of epoxygenases: importance of position 184 in P450 BM3 for stereoselective styrene epoxidation. Angew Chem Int Ed Engl 45:5380–5383

    CAS  PubMed  Google Scholar 

  863. Lussenburg BMA, Babel LC, Vermeulen NPE, Commandeur JNM (2005) Evaluation of alkoxyresorufins as fluorescent substrates for cytochrome P450BM3 and site-directed mutants. Anal Biochem 341:148–155

    CAS  PubMed  Google Scholar 

  864. Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplAB. Proc Natl Acad Sci U S A 104:16822–16827

    PubMed Central  CAS  PubMed  Google Scholar 

  865. Filenko N, Spiro S, Browning DF, Squire, D, Overton TW, Cole J, Constantinidou C (2007) The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189:4410–4417

    PubMed Central  CAS  PubMed  Google Scholar 

  866. Sugano Y (2009) Dyp-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403

    CAS  PubMed  Google Scholar 

  867. Wang KC, Ohnuma S (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta 1529:33–48

    CAS  PubMed  Google Scholar 

  868. Breton C, Fournel-Gigleux S, Palcic MM (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22:540–549

    CAS  PubMed  Google Scholar 

  869. Skrzypczak-Jankun E, Jankun J, Al-Senaidy A (2012) Human lipoxygenase: developments in its structure, function, relevance to diseases and challenges in drug development. Curr Med Chem 19:5122–5127

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Munro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McLean, K., Leys, D., Munro, A. (2015). Microbial Cytochromes P450. In: Ortiz de Montellano, P. (eds) Cytochrome P450. Springer, Cham. https://doi.org/10.1007/978-3-319-12108-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12108-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12107-9

  • Online ISBN: 978-3-319-12108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics