Skip to main content

Hormonal Regulation of Liver Cytochrome P450 Enzymes

  • Chapter
  • First Online:
Cytochrome P450

Abstract

Sex differences characterize hepatic expression of specific cytochrome P450 (CYP) enzymes and their associated CYP genes, and underlie the widespread sex differences in drug and xenobiotic metabolism and toxicity seen in animal models and in humans. Sex differences in P450 expression first emerge around puberty, as exemplified by the postnatal developmental expression patterns characterizing the prototypic sex-specific rat P450 enzymes CYP2C11 (male-specific) and CYP2C12 (female-specific). The sex-dependent expression of liver CYPs is primarily determined by sex differences in the temporal patterns of pituitary growth hormone secretion, which confer widespread sex differences in chromatin accessibility, epigenetic marks, and chromatin states. Mechanistic studies have identified an intracellular signaling protein and transcription factor known as signal transducer and activator of transcription 5b (STAT5b) as a major molecular mediator of the action of growth hormone on the sex-dependent transcription of liver CYP genes. Gonadal hormones (testosterone and estrogen) regulate hepatic expression of sex-dependent P450 enzymes primarily by indirect mechanisms, via gonadal hormone effects on the hypothalamic–pituitary axis, which in turn dictate the sex-dependent temporal pattern of pituitary growth hormone secretion. The expression of sex-dependent liver P450 enzymes can also be altered by hormonal perturbation induced by drugs and other xenobiotics, disease states, including diabetes mellitus, liver cirrhosis, and kidney failure, and dietary factors such as vitamin A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CIS:

cytokine-inducible SH2-containing protein

CYP:

cytochrome P450

GH:

growth hormone

GHR:

GH receptor

HNF:

hepatocyte nuclear factor

3MC:

3-methylcholanthrene

MSG:

monosodium glutamate

SOCS:

suppressor of cytokine signaling protein

STAT:

signal transducer and activator of transcription.

References

  1. El Desoky ES, Derendorf H, Klotz U (2006) Variability in response to cardiovascular drugs. Curr Clin Pharmacol 1:35–46

    CAS  PubMed  Google Scholar 

  2. Materson BJ (2007) Variability in response to antihypertensive drugs. Am J Med 120:S10–S20.

    CAS  PubMed  Google Scholar 

  3. Wiechec E, Hansen LL (2009) The effect of genetic variability on drug response in conventional breast cancer treatment. Eur J Pharmacol 625:122–130

    CAS  PubMed  Google Scholar 

  4. Gandhi M, Aweeka F, Greenblatt RM, Blaschke TF (2004) Sex differences in pharmacokinetics and pharmacodynamics. Annu Rev Pharmacol Toxicol 44:499–523

    CAS  PubMed  Google Scholar 

  5. Franconi F, Brunelleschi S, Steardo L, Cuomo V (2007) Gender differences in drug responses. Pharmacol Res 55:81–95

    CAS  PubMed  Google Scholar 

  6. Dahan A, Kest B, Waxman AR, Sarton E (2008) Sex-specific responses to opiates: animal and human studies. Anesth Analg 107:83–95

    CAS  PubMed  Google Scholar 

  7. Soldin OP, Mattison DR (2009) Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 48:143–157

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Nicholas JS, Barron DH (1932) The use of sodium amytal in the production of anesthesia in the rat. J Pharmacol Exp Ther 46:125–129

    CAS  Google Scholar 

  9. Holck HG, Kanan MA, Mills LM, Smith EL (1937) Studies upon the sex-difference in rats in tolerance to certain barbiturates and to nicotine. J Pharmacol Exp Ther 60:323–346

    CAS  Google Scholar 

  10. Kato R, Gillette JR (1965) Sex differences in the effects of abnormal physiological states on the metabolism of drugs by rat liver microsomes. J Pharmacol Exp Ther 150:285–291

    CAS  PubMed  Google Scholar 

  11. Kato R, Takayanaghi M (1966) Differences among the action of phenobarbital, methylcholanthrene and male sex hormone on microsomal drug-metabolizing enzyme systems of rat liver. Jpn J Pharmacol 16:380–390

    CAS  PubMed  Google Scholar 

  12. Davies DS, Gigon PL, Gillette JR (1969) Species and sex differences in electron transport systems in liver microsomes and their relationship to ethylmorphine demethylation. Life Sci 8:85–91

    CAS  PubMed  Google Scholar 

  13. Gurtoo HL, Parker NB (1976) Organ specificity of the sex dependent regulation of aryl hydrocarbon hydroxylase (AHH) in rat. Biochem Biophys Res Commun 72:216–222

    CAS  PubMed  Google Scholar 

  14. Guengerich FP (1987) Enzymology of rat liver cytochromes P450. In: Guengerich FP (ed) Mammalian cytochromes P450. CRC, Boca Raton, pp 1–54

    Google Scholar 

  15. Ryan DE, Levin W (1990) Purification and characterization of hepatic microsomal cytochrome P-450. Pharmacol Ther 45:153–239

    CAS  PubMed  Google Scholar 

  16. Waxman DJ (1988) Interactions of hepatic cytochromes P-450 with steroid hormones. Regioselectivity and stereospecificity of steroid metabolism and hormonal regulation of rat P-450 enzyme expression. Biochem Pharmacol 37:71–84

    CAS  PubMed  Google Scholar 

  17. Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Waxman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76:215–228

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Schwartz JB (2007) The current state of knowledge on age, sex, and their interactions on clinical pharmacology. Clin Pharmacol Ther 82:87–96

    CAS  PubMed  Google Scholar 

  20. Hunt CM, Westerkam WR, Stave GM (1992) Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 44:275–283

    CAS  PubMed  Google Scholar 

  21. Nicolas JM, Espie P, Molimard M (2009) Gender and interindividual variability in pharmacokinetics. Drug Metab Rev 41:408–421

    CAS  PubMed  Google Scholar 

  22. Zhang Y, Klein K, Sugathan A, Nassery N, Dombkowski AA, Zanger UM, Waxman DJ (2011) Transcriptional profiling of huma liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One 6:e23506

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Zaphiropoulos PG, Mode A, Norstedt G, Gustafsson JA (1989) Regulation of sexual differentiation in drug and steroid metabolism. Trends Pharmacol Sci 10:149–153

    CAS  PubMed  Google Scholar 

  24. Waxman DJ (1984) Rat hepatic cytochrome P-450 isoenzyme 2c. Identification as a male-specific, developmentally induced steroid 16α-hydroxylase and comparison to a female-specific cytochrome P-450 isoenzyme. J Biol Chem 259:15481–15490

    CAS  PubMed  Google Scholar 

  25. Morgan ET, MacGeoch C, Gustafsson JA (1985) Hormonal and developmental regulation of expression of the hepatic microsomal steroid 16α-hydroxylase cytochrome P-450 apoprotein in the rat. J Biol Chem 260:11895–11898

    CAS  PubMed  Google Scholar 

  26. Waxman DJ, Dannan GA, Guengerich FP (1985) Regulation of rat hepatic cytochrome P-450: age-dependent expression, hormonal imprinting, and xenobiotic inducibility of sex-specific isoenzymes. Biochemistry 24:4409–4417

    CAS  PubMed  Google Scholar 

  27. MacGeoch C, Morgan ET, Gustafsson JA (1985) Hypothalamo-pituitary regulation of cytochrome P-45015β apoprotein levels in rat liver. Endocrinology 117:2085–2092

    CAS  PubMed  Google Scholar 

  28. Levin W, Thomas PE, Ryan DE, Wood AW (1987) Isozyme specificity of testosterone 7α-hydroxylation in rat hepatic microsomes: is cytochrome P-450a the sole catalyst? Arch Biochem Biophys 258:630–635

    CAS  PubMed  Google Scholar 

  29. Sonderfan AJ, Arlotto MP, Dutton DR, McMillen SK, Parkinson A (1987) Regulation of testosterone hydroxylation by rat liver microsomal cytochrome P-450. Arch Biochem Biophys 255:27–41

    CAS  PubMed  Google Scholar 

  30. Pearce R, Greenway D, Parkinson A (1992) Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: effects on coumarin, dicumarol, and testosterone oxidation. Arch Biochem Biophys 298:211–225

    CAS  PubMed  Google Scholar 

  31. Ryan DE, Dixon R, Evans RH, Ramanathan L, Thomas PE, Wood AW, Levin W (1984) Rat hepatic cytochrome P-450 isozyme specificity for the metabolism of the steroid sulfate, 5α-androstane-3α,17β-diol-3,17-disulfate. Arch Biochem Biophys 233:636–642

    CAS  PubMed  Google Scholar 

  32. Swinney DC, Ryan DE, Thomas PE, Levin W (1987) Regioselective progesterone hydroxylation catalyzed by eleven rat hepatic cytochrome P-450 isozymes. Biochemistry 26:7073–7083

    CAS  PubMed  Google Scholar 

  33. Waxman DJ, Attisano C, Guengerich FP, Lapenson DP (1988) Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6β-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys 263:424–436

    CAS  PubMed  Google Scholar 

  34. Thummel KE, Favreau LV, Mole JE, Schenkman JB (1988) Further characterization of RLM2 and comparison with a related form of cytochrome P450, RLM2b. Arch Biochem Biophys 266:319–333

    CAS  PubMed  Google Scholar 

  35. Waxman DJ, LeBlanc GA, Morrissey JJ, Staunton J, Lapenson DP (1988) Adult male-specific and neonatally programmed rat hepatic P-450 forms RLM2 and 2a are not dependent on pulsatile plasma growth hormone for expression. J Biol Chem 263:11396–11406

    CAS  PubMed  Google Scholar 

  36. Bandiera S, Ryan DE, Levin W, Thomas PE (1986) Age- and sex-related expression of cytochrome P450f and P450g in rat liver. Arch Biochem Biophys 248:658–676

    CAS  PubMed  Google Scholar 

  37. McClellan-Green PD, Linko P, Yeowell HN, Goldstein JA (1989) Hormonal regulation of male-specific rat hepatic cytochrome P-450g (P-450IIC13) by androgens and the pituitary. J Biol Chem 264:18960–18965

    CAS  PubMed  Google Scholar 

  38. Nagata K, Murayama N, Miyata M, Shimada M, Urahashi A, Yamazoe Y, Kato R (1996) Isolation and characterization of a new rat P450 (CYP3A18) cDNA encoding P4506β-2 catalyzing testosterone 6β- and 16a-hydroxylations. Pharmacogenetics 6:103–111

    CAS  PubMed  Google Scholar 

  39. Kawai M, Bandiera SM, Chang TKH., Bellward GD (2000) Growth hormone regulation and developmental expression of rat hepatic CYP3A18, CYP3A9, and CYP3A2. Biochem Pharmacol 59:1277–1287

    CAS  PubMed  Google Scholar 

  40. Gonzalez FJ, Song B-J., Hardwick JP (1986) Pregnenolone 16α-carbonitrile-inducible P-450 gene family: gene conversion and differential regulation. Mol Cell Biol 6:2969–2976

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Yamazoe Y, Shimada M, Murayama N, Yamauchi K, Kato R (1988) Alteration of hepatic drug metabolizing activities and contents of cytochrome P-450 isozymes by neonatal monosodium glutamate treatment. Biochem Pharmacol 37:1687–1691

    CAS  PubMed  Google Scholar 

  42. Gonzalez FJ, Kimura S, Song BJ, Pastewka J, Gelboin HV, Hardwick JP (1986) Sequence of two related P450 mRNAs transcriptionally increase during rat development. An R.dre.1 sequence occupies the complete 3ʹ untranslated region of a liver mRNA. J Biol Chem 261:10667–10672

    CAS  PubMed  Google Scholar 

  43. Leo MA, Iida S, Lieber CS (1984) Retinoic acid metabolism by a system reconstituted with cytochrome P450. Arch Biochem Biophys 234:305–312

    CAS  PubMed  Google Scholar 

  44. Mahnke A, Strotkamp D, Roos PH, Hanstein WG, Chabot GG, Nef P (1997) Expression and inducibility of cytochrome P450 3A9 (CYP3A9) and other members of the CYP3A subfamily in rat liver. Arch Biochem Biophys 337:62–68

    CAS  PubMed  Google Scholar 

  45. Wang H, Napoli KL, Strobel HW (2000) Cytochrome P450 3A9 catalyzes the metabolism of progesterone and other steroid hormones. Mol Cell Biochem 213:127–135

    CAS  PubMed  Google Scholar 

  46. Colby HD (1980) Regulation of hepatic drug and steroid metabolism by androgens and estrogens. Adv Sex Horm Res 4:27–71

    CAS  Google Scholar 

  47. Arlotto MP, Parkinson A (1989) Identification of cytochrome P450a (P450IIA1) as the principal testosterone 7α-hydroxylase in rat liver microsomes and its regulation by thyroid hormones. Arch Biochem Biophys 270:458–471

    CAS  PubMed  Google Scholar 

  48. Yamazoe Y, Ling X, Murayama N, Gong D, Nagata K, Kato R (1990) Modulation of hepatic level of microsomal testosterone 7α-hydroxlase, P450a (P450IIA), by thyroid hormone and growth hormone in rat liver. J Biochem 108:599–603

    CAS  PubMed  Google Scholar 

  49. Dewaziers I, Cugnenc PH, Yang CS, Leroux JP, Beaune PH (1990) Cytochrome P450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J Pharmacol Exp Ther 253:387–394

    CAS  Google Scholar 

  50. Friedberg T, Siegert P, Grassow MA, Bartlomowicz B, Oesch F (1990) Studies on the expression of cytochrome P450IA, P450IIB, and P450IIC gene family in extrahepatic and hepatic tissues. Environ Health Perspect 88:67–70

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Chen GF, Ronis MJJ., Thomas PE, Flint DJ, Badger TM (1997) Hormonal regulation of microsomal cytochrome P450 2C11 in rat liver and kidney. J Pharmacol Exp Ther 283:1486–1494

    CAS  PubMed  Google Scholar 

  52. Kwekel JC, Desai VG, Moland CL, Branham WS, Fuscoe JC (2010) Age and sex dependent changes in liver gene expression during the life cycle of the rat. BMC Genomics 11:675

    PubMed Central  PubMed  Google Scholar 

  53. Conforto TL, Waxman DJ (2012) Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood. Biol Sex Differ 3:9

    PubMed Central  CAS  PubMed  Google Scholar 

  54. DeLaForest A, Nagaoka M, Si-Tayeb K, Noto FK, Konopka G, Battle MA, Duncan CA (2011) HNF4α is essential for specification of hepatic progenitors from human pluripotent stem cells. Development 138:4143–4153

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Bonzo JA, Ferry CH, Matsubara T, Kim JH, Gonzalez FJ (2012) Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J Biol Chem 287:7345–7356

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Holloway MG, Miles GD, Dombkowski AA, Waxman DJ (2008) Liver-specific hepatocyte nuclear factor-4α deficiency: greater impact on gene expression in male than in female mouse liver. Mol Endocrinol 22:1274–1286

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Laz EV, Holloway MG, Chen CS, Waxman DJ (2007) Characterization of three growth hormone-responsive transcription factors preferentially expressed in adult female liver. Endocrinology 148:3327–3337

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Conforto TL, Zhang Y, Sherman J, Waxman DJ (2012) Impact of CUX2 on the female mouse liver transcriptome: activation of female-biased genes and repression of male-biased genes. Mol Cell Biol 32:4611–4627

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Fujita S, Morimoto R, Chiba M, Kitani K, Suzuki T (1989) Evaluation of the involvement of a male specific cytochrome P-450 isozyme in senescence-associated decline of hepatic drug metabolism in male rats. Biochem Pharmacol 38:3925–3931

    CAS  PubMed  Google Scholar 

  60. Robinson RC, Nagata K, Gelboin HV, Rifkind J, Gonzalez FJ, Friedman FK (1990) Developmental regulation of hepatic testosterone hydroxylases: simultaneous activation and repression of constitutively expressed cytochromes P450 in senescent rats. Arch Biochem Biophys 277:42–46

    CAS  PubMed  Google Scholar 

  61. Mori K, Blackshear PE, Lobenhofer EK, Parker JS, Orzech DP, Roycroft JH, Walker KL, Johnson KA, Marsh TA, Irwin RD, Boorman GA (2007) Hepatic transcript levels for gene coding for enzymes associated with xenobiotic metabolism are altered with age. Toxicol Pathol 35:242–251

    CAS  PubMed  Google Scholar 

  62. Wauthier V, Dubois P, Verbeeck RK, Buc Calderon P (2007) Induction of CYP2C12 expression in senescent male rats is well correlated to an increase of HNF3β expression, while the decline of CYP2C11 expression is unlikely due to a decrease of STAT5 activation. Biochem Pharmacol 73:923–933

    CAS  PubMed  Google Scholar 

  63. Yun KU, Oh SJ, Oh JM, Kang KW, Myung CS, Song GY, Kim B, Kim SK (2010) Age-related changes in hepatic expression and activity of cytochrome P450 in male rats. Arch Toxicol 84:939–946

    CAS  PubMed  Google Scholar 

  64. Dhir RN, Dworakowski W, Shapiro BH (2002) Middle-age alterations in the sexually dimorphic plasma growth hormone profiles: involvement of growth hormone releasing factor and effects on cytochrome P450 expression. Drug Metab Dispos 30:141–147

    CAS  PubMed  Google Scholar 

  65. Dannan GA, Guengerich FP, Waxman DJ (1986) Hormonal regulation of rat liver microsomal enzymes. Role of gonadal steroids in programming, maintenance, and suppression of delta4-steroid 5α-reductase, flavin-containing monooxygenase, and sex-specific cytochromes P-450. J Biol Chem 261:10728–10735

    CAS  PubMed  Google Scholar 

  66. Shimada M, Murayama N, Yamazoe Y, Kamataki T, Kato R (1987) Further studies on the persistence of neonatal androgen imprinting on sex-specific cytochrome P-450, testosterone and drug oxidations. Jpn J Pharmacol 45:467–478

    CAS  PubMed  Google Scholar 

  67. Einarsson K, Gustafsson JA, Stenberg A (1973) Neonatal imprinting of liver microsomal hydroxylation and reduction of steroids. J Biol Chem 248:4987–4997

    CAS  PubMed  Google Scholar 

  68. Gustafsson JA, Mode A, Norstedt G, Skett P (1983) Sex steroid induced changes in hepatic enzymes. Ann Rev Physiol 45:51–60

    CAS  Google Scholar 

  69. Bandiera S, Dworschak C (1992) Effects of testosterone and estrogen on hepatic levels of cytochromes P450 2C7 and P450 2C11 in the rat. Arch Biochem Biophys 296:286–295

    CAS  PubMed  Google Scholar 

  70. Cadario BJ, Bellward GD, Bandiera S, Chang TKH., Ko WWW, Lemieux E, Pak RCK (1992) Imprinting of hepatic microsomal cytochrome P-450 enzyme activities and cytochrome P-450IIC11 by peripubertal administration of testosterone in female rats. Mol Pharmacol 41:981–988

    CAS  PubMed  Google Scholar 

  71. Janeczko R, Waxman DJ, LeBlanc GA, Morville A, Adesnik M (1990) Hormonal regulation of levels of the messenger RNA encoding hepatic P450 2c (IIC11), a constitutive male-specific form of cytochrome P450. Mol Endocrinol 4:295–303

    CAS  PubMed  Google Scholar 

  72. Ribeiro V, Lechner MC (1992) Cloning and characterization of a novel CYP3A1 allelic variant: analysis of CYP3A1 and CYP3A2 sex-hormone-dependent expression reveals that the CYP3A2 gene is regulated by testosterone. Arch Biochem Biophys 293:147–152

    CAS  PubMed  Google Scholar 

  73. Chang TKH., Bellward GD (1996) Peripubertal androgen imprinting of rat hepatic cytochrome P450 2C11 and steroid 5α-reductase: pretranslational regulation and impact on microsomal drug activation. J Pharmacol Exp Ther 278:1383–1391

    CAS  PubMed  Google Scholar 

  74. Anderson MD, Bandiera SM, Chang TKH., Bellward GD (1998) Effect of androgen administration during puberty on hepatic CYP2C11, CYP3A, and CYP2A1 expression in adult female rats. Drug Metab Dispos 26:1031–1038

    CAS  PubMed  Google Scholar 

  75. Waxman DJ, Morrissey JJ, LeBlanc GA (1989) Female-predominant rat hepatic P-450 forms j (IIE1) and 3 (IIA1) are under hormonal regulatory controls distinct from those of the sex-specific P-450 forms. Endocrinology 124:2954–2966

    CAS  PubMed  Google Scholar 

  76. Sasamura H, Nagata K, Yamazoe Y, Shimada M, Saruta T, Kato R (1990) Effect of growth hormone on rat hepatic cytochrome P-450f mRNA: a new mode of regulation. Mol Cell Endocrinol 68:53–60

    CAS  PubMed  Google Scholar 

  77. Mode A, Gustafsson JA, Jansson JO, Eden S, Isaksson O (1982) Association between plasma level of growth hormone and sex differentiation of hepatic steroid metabolism in the rat. Endocrinology 111:1692–1697

    CAS  PubMed  Google Scholar 

  78. Jansson JO, Frohman LA (1987) Differential effects of neonatal and adult androgen exposure on the growth hormone secretory pattern in male rats. Endocrinology 120:1551–1557

    CAS  PubMed  Google Scholar 

  79. Jansson JO, Frohman LA (1987) Inhibitory effect of the ovaries on neonatal androgen imprinting of growth hormone secretion in female rats. Endocrinology 121:1417–1423

    CAS  PubMed  Google Scholar 

  80. Jansson JO, Eden S, Isaksson O (1985) Sexual dimorphism in the control of growth hormone secretion. Endocrine Rev 6:128–150

    CAS  Google Scholar 

  81. Kamataki T, Shimada M, Maeda K, Kato R (1985) Pituitary regulation of sex-specific forms of cytochrome P-450 in liver microsomes of rats. Biochem Biophys Res Commun 130:1247–1253

    CAS  PubMed  Google Scholar 

  82. LeBlanc GA, Waxman DJ (1990) Regulation and ligand-binding specificities of two sex-specific bile acid-binding proteins of rat liver cytosol. J Biol Chem 265:5654–5661

    CAS  PubMed  Google Scholar 

  83. Wang H, Strobel HW (1997) Regulation of CYP3A9 gene expression by estrogen and catalytic studies using cytochrome P450 3A9 expressed in Escherichia coli. Arch Biochem Biophys 344:365–372

    CAS  PubMed  Google Scholar 

  84. Kawai M, Bandiera SM, Chang TKH., Poulet FM, Vancutsem PM, Bellward GD (1999) Modulation of hepatic CYP2A1, CYP2C11, and CYP3A9 expression in adult rats by neonatal administration of tamoxifen. Drug Metab Dispos 27:1392–1398

    CAS  PubMed  Google Scholar 

  85. Carlsson L, Eriksson E, Seeman H, Jansson JO (1987) Oestradiol increases baseline growth hormone levels in the male rat: possible direct action on the pituitary. Acta Physiol Scand 129:393–399

    CAS  PubMed  Google Scholar 

  86. Waxman DJ, Pampori NA, Ram PA, Agrawal AK, Shapiro BH (1991) Interpulse interval in circulating growth hormone patterns regulates sexually dimorphic expression of hepatic cytochrome P450. Proc Natl Acad Sci U S A 88:6868–6872

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Chang TKH., Chan MMY., Holsmer SL, Bandiera SM, Bellward GD (1996) Impact of tamoxifen on peripubertal androgen imprinting of rat hepatic cytochrome P450 2C11, cytochrome P450 3A2 and steroid 5α-reductase. Biochem Pharmacol 51:357–368

    CAS  PubMed  Google Scholar 

  88. Ramirez MC, Bourguignon NS, Bonaventura MM, Lux-Lantos V, Libertun C, Becu-Villalobos D (2012) Neonatal xenoestrogen exposure alters growth-hormone-dependent liver proteins and genes in adult female rats. Toxicol Lett 213:325–331

    CAS  PubMed  Google Scholar 

  89. Hanioka N, Jinno H, Nishimura T, Ando M (1998) Suppression of male-specific cytochrome P450 isoforms by bisphenol A in rat liver. Arch Toxicol 72:387–394

    CAS  PubMed  Google Scholar 

  90. Eden S (1979) Age- and sex-related differences in episodic growth hormone secretion in the rat. Endocrinology 105:555–560

    CAS  PubMed  Google Scholar 

  91. Tannenbaum GS, Martin JB (1976) Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology 98:562–570

    CAS  PubMed  Google Scholar 

  92. Tannenbaum GS, Martin JB, Colle E (1976) Ultraradian growth hormone rhythm in the rat: effects of feeding, hyperglycemia, and insulin-induced hypoglycemia. Endocrinology 99:720–727

    CAS  PubMed  Google Scholar 

  93. Macleod JN, Pampori NA, Shapiro BH (1991) Sex differences in the ultradian pattern of plasma growth hormone concentrations in mice. J Endocrinol 131:395–399

    CAS  PubMed  Google Scholar 

  94. Ho KY, Evans WS, Blizzard RM, Veldhuis JD, Merriam GR, Samojlik E, Furlanetto R, Rogol AD, Kaiser DL, Thorner MO (1987) Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 64:51–58

    CAS  PubMed  Google Scholar 

  95. Asplin CM, Faria AC, Carlsen EC, Vaccaro VA, Barr RE, Iranmanesh A, Lee MM, Veldhuis JD, Evans WS (1989) Alterations in the pulsatile mode of growth hormone release in men and women with insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 69:239–245

    CAS  PubMed  Google Scholar 

  96. Winer LM, Shaw MA, Baumann G (1990) Basal plasma growth hormone levels in man: new evidence for rhythmicity of growth hormone secretion. J Clin Endocrinol Metab 70:1678–1686

    CAS  PubMed  Google Scholar 

  97. Pincus SM, Gevers EF, Robinson IC, van den Berg G, Roelfsema F, Hartman ML, Veldhuis JD (1996) Females secrete growth hormone with more process irregularity than males in both humans and rats. Am J Physiol 270:E107–E115

    CAS  PubMed  Google Scholar 

  98. Veldhuis JD (1996) Gender differences in secretory activity of the human somatotropic (growth hormone) axis. Eur J Endocrinol 134:287–295

    CAS  PubMed  Google Scholar 

  99. Kato R, Yamazoe Y, Shimada M, Murayama N, Kamataki T (1986) Effect of growth hormone and ectopic transplantation of pituitary gland on sex-specific forms of cytochrome P-450 and testosterone and drug oxidations in rat liver. J Biochem 100:895–902

    CAS  PubMed  Google Scholar 

  100. Noshiro M, Negishi M (1986) Pretranslational regulation of sex-dependent testosterone hydroxylases by growth hormone in mouse liver. J Biol Chem 261:15923–15927

    CAS  PubMed  Google Scholar 

  101. Sueyoshi T, Yokomori N, Korach KS, Negishi M (1999) Developmental action of estrogen receptor-a feminizes the growth hormone-Stat5b pathway and expression of Cyp2a4 and Cyp2d9 genes in mouse liver. Mol Pharmacol 56:473–477

    CAS  PubMed  Google Scholar 

  102. Waxman DJ (1992) Regulation of liver-specific steroid metabolizing cytochromes P450: cholesterol 7α-hydroxylase, bile acid 6β-hydroxylase, and growth hormone-responsive steroid hormone hydroxylases. J Steroid Biochem Mol Biol 43:1055–1072

    CAS  PubMed  Google Scholar 

  103. Shapiro BH, Agrawal AK, Pampori NA (1995) Gender differences in drug metabolism regulated by growht hormone. Int J Biochem Cell Biol 27:9–20

    CAS  PubMed  Google Scholar 

  104. Redmond GP, Bell JJ, Nichola PS, Perel JM (1980) Effect of growth hormone on human drug metabolism: time course and substrate specificity. Pediatr Pharmacol 1:63–70

    CAS  Google Scholar 

  105. Levitsky LL, Schoeller DA, Lambert GH, Edidin DV (1989) Effect of growth hormone therapy in growth hormone-deficient children on cytochrome P-450-dependent 3-N-demethylation of caffeine as measured by the caffeine 13CO2 breath test. Dev Pharmacol Ther 12:90–95

    CAS  PubMed  Google Scholar 

  106. Cheung NW, Liddle C, Coverdale S, Lou JC, Boyages SC (1996) Growth hormone treatment increases cytochrome P450-mediated antipyrine clearance in man. J Clin Endocrinol Metab 81:1999–2001

    CAS  PubMed  Google Scholar 

  107. Berglund EG, Johannsson G, Beck O, Bengtsson BA, Rane A (2002) Growth hormone replacement therapy induces codeine clearance. Eur J Clin Invest 32:507–512

    CAS  Google Scholar 

  108. Jurgens G, Lange KH, Reuther LO, Rasmussen BB, Brosen K, Christensen HR (2002) Effect of growth hormone on hepatic cytochrome P450 activity in healthy elderly men. Clin Pharmacol Ther 71:162–168

    CAS  PubMed  Google Scholar 

  109. Jaffe CA, Turgeon DK, Lown K, Demott-Friberg R, Watkins PB (2002) Growth hormone secretion pattern is an independent regulator of growth hormone actions in humans. Am J Physiol Endocrinol Metab 283:E1008–E1015

    CAS  PubMed  Google Scholar 

  110. Ram PA, Waxman DJ (1990) Pretranslational control by thyroid hormone of rat liver steroid 5α-reductase and comparison to the thyroid dependence of two growth hormone-regulated CYP2C mRNAs. J Biol Chem 265:19223–19229

    CAS  PubMed  Google Scholar 

  111. Rasmussen E, Ask B, Finnstrom N, Skottner-Lundin A, Rane A (1998) Insulin-like growth factor 1 (IGF-I) effects on sex-specific cytochrome P450 enzymes in normal and hypophysectomized male rats. Biochem Pharmacol 56:459–466

    CAS  PubMed  Google Scholar 

  112. Robertson GR, Farrell GC, Liddle C (1998) Sexually dimorphic expression of rat CYP3A9 and CYP3A18 genes is regulated by growth hormone. Biochem Biophys Res Commun 242:57–60

    CAS  PubMed  Google Scholar 

  113. MacGeoch C, Morgan ET, Cordell B, Gustafsson JA (1987) Growth hormone regulates expression of rat liver cytochrome P-45015β at a pretranslational level. Biochem Biophys Res Commun 143:782–788

    CAS  PubMed  Google Scholar 

  114. Pampori NA, Shapiro BH (1994) Subnormal concentrations in the feminine profile of circulating growth hormone enhance expression of female-specific CYP2C12. Biochem Pharmacol 47:1999–2004

    CAS  PubMed  Google Scholar 

  115. Pampori NA, Shapiro BH (1996) Feminization of hepatic cytochrome P450s by nominal levels of growth hormone in the feminine plasma profile. Mol Pharmacol 50:1148–1156

    CAS  PubMed  Google Scholar 

  116. Pampori NA, Shapiro BH (1999) Gender differences in the responsiveness of the sex-dependent isoforms of hepatic P450 to the feminine plasma growth hormone profile. Endocrinology 140:1245–1254

    CAS  PubMed  Google Scholar 

  117. Yamazoe Y, Murayama N, Shimada M, Yamauchi K, Nagata K, Imaoka S, Funae Y, Kato R (1988) A sex-specific form of cytochrome P-450 catalyzing propoxycoumarin O-depropylation and its identity with testosterone 6β-hydroxylase in untreated rat livers: reconstitution of the activity with microsomal lipids. J Biochem 104:785–790

    CAS  PubMed  Google Scholar 

  118. Waxman DJ, Ram PA, Pampori NA, Shapiro BH (1995) Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate. Mol Pharmacol 48:790–797

    CAS  PubMed  Google Scholar 

  119. Agrawal AK, Shapiro BH (2001) Intrinsic signals in the sexually dimorphic circulating growth hormone profiles of the rat. Mol Cell Endocrinol 173:167–181

    CAS  PubMed  Google Scholar 

  120. Yamazoe Y, Shimada M, Murayama N, Kato R (1987) Suppression of levels of phenobarbital-inducible rat liver cytochrome P-450 by pituitary hormone. J Biol Chem 262:7423–7426

    CAS  PubMed  Google Scholar 

  121. Shapiro BH, Pampori NA, Lapenson DP, Waxman DJ (1994) Growth hormone-dependent and -independent sexually dimorphic regulation of phenobarbital-induced hepatic cytochromes P450 2B1 and 2B2. Arch Biochem Biophys 312:234–239

    CAS  PubMed  Google Scholar 

  122. Sundseth SS, Alberta JA, Waxman DJ (1992) Sex-specific, growth hormone-regulated transcription of the cytochrome P450 2C11 and 2C12 genes. J Biol Chem 267:3907–3914

    CAS  PubMed  Google Scholar 

  123. Wauthier V, Waxman DJ (2008) Sex-specific early growth hormone response genes in rat liver. Mol Endocrinol 22:1962–1974

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Wauthier V, Sugathan A, Meyer RD, Dombkowski AA, Waxman DJ (2010) Intrinsic sex differences in the early growth hormone responsiveness of sex-specific genes in mouse liver. Mol Endocrinol 24:667–678

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Yokoyama Y, Nimura Y, Nagino M, Bland KI, Chaudry IH (2005) Current understanding of gender dimorphism in hepatic pathophysiology. J Surg Res 128:147–156

    CAS  PubMed  Google Scholar 

  126. Tollet P, Enberg B, Mode A (1990) Growth hormone (GH) regulation of cytochrome P-450IIC12, insulin-like growth factor-I (IGF-I), and GH receptor messenger RNA expression in primary rat hepatocytes: a hormonal interplay with insulin, IGF-I, and thyroid hormone. Mol Endocrinol 4:1934–1942

    CAS  PubMed  Google Scholar 

  127. Legraverend C, Mode A, Westin S, Strom A, Eguchi H, Zaphiropoulos PG, Gustafsson JA (1992) Transcriptional regulation of rat P-450 2C gene subfamily members by the sexually dimorphic pattern of growth hormone secretion. Mol Endocrinol 6:259–266

    CAS  PubMed  Google Scholar 

  128. Morishima N, Yoshioka H, Higashi Y, Sogawa K, Fujii-Kuriyama Y (1987) Gene structure of cytochrome P450 (M-1) specifically expressed in male rat liver. Biochemistry 26:8279–8285

    CAS  PubMed  Google Scholar 

  129. Zaphiropoulos PG, Strom A, Robertson JA, Gustafsson JA (1990) Structual and regulatory analysis of the male-specific rat liver cytochrome P-450g: repression by continuous growth hormone administration. Mol Endocrinol 4:53–58

    CAS  PubMed  Google Scholar 

  130. Zhao S, Waxman DJ (1994) Interaction of sex- and growth hormone (GH)-dependent liver nuclear factors with CYP2C12 promoter. FASEB J 8:A1250

    Google Scholar 

  131. Strom A, Eguchi H, Mode A, Tollet P, Stromstedt PE, Gustafsson JA (1994) Characterization of the proximal promoter and two silencer elements in the CYP2C gene expressed in rat liver. DNA Cell Biol 13:805–819

    CAS  PubMed  Google Scholar 

  132. Guzelian PS, Li D, Schuetz EG, Thomas P, Levin W, Mode A, Gustafsson JA (1988) Sex change in cytochrome P-450 phenotype by growth hormone treatment of adult rat hepatocytes maintained in a culture system on matrigel. Proc Natl Acad Sci U S A 85:9783–9787

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Baxter RC, Zaltsman Z (1984) Induction of hepatic receptors for growth hormone (GH) and prolactin by GH infusion is sex independent. Endocrinology 115:2009–2014

    CAS  PubMed  Google Scholar 

  134. Bick T, Hochberg Z, Amit T, Isaksson OG, Jansson JO (1992) Roles of pituitary and continuity of growth hormone (GH) administration in the regulation of hepatic GH receptors, and circulating GH-binding protein and insulin-like growth factor-I. Endocrinology 131:423–429

    CAS  PubMed  Google Scholar 

  135. Shapiro BH, MacLeod JN, Pampori NA, Morrissey JJ, Lapenson DP, Waxman DJ (1989) Signalling elements in the ultradian rhythm of circulating growth hormone regulating expression of sex-dependent forms of hepatic cytochrome P450. Endocrinology 125:2935–2944

    CAS  PubMed  Google Scholar 

  136. Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI (1987) Growth hormone receptor and serum binding proteins: purification, cloning and expression. Nature 330:537–543

    CAS  PubMed  Google Scholar 

  137. Kelly PA, Ali S, Rozakis M, Goujon L, Nagano M, Pellegrini I, Gould D, Djiane J, Edery M, Finidori J, Postel-Vinay MC (1993) The growth hormone/prolactin receptor family. Recent Prog Horm Res 48:123–164

    CAS  PubMed  Google Scholar 

  138. Colosi P, Wong K, Leong SR, Wood WI (1993) Mutational analysis of the intracellular domain of the human growth hormone receptor. J Biol Chem 268:12617–12623

    CAS  PubMed  Google Scholar 

  139. Cunningham BC, Ultsch M, de Vos AM, Mulkerrin MG, Clauser KR, Wells JA (1991) Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254:821–825

    CAS  PubMed  Google Scholar 

  140. De Vos D, Slee PH Th.J., Stevenson D, Briggs RJ (1992) Serum elimination half-life of tamoxifen and its metabolites in patients with advanced breast cancer. Cancer Chemother Pharmacol 31:76–78

    CAS  PubMed  Google Scholar 

  141. Ross RJ, Leung KC, Maamra M, Bennett W, Doyle N, Waters MJ, Ho KK (2001) Binding and functional studies with the growth hormone receptor antagonist, B2036PEG (pegvisomant), reveals effects of peglyation and evidence that it binds to a receptor dimer. J Clin Endocrinol Metab 86:1716–1723

    CAS  PubMed  Google Scholar 

  142. Gent J, van Kerkhof P, Roza M, Bu G, Strous GJ (2002) Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc Natl Acad Sci U S A 99:9858–9863

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Fuh G, Cunningham BC, Fukunaga R, Nagata S, Goeddel DV, Wells JA (1992) Rational design of potent antagonists to the human growth hormone receptor. Science 256:1677–1680

    CAS  PubMed  Google Scholar 

  144. Bick T, Youdim MBH., Hochberg Z (1989) Adaptation of liver membrane somatogenic and lactogenic growth hormone (GH) binding to the spontaneous pulsation of GH secretion in the male rat. Endocrinology 125:1711–1717

    CAS  PubMed  Google Scholar 

  145. Bick T, Youdim MBH., Hochberg Z (1989) The dynamics of somtagenic and lactogenic growth hormone binding: internalization to Golgi fractions in the male rat. Endocrinology 125:1718–1722

    CAS  PubMed  Google Scholar 

  146. Putters J, da Silva Almeida AC, van Kerkhof P, van Rossum AG, Gracanin A, Strous GJ (2011) Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor. PLoS One 6:e14676

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Landsman T, Waxman DJ (2005) Role of the cytokine-induced SH2 domain-containing protein CIS in growth hormone receptor internalization. J Biol Chem 280:37471–37480

    CAS  PubMed  Google Scholar 

  148. van Kerkhof P, Westgeest M, Hassink G, Strous GJ (2011) SCF(TrCP) acts in endosomal sorting of the GH receptor. Exp Cell Res 317:1071–1082

    CAS  PubMed  Google Scholar 

  149. Slotman JA, de Silva Almeida AC, Hassink GC, van de Ven R H, van Kerkhof P, Kuiken HJ, Strous GJ (2012) Ubc13 and COOH terminus of Hsp70-interacting protein (CHIP) are required for growth hormone receptor endocytosis. J Biol Chem 287:15533–15543

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Strous GJ, Gent J (2002) Dimerization, ubiquitylation and endocytosis go together in growth hormone receptor function. FEBS Lett 529:102–109

    CAS  PubMed  Google Scholar 

  151. Strous GJ, van Kerkhof P (2002) The ubiquitin-proteasome pathway and the regulation of growth hormone receptor availability. Mol Cell Endocrinol 197:143–151

    CAS  PubMed  Google Scholar 

  152. Waxman DJ, Frank SJ (2000) Growth hormone action: signaling via a JAK-STAT-coupled receptor. In: Conn PM, Means AR (eds) Principle of molecular regulation. Humana Press, Totowa, pp 55–83

    Google Scholar 

  153. Carter-Su C, Rui L, Herrington J (2000) Role of the tyrosine kinase JAK2 in signal transduction by growth hormone. Pediatr Nephrol 14:550–557

    CAS  PubMed  Google Scholar 

  154. Finidori J (2000) Regulators of growth hormone action. Vitam Horm 59:71–97

    CAS  PubMed  Google Scholar 

  155. Waxman DJ, Ram PA, Park SH, Choi HK (1995) Intermittent plasma growth hormone triggers tyrosine phosphorylation and nuclear translocation of a liver-expressed, Stat5-related DNA binding protein. Proposed role as an intracellular regulator of male-specific liver gene transcription. J Biol Chem 270:13262–13270

    CAS  PubMed  Google Scholar 

  156. Darnell Jr JE (1997) STATs and gene regulation. Science 277:1630–1635

    CAS  PubMed  Google Scholar 

  157. Ram PA, Park SH, Choi HK, Waxman DJ (1996) Growth hormone activation of Stat1, Stat3, and Stat5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem 271:5929–5940

    CAS  PubMed  Google Scholar 

  158. Choi HK, Waxman DJ (2000) Plasma growth hormone pulse activation of hepatic JAK-STAT5 signaling: developmental regulation and role in male-specific liver gene expression. Endocrinology 141:3245–3255

    CAS  PubMed  Google Scholar 

  159. Tannenbaum GS, Choi HK, Gurd W, Waxman DJ (2001) Temporal relationship between the sexually dimorphic spontaneous GH secretory profiles and hepatic STAT5 activity. Endocrinology 142:4599–4606

    CAS  PubMed  Google Scholar 

  160. Choi HK, Waxman DJ (1999) Growth hormone, but not prolactin, maintains low-level activation of STAT5a and STAT5b in female rat liver. Endocrinology 140:5126–5135

    CAS  PubMed  Google Scholar 

  161. Zhang Y, Laz EV, Waxman DJ (2012) Dynamic, sex differential STAT5 and BCL6 binding to sex-biased, growth hormone-regulated genes in adult mouse liver. Mol Cell Biol 32:880–896

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Gebert CA, Park SH, Waxman DJ (1999) Down-regulation of liver JAK2-STAT5b signaling by the female plasma pattern of continuous growth hormone stimulation. Mol Endocrinol 13:213–227

    CAS  PubMed  Google Scholar 

  163. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A 94:7239–7244

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Davey HW, Wilkins RJ, Waxman DJ (1999) STAT5b signaling in sexually dimorphic gene expression and growth pattern. Am J Hum Genet 65:959–965

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Park SH, Liu X, Hennighausen L, Davey HW, Waxman DJ (1999) Distinctive roles of STAT5a and STAT5b in sexual dimorphism of hepatic P450 gene expression. Impact of Stat5a gene disruption. J Biol Chem 274:7421–7430

    CAS  PubMed  Google Scholar 

  166. Clodfelter KH, Miles GD, Wauthier V, Holloway MG, Zhang X, Hodor P, Ray WJ, Waxman DJ (2007) Role of STAT5a in regulation of sex-specific gene expression in female but not male mouse liver revealed by microarray analysis. Physiol Genomics 31:63–74

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Holloway MG, Laz EV, Waxman DJ (2006) Codependence of growth hormone-responsive, sexually dimorphic hepatic gene expression on signal transducer and activator of transcription 5b and hepatic nuclear factor 4α. Mol Endocrinol 20:647–660

    CAS  PubMed  Google Scholar 

  168. Holloway MG, Cui Y, Laz EV, Hosui A, Hennighausen L, Waxman DJ (2007) Loss of sexually dimorphic liver gene expression upon hepatocyte-specific deletion of Stat5a-Stat5b locus. Endocrinology 148:1977–1986

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Grimley PM, Dong F, Rui H (1999) Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev 10:131–157

    CAS  PubMed  Google Scholar 

  170. Davey HW, Park SH, Grattan DR, McLachlan MJ, Waxman DJ (1999) STAT5b-deficient mice are growth hormone pulse-resistant. Role of STAT5b in sex-specific liver P450 expression. J Biol Chem 274:35331–35336

    CAS  PubMed  Google Scholar 

  171. Park SH, Waxman DJ (2001) Inhibitory cross-talk between STAT5b and liver nuclear factor HNF3β. Impact on the regulation of growth hormone pulse-stimulated, male-specific liver cytochrome P-450 gene expression. J Biol Chem 276:43031–43039

    CAS  PubMed  Google Scholar 

  172. Subramanian A, Wang J, Gil G (1998) STAT 5 and NY-F are involved in expression and growth hormone-mediated sexually dimorphic regulation of cytochrome P450 3A10/lithocholic acid 6β-hydroxylase Nucleic Acids Res 26:2173–2178

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Sasaki Y, Takahashi Y, Nakayama K, Kamataki T (1999) Cooperative regulation of CYP2C12 gene expression by STAT5 and liver-specific factors in female rats. J Biol Chem 274:37117–37124

    CAS  PubMed  Google Scholar 

  174. Lahuna O, Rastegar M, Maiter D, Thissen JP, Lemaigre FP, Rousseau GG (2000) Involvement of STAT5 (signal transducer and activator of transcription 5) and HNF-4 (hepatocyte nuclear factor 4) in the transcriptional control of the hnf6 gene by growth hormone. Mol Endocrinol 14:285–294

    CAS  PubMed  Google Scholar 

  175. Delesque-Touchard N, Park SH, Waxman DJ (2000) Synergistic action of hepatocyte nuclear factors 3 and 6 on CYP2C12 gene expression and suppression by growth hormone-activated STAT5b. Proposed model for female-specific expression of CYP2C12 in adult rat liver. J Biol Chem 275:34173–34182

    CAS  PubMed  Google Scholar 

  176. Meyer RD, Laz EV, Su T, Waxman DJ (2009) Male-specific hepatic Bcl6: growth hormone-induced block of transcription elongation in females and binding to target genes inversely coordinated with STAT5. Mol Endocrinol 23:1914–1926

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Ling G, Sugathan A, Mazor T, Fraenkel E, Waxman DJ (2010) Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. Mol Cell Biol 30:5531–5544

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Sugathan A, Waxman DJ (2013) Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol 33:3594–3610

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Gebert CA, Park SH, Waxman DJ (1999) Termination of growth hormone pulse-induced STAT5b signaling. Mol Endocrinol 13:38–56

    CAS  PubMed  Google Scholar 

  180. Adams TE, Hansen JA, Starr R, Nicola NA, Hilton DJ, Billestrup N (1998) Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 273:1285–1287

    CAS  PubMed  Google Scholar 

  181. Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274:35553–35561

    CAS  PubMed  Google Scholar 

  182. Ram PA, Waxman DJ (2000) Role of the cytokine-inducible SH2 protein CIS in desensitization of STAT5b signaling by continuous growth hormone. J Biol Chem 275:39487–39496

    CAS  PubMed  Google Scholar 

  183. Waxman DJ, Ram PA, Notani G, LeBlanc GA, Alberta JA, Morrissey JJ, Sundseth SS (1990) Pituitary regulation of the male-specific steroid 6β-hydroxylase P-450 2a (gene product IIIA2) in adult rat liver. Suppressive influence of growth hormone and thyroxine acting at a pretranslational level. Mol Endocrinol 4:447–454

    CAS  PubMed  Google Scholar 

  184. Ram PA, Waxman DJ (1991) Hepatic P450 expression in hypothyroid rats: differential responsiveness of male-specific P450 forms 2a (IIIA2), 2c (IIC11), and RLM2 (IIA2) to thyroid hormone. Mol Endocrinol 5:13–20

    CAS  PubMed  Google Scholar 

  185. Hochberg Z, Bick T, Harel Z (1990) Alterations of human growth hormone binding by rat liver membranes during hypo- and hyperthyroidism. Endocrinology 126:325–329

    CAS  PubMed  Google Scholar 

  186. Samuels HH, Forman BM, Horowitz ZD, Ye ZS (1988) Regulation of gene expression by thyroid hormone. J Clin Invest 81:957–967

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Kaminsky LS, Guengerich FP (1985) Cytochrome P-450 isozyme/isozyme functional interactions and NADPH-cytochrome P-450 reductase concentrations as factors in microsomal metabolism of warfarin. Eur J Biochem 149:479–489

    CAS  PubMed  Google Scholar 

  188. Miwa GT, West SB, Lu AYH (1978) Studies on the rate-limiting enzyme component in the microsomal monooxygenase system. Incorporation of purified NADPH-cytochrome c reductase and cytochrome P-450 into rat liver microsomes. J Biol Chem 253:1921–1929

    CAS  PubMed  Google Scholar 

  189. Waxman DJ, Morrissey JJ, LeBlanc GA (1989) Hypophysectomy differentially alters P-450 protein levels and enzyme activities in rat liver: pituitary control of hepatic NADPH cytochrome P-450 reductase. Mol Pharmacol 35:519–525

    CAS  PubMed  Google Scholar 

  190. Ram PA, Waxman DJ (1992) Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. J Biol Chem 267:3294–3301

    CAS  PubMed  Google Scholar 

  191. Li HC, Liu D, Waxman DJ (2001) Transcriptional induction of hepatic NDPPH-cytochrome P450 oxidoreductase by thyroid hormone. Mol Pharmacol 59:987–995

    CAS  PubMed  Google Scholar 

  192. Liu D, Waxman DJ (2002) Post-tanscriptional regulation of hepatic NADPH-cytochrome P450 reductase by thyroid hormone: independent effects on poly(A) tail length and mRNA stability. Mol Pharmacol 61:1089–1096

    CAS  PubMed  Google Scholar 

  193. Apletalina EV, Li HC, Waxman DJ (2003) Evaluation of thyoid hormone effect on liver P450 reductase translation. Arch Biochem Biophys 409:172–179

    CAS  PubMed  Google Scholar 

  194. LeBlanc GA, Waxman DJ (1988) Feminization of rat hepatic P-450 expression by cisplatin. J Biol Chem 263:15732–15739

    CAS  PubMed  Google Scholar 

  195. LeBlanc GA, Sundseth SS, Weber GF, Waxman DJ (1992) Platinum anticancer drugs modulate P-450 mRNA levels and differentially alter hepatic drug and steroid hormone metabolism in male and female rats. Cancer Res 52:540–547

    CAS  PubMed  Google Scholar 

  196. Chang TKH., Waxman DJ (1993) Cyclophosphamide modulates rat hepatic cytochrome P450 2C11 and steroid 5α-reductase activity and messenger RNA levels through the combined action of acrolein and phosphoramide mustard. Cancer Res 53:2490–2497

    CAS  PubMed  Google Scholar 

  197. Maines MD, Mayer RD (1985) Inhibition of testicular cytochrome P-450-dependent steroid biosynthesis by cis-platinum. J Biol Chem 260:6063–6068

    CAS  PubMed  Google Scholar 

  198. Maines MD, Sluss PM, Iscan M (1990) cis-Platinum-mediated decrease in serum testosterone is associated with depression of luteinizing hormone receptors and cytochrome P450scc in rat testis. Endocrinology 126:2398–2406

    CAS  PubMed  Google Scholar 

  199. McClure MT, Stupans I (1995) Hormonal perturbation as a possible mechanism for the alteration of cytochrome P450 by cyclophosphamide. Biochem Pharmacol 49:1827–1836

    CAS  PubMed  Google Scholar 

  200. Yeowell HN, Waxman DJ, Wadhera A, Goldstein JA (1987) Suppression of the constitutive, male-specific rat hepatic cytochrome P-450 2c and its mRNA by 3,4,5,3ʹ,4ʹ,5ʹ-hexachlorobiphenyl and 3-methylcholanthrene. Mol Pharmacol 32:340–347

    CAS  PubMed  Google Scholar 

  201. Yeowell HN, Waxman DJ, LeBlanc GA, Linko P, Goldstein JA (1989) Suppression of male-specific cytochrome 2c and its mRNA by 3,4,5,3ʹ,4ʹ,5ʹ-hexachlorobiphenyl in rat liver is not causally related to changes in serum testosterone. Arch Biochem Biophys 271:508–514

    CAS  PubMed  Google Scholar 

  202. Chang TKH., Chen H, Waxman DJ (1994) 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosurea (CCNU) modulates rat liver microsomal cyclophosphamide and ifosphamide activation by suppressing cytochrome P450 2C11 messenger RNA levels. Drug Metab Dispos 22:673–679

    CAS  PubMed  Google Scholar 

  203. Isogai M, Shimada N, Kamataki T, Imaoka S, Funae Y (1993) Changes in the amounts of cytochrome P450 in rat hepatic microsomes produced by cyclosporin A. Xenobiotica 23:799–807

    CAS  PubMed  Google Scholar 

  204. Brunner LJ, Bennett WM, Koop DR (1996) Selective suppression of rat hepatic microsomal activity during chronic cyclosporine nephrotoxicity. J Pharmacol Exp Ther 277:1710–1718

    CAS  PubMed  Google Scholar 

  205. Kraner JC, Morgan ET, Halpert JR (1994) Selective suppression of rat hepatic cytochrome P450 2C11 by chloramphenicol. J Pharmacol Exp Ther 270:1367–1372

    CAS  PubMed  Google Scholar 

  206. Lu SK, Callahan SM, Brunner LJ (2003) Suppression of hepatic CYP3A1/2 and CYP2C11 by cyclosporine is not mediated by altering growth hormone levels. J Pharmacol Exp Ther 305:331–337

    CAS  PubMed  Google Scholar 

  207. Guengerich FP, Dannan GA, Wright ST, Martin MV, Kaminsky LS (1982) Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes from rats treated with phenobarbital or b-naphthoflavone. Biochemistry 21:6019–6030

    CAS  PubMed  Google Scholar 

  208. Shimada M, Murayama N, Yamauchi K, Yamazoe Y, Kato R (1989) Suppression in the expression of a male-specific cytochrome P450, P450 Male: difference in the effect of chemical inducers on P450-Male mRNA and protein in rat livers. Arch Biochem Biophys 270:578–587

    CAS  PubMed  Google Scholar 

  209. Afsar A, Lee C, Riddick DS (1996) Modulation of the expression of constitutive rat hepatic cytochrome P450 isozymes by 5-fluorouracil. Can J Physiol Pharmacol 74:150–156

    CAS  PubMed  Google Scholar 

  210. Zordoky BNM., Anwar-Mohamed A, Aboutabi ME, El-Kadi AO (2011) Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Metab Dispos 39:1440–1450

    CAS  PubMed  Google Scholar 

  211. Vecera R, Zacharova A, Orolin J, Strojil J, Skottova N, Anzenbacher P (2011) Fenofibrate-induced decrease of expression of CYP2C11 and CYP2C6 in rat. Biopharm Drug Dispos 32:482–487

    CAS  PubMed  Google Scholar 

  212. Zacharova A, Siller M, Spicakova A, Anzenbacherova E, Skottova N, Anzenbacher P, Vecera R (2012) Rosuvastatin suppresses the liver microsomal CYP2C11 and CYP2C6 expression in male Wistar rats. Xenobiotica 42:731–736

    CAS  PubMed  Google Scholar 

  213. Haduch A, Wojcikowski J, Daniel WA (2011) Effect of neuroleptics on cytochrome P450 2C11 (CYP2C11) in rat liver. Pharmacol Rep 63:1491–1499

    CAS  PubMed  Google Scholar 

  214. Clarke L, Waxman DJ (1989) Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Res 49:2344–2350

    CAS  PubMed  Google Scholar 

  215. Weber GF, Waxman DJ (1993) Activation of the anti-cancer drug ifosphamide by rat liver microsomal P450 enzymes. Biochem Pharmacol 45:1685–1694

    CAS  PubMed  Google Scholar 

  216. Sladek NE (1988) Metabolism of oxazaphosphorines. Pharmacol Ther 37:301–355

    CAS  PubMed  Google Scholar 

  217. LeBlanc GA, Kantoff PW, Ng SF, Frei III E, Waxman DJ (1992) Hormonal perturbations in patients with testicular cancer treated with cisplatin. Cancer 69:2306–2310

    CAS  PubMed  Google Scholar 

  218. Badger TM, Ronis MJJ., Lumpkin CK, Valentine CR, Shahare M, Irby D, Huang J, Mercado C, Thomas P, Ingelman-Sundberg M, Crouch J (1993) Effects of chronic ethanol on growth hormone secretion and hepatic cytochrome P450 isozymes of the rat. J Pharmacol Exp Ther 264:438–447

    CAS  PubMed  Google Scholar 

  219. Rowlands JC, Wang H, Hakkak R, Ronis MJJ., Strobel HW, Badger TM (2000) Chronic intragastric infusion of ethanol-containing diets induces CYP3A9 while decreasing CYP3A2 in male rats. J Pharmacol Exp Ther 295:747–752

    CAS  PubMed  Google Scholar 

  220. Riddick DS, Lee C, Bhathena A, Timsit YE (2003) The 2001 Veylien Henderson Award of the Society of Toxicology of Canada. Positive and negative transcriptional regulation of cytochromes P450 by polycyclic aromatic hydrocarbons. Can J Physiol Pharmacol 81:59–77

    CAS  PubMed  Google Scholar 

  221. Dannan GA, Guengerich FP, Kaminsky LS, Aust SD (1983) Regulation of cytochrome P-450. Immunochemical quantitation of eight isozymes in liver microsomes of rats treated with polybrominated biphenyl congeners. J Biol Chem 258:1282–1288

    CAS  PubMed  Google Scholar 

  222. Jones EJ, Riddick DS (1996) Regulation of constitutive rat hepatic cytochromes P450 by 3-methylcholanthrene. Xenobiotica 26:995–1012

    CAS  PubMed  Google Scholar 

  223. Caron E, Rioux N, Nicolas O, Lebel-Talbot H, Hamelin BA (2005) Quantification of the expression and inducibility of 12 rat cytochrome P450 isoforms by quantitative RT-PCR. J Biochem Mol Toxicol 19:368–378

    CAS  PubMed  Google Scholar 

  224. Gustafsson JA, Ingelman-Sundberg M (1979) Changes in steroid hormone metabolism in rat liver microsomes following administration of 2,3,7,8-tetrachlorodibenzo-p-dioxine (TCDD). Biochem Pharmacol 28:497–499

    CAS  Google Scholar 

  225. Safa B, Lee C, Riddick DS (1997) Role of the aromatic hydrocarbon receptor in the suppression of cytochrome P450 2C11 by polycyclic aromatic hydrocarbons. Toxicol Lett 90:163–175

    CAS  PubMed  Google Scholar 

  226. Yuan W, Sequeira DJ, Cawley GF, Eyer CS, Backes WL (1997) Time course for the modulation of hepatic cytochrome P450 after administration of ethylbenzene and its correlation with toluene metabolism. Arch Biochem Biophys 339:55–63

    CAS  PubMed  Google Scholar 

  227. Yuan W, Serron SC, Haddican MM, Cawley GF, Eyer CS, Backes WL (1997) Ethylbenzene modulates the expression of different cytochrome P-450 isozymes by discrete multistep processes. Biochim Biophys Acta 1334:361–372

    CAS  PubMed  Google Scholar 

  228. Bergeron RM, Serron SC, Rinehart JJ, Cawley GF, Backes WL (1998) Pituitary component of the aromatic hydrocarbon-mediated expression of CYP2B and CYP2C11. Xenobiotica 28:303–312

    CAS  PubMed  Google Scholar 

  229. Bergeron RM, Desai K, Serron SC, Cawley GF, Eyer CS, Backes WL (1999) Changes in the expression of cytochrome P450s 2E1, 2B1, 2B2, 2E1, and 2C11 in response to daily aromatic hydrocarbon treatment. Toxicol Appl Pharmacol 157:1–8

    CAS  PubMed  Google Scholar 

  230. Serron SC, Zhang S, Bergeron RM, Backes WL (2001) Effect of hypophysectomy and growth hormone replacement on the modulation of P450 expression after treatment with the aromatic hydrocarbon ethylbenzene. Toxicol Appl Pharmacol 172:163–171

    CAS  PubMed  Google Scholar 

  231. Shaban Z, Soliman M, El-Shazly S, El-Bohi K, Abdelazeez A, Kehelo K, Kim HS, Muzandu K, Ishizuka M, Kazusaka A, Fujita S (2005) AhR and PPARα: antagonistic effects on CYP2B and CYP3A, and additive inhibitory effects on CYP2C11. Xenobiotica 35:51–68

    CAS  PubMed  Google Scholar 

  232. Lee C, Riddick DS (2000) Transcriptional suppression of cytochrome P450 2C11 gene expression by 3-methylcholanthrene. Biochem Pharmacol 59:1417–1423

    CAS  PubMed  Google Scholar 

  233. Moore RW, Potter CL, Theobald HM, Robinson JA, Peterson RE (1985) Androgenic deficiency in male rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 79:99–111

    CAS  PubMed  Google Scholar 

  234. Timsit YE, Riddick DS (2000) Interference with growth hormone stimulation of hepatic cytochrome P450 2C11 expression in hypophysectomized male rats by 3-methylcholanthrene. Toxicol Appl Pharmacol 163:105–114

    CAS  PubMed  Google Scholar 

  235. Timsit YE, Riddick DS (2002) Stimulation of hepatic signal transducer and activator of transcription 5b by GH is not altered by 3-methylcholanthrene. Endocrinology 143:3284–3294

    CAS  PubMed  Google Scholar 

  236. Lee C, Hutson JR, Tzau VKF., Riddick DS (2006) Regulation of constitutive mouse hepatic cytochromes P450 and growth hormone signaling components by 3-methylcholanthrene. Drug Metab Dispos 34:1530–1538

    CAS  PubMed  Google Scholar 

  237. Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ (2006) Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (Stat5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol 20:1333–1351

    CAS  PubMed  Google Scholar 

  238. Lee C, Riddick DS (2012) Aryl hydrocarbon receptor-dependence of dioxin’s effects on constitutive mouse hepatic cytochromes P450 and growth hormone signaling components. Can J Physiol Pharmacol 90:1354–1363

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Murray FT, Orth J, Gunsalus G, Weisz J, Li JB, Jefferson LS, Musto NA, Bardin CW (1981) The pituitary-testicular axis in the streptozotocin diabetic male rat: evidence for gonadotroph, Sertoli cell and Leydig cell dysfunction. Int J Androl 4:265–280

    CAS  PubMed  Google Scholar 

  240. Warren BL, Pak R, Finlayson M, Gontovnick L, Sunahara G, Bellward GD (1983) Differential effects of diabetes on microsomal metabolism of various substrates. Comparison of streptozotocin and spontaneously diabetic Wistar rats. Biochem Pharmacol 32:327–335

    CAS  PubMed  Google Scholar 

  241. Skett P, Cochrane RA, Joels LA (1984) The role of androgens in the effect of diabetes mellitus on hepatic drug metabolism in the male rat. Acta Endocrinol 107:506–512

    CAS  PubMed  Google Scholar 

  242. Tannenbaum GS (1981) Growth hormone secretory dynamics in streptozotocin diabetes: evidence of a role for endogenous circulating somatostatin. Endocrinology 108:76–82

    CAS  PubMed  Google Scholar 

  243. Thummel KE, Schenkman JB (1990) Effects of testosterone and growth hormone treatment on hepatic microsomal P450 expression in the diabetic rat. Mol Pharmacol 37:119–129

    CAS  PubMed  Google Scholar 

  244. Ahn CY, Bae SK, Bae SH, Kim T, Jung YS, Kim YC, Lee MG, Shin WG (2009) Pharmacokinetics of oltipraz in diabetic rats with liver cirrhosis. Br J Pharmacol 156:1019–1028

    PubMed Central  CAS  PubMed  Google Scholar 

  245. Shimojo N, Ishizaki T, Imaoka S, Funae Y, Fujii S, Okuda K (1993) Changes in the amounts of cytochrome P450 isozymes and levels of catalytic activities in hepatic and renal microsomes of rats with streptozotocin-induced diabetes. Biochem Pharmacol 46:621–627

    CAS  PubMed  Google Scholar 

  246. Yamazoe Y, Murayama N, Shimada M, Kato R (1989) Thyroid hormone suppression of hepatic levels of phenobarbital-inducible P-450b and P-450e and other neonatal P-450s in hypophysectomized rats. Biochem Biophys Res Commun 160:609–614

    CAS  PubMed  Google Scholar 

  247. Donahue BS, Morgan ET (1990) Effects of vanadate on hepatic cytochrome P-450 expression in streptozotocin-diabetic rats. Drug Metab Dispos 18:519–526

    CAS  PubMed  Google Scholar 

  248. Sindhu RK, Koo JR, Sindhu KK, Ehdaie A, Farmand F, Roberts CK (2006) Differential regulation of hepatic cytochrome P450 monooxygenases in streptozotocin-induced diabetic rats. Free Radic Res 40:921–928

    CAS  PubMed  Google Scholar 

  249. Favreau LV, Malchoff DM, Mole JE, Schenkman JB (1987) Responses to insulin by two forms of rat hepatic microsomal cytochrome P-450 that undergo major (RLM6) and minor (RLM5b) elevations in diabetes. J Biol Chem 262:14319–14326

    CAS  PubMed  Google Scholar 

  250. Bellward GD, Chang T, Rodrigues B, McNeill JH, Maines S, Ryan DE, Levin W, Thomas PE (1988) Hepatic cytochrome P-450j induction in the spontaneously diabetic BB rat. Mol Pharmacol 33:140–143

    CAS  PubMed  Google Scholar 

  251. Dong ZG, Hong JY, Ma QA, Li DC, Bullock J, Gonzalez FJ, Park SS, Gelboin HV, Yang CS (1988) Mechanism of induction of cytochrome P-450ac (P-450j) in chemically induced and spontaneously diabetic rats. Arch Biochem Biophys 263:29–35

    CAS  PubMed  Google Scholar 

  252. Ma Q, Dannan GA, Guengerich FP, Yang CS (1989) Similarities and differences in the regulation of hepatic cytochrome P-450 enzymes by diabetes and fasting in male rats. Biochem Pharmacol 38:3179–3184

    CAS  PubMed  Google Scholar 

  253. Song BJ, Matsunaga T, Hardwick JP, Park SS, Veech RL, Yang CS, Gelboin HV, Gonzalez FJ (1987) Stabilization of cytochrome P450j messenger ribonucleic acid in the diabetic rat. Mol Endocrinol 1:542–547

    CAS  PubMed  Google Scholar 

  254. Yamazoe Y, Murayama N, Shimada M, Yamauchi K, Kato R (1989) Cytochrome P450 in livers of diabetic rats: regulation by growth hormone and insulin. Arch Biochem Biophys 268:567–575

    CAS  PubMed  Google Scholar 

  255. Westin S, Strom A, Gustafsson JA, Zaphiropoulos PG (1990) Growth hormone regulation of the cytochrome P-450IIC subfamily in the rat: inductive, repressive, and transcriptional effects on P-450f (IIC7) and P-450PB1 (IIC6) gene expression. Mol Pharmacol 38:192–197

    CAS  PubMed  Google Scholar 

  256. Donahue BS, Skottner-Lundin A, Morgan ET (1991) Growth hormone-dependent and -independent regulation of cytochrome P-450 isozyme expression in streptozotocin-diabetic rats. Endocrinology 128:2065–2076

    CAS  PubMed  Google Scholar 

  257. Barnett CR, Rudd S, Flatt PR, Ioannides C (1993) Sex differences in the diabetes-induced modulation of rat hepatic cytochrome P450 proteins. Biochem Pharmacol 45:313–319

    CAS  PubMed  Google Scholar 

  258. Barnett CR, Petrides L, Wilson J, Flatt PR, Ioannides C (1992) Induction of rat hepatic mixed-function oxidases by acetone and other physiological ketones: their role in diabetes-induced changes in cytochrome P450 proteins. Xenobiotica 22:1441–1450

    CAS  PubMed  Google Scholar 

  259. Iber H, Li-Masters T, Chen Q, Yu S, Morgan ET (2001) Regulation of hepatic cytochrome P450 2C11 via cAMP: implications for down-regulation in diabetes, fasting, and inflammation. J Pharmacol Exp Ther 297:174–180

    CAS  PubMed  Google Scholar 

  260. Rouer E, Lemoine A, Cresteil T, Rouet P, Leroux JP (1987) Effects of genetically or chemically induced diabetes on imipramine metabolism. Respective involvement of flavin monooxygenase and cytochrome P450-dependent monooxygenases. Drug Metab Dispos 15:524–528

    CAS  PubMed  Google Scholar 

  261. Dixon RL, Hart LG, Fouts JR (1961) The metabolism of drugs by liver microsomes from alloxan-diabetic rats. J Pharmacol Exp Ther 133:7–11

    CAS  PubMed  Google Scholar 

  262. Ioannides C, Bass SL, Ayrton AD, Trinick J, Walker R, Flatt PR (1988) Streptozotocin-induced diabetes modulates the metabolic activation of chemical carcinogens. Chem Biol Interact 68:189–202

    CAS  PubMed  Google Scholar 

  263. Villeneuve JP, Pichette V (2004) Cytochrome P450 and liver diseases. Curr Drug Metab 5:273–282

    CAS  PubMed  Google Scholar 

  264. Murray M, Cantrill E, Mehta I, Farrell GC (1992) Impaired expression of microsomal cytochrome P450 2C11 in choline-deficient rat liver during the development of cirrhosis. J Pharmacol Exp Ther 261:373–380

    CAS  PubMed  Google Scholar 

  265. Murray M, Zaluzny L, Farrell GC (1986) Drug metabolism in cirrhosis. Selective changes in cytochrome P-450 isozymes in the choline-deficient rat model. Biochem Pharmacol 35:1817–1824

    CAS  PubMed  Google Scholar 

  266. Murray M, Zaluzny L, Farrell GC (1987) Impaired androgen 16α-hydroxylation in hepatic microsomes from carbon tetrachloride-cirrhotic male rats. Gastroenterology 93:141–147

    CAS  PubMed  Google Scholar 

  267. Chen J, Murray M, Liddle C, Jiang XM, Farrell GC (1995) Downregulation of male-specific cytochrome P450s 2C11 and 3A2 in bile duct-ligated male rats: importance to reduced hepatic content of cytochrome P450 in cholestasis. Hepatology 22:580–587

    CAS  PubMed  Google Scholar 

  268. Bastien MC, Leblond F, Pichette V, Villeneuve JP (2000) Differential alteration of cytochrome P450 isoenzymes in two experimental models of cirrhosis. Can J Physiol Pharmacol 78:912–919

    CAS  PubMed  Google Scholar 

  269. Yokogawa K, Watanabe M, Takeshita H, Nomura M, Mano Y, Miyamoto K (2004) Serum aminotransferase activity as a predictor of clearance of drugs metabolized by CYP isoforms in rats with acute hepatic failure induced by carbon tetrachloride. Int J Pharm 269:479–489

    CAS  PubMed  Google Scholar 

  270. Su G, Sefton RM, Murray M (1999) Down-regulation of rat hepatic microsomal cytochromes P-450 in microvesicular steatosis induced by orotic acid. J Pharmacol Exp Ther 291:953–959

    CAS  PubMed  Google Scholar 

  271. Zhang WV, Ramzan I, Murray M (2007) Impaired microsomal oxidation of the atypical antipsychotic agent clozapine in hepatic steatosis. J Pharmacol Exp Ther 322:770–777

    CAS  PubMed  Google Scholar 

  272. Naud J, Nolin TD, Leblond FA, Pichette V (2012) Current understanding of drug disposition in kidney disease. J Clin Pharmacol 52:10S–22S

    CAS  PubMed  Google Scholar 

  273. Leber HW, Schutterle G (1972) Oxidative drug metabolism in liver microsomes from uremic rats. Kidney Int 2:152–158

    CAS  PubMed  Google Scholar 

  274. Van Peer AP, Belpaire FM (1977) Hepatic oxidatve drug metabolism in rats with experimental renal failure. Arch Int Pharmacodyn Ther 228:180–183

    CAS  PubMed  Google Scholar 

  275. Moon YJ, Lee AK, Chung HC, Kim EJ, Kim SH, Lee DC, Lee I, Kim SG, Lee MG (2003) Effect of acute renal failure on the pharmacokinetics of chlorzoxazone in rats. Drug Metab Dispos 31:776–784

    CAS  PubMed  Google Scholar 

  276. Masubuchi Y, Kawasaki M, Horie T (2006) Down-regulation of hepatic cytochrome P450 enzymes associated with cisplatin-induced acute renal failure in male rats. Arch Toxicol 80:347–353

    CAS  PubMed  Google Scholar 

  277. Patterson SE, Cohn VH (1984) Hepatic drug metabolism in rats with experimental chronic renal failure. Biochem Pharmacol 33:711–716

    CAS  PubMed  Google Scholar 

  278. Leblond FA, Giroux L, Villeneuve JP, Pichette V (2000) Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab Dispos 28:1317–1320

    CAS  PubMed  Google Scholar 

  279. Leblond FA, Guevin C, Demers C, Pellerin I, Gascon-Barre M, Pichette V (2001) Downregulation of hepatic cytochrome P450 in chronic renal failure. J Am Soc Nephrol 12:326–332

    CAS  PubMed  Google Scholar 

  280. Michaud J, Naud J, Ouimet D, Demers C, Petit JL, Leblond FA, Bonnardeaux A, Gascon-Barre M, Pichette V (2010) Reduced hepatic synthesis of calcidiol in uremia. J Am Soc Nephrol 21:1488–1497

    PubMed Central  CAS  PubMed  Google Scholar 

  281. Velenosi TJ, Fu AYN., Luo S, Wang H, Urquhart BL (2012) Down-regulation of hepatic CYP3A and CYP2C mediated metabolism in rats with moderate chronic kidney disease. Drug Metab Dispos 40:1508–1514

    CAS  PubMed  Google Scholar 

  282. Guevin C, Michaud J, Naud J, Leblond FA, Pichette V (2002) Down-regulation of hepatic cytochrome P450 in chronic renal failure: role of uremic mediators. Br J Pharmacol 137:1039–1046

    PubMed Central  CAS  PubMed  Google Scholar 

  283. Michaud J, Dube P, Naud J, Leblond FA, Desbiens K, Bonnardeaux A, Pichette V (2005) Effects of serum from patients with chronic renal failure on rat hepatic cytochrome P450. Br J Pharmacol 144:1067–1077

    PubMed Central  CAS  PubMed  Google Scholar 

  284. Krieg Jr RJ, Veldhuis JD, Thornhill B.A., Chevalier RL, Gil G (2008) Growth hormone (GH) secretion, GH-dependent gene expression, and sexually dimorphic body growth in young rats with chronic renal failure. Endocrine 33:323–330

    CAS  PubMed  Google Scholar 

  285. Murray M (2007) Role of signalling systems in the effect of dietary factors on the expression of mammalian CYPs. Expert Opin Drug Metab Toxicol 3:185–196

    CAS  PubMed  Google Scholar 

  286. Martini R, Murray M (1994) Suppression of the constitutive microsomal cytochrome P450 2C11 in male rat liver during dietary vitamin A deficiency. Biochem Pharmacol 48:1305–1309

    CAS  PubMed  Google Scholar 

  287. Martini R, Butler AM, Jiang XM, Murray M (1995) Pretranslational down-regulation of cytochrome P450 2C11 in vitamin A-deficient male rat liver: prevention by dietary inclusion of retinoic acid. J Pharmacol Exp Ther 273:427–434

    CAS  PubMed  Google Scholar 

  288. Murray M, Sefton RM, Croft KD, Butler AM (2001) Differential regulation of endobiotic-oxidizing cytochromes P450 in vitamin A-deficient male rat liver. Br J Pharmacol 134:1487–1497

    PubMed Central  CAS  PubMed  Google Scholar 

  289. Murray M, Butler AM (1999) Pretranslational up-regulation of the hepatic microsomal delta4–3-oxosteroid 5-alpha-oxidoreductase in male rat liver by all-trans-retinoic acid. Biochem Pharmacol 58:355–362

    CAS  PubMed  Google Scholar 

  290. Murray M, Butler AM, Agus C (1996) Restoration of cytochrome P450 2C11 in vitamin A-deficient rat liver by exogenous androgen. FASEB J 10:1058–1063

    CAS  PubMed  Google Scholar 

  291. Xu Z, Kawai M, Bandiera SM, Chang TKH (2001) Influence of dietary zinc deficiency during development on hepatic CYP2C11, CYP2C12, CYP3A2, CYP3A9, and CYP3A18 expression in postpubertal male rats. Biochem Pharmacol 62:1283–1291

    CAS  PubMed  Google Scholar 

  292. Manjgaladze M, Chen S, Frame LT, Seng JE, Duffy PH, Feuers RJ, Hart RW, Leakey JEA (1993) Effects of caloric restriction on rodent drug and carcinogen metabolizing enzymes: implications for mutagenesis and cancer. Mutat Res 295:201–222

    CAS  PubMed  Google Scholar 

  293. Cheesman MJ, Reilly PEB (1998) Differential inducibility of specific mRNA corresponding to five CYP3A isoforms in female rat liver by RU486 and food deprivation: comparison with protein abundance and enzyme activities. Biochem Pharmacol 56:473–481

    CAS  PubMed  Google Scholar 

  294. O’Leary P, Boyne P, Flett P, Beilby J, James I (1991) Longitudinal assessment of changes in reproductive hormones during normal pregnancy. Clin Chem 37:667–672

    PubMed  Google Scholar 

  295. He XJ, Ejiri N, Nakayama H, Doi K (2005) Effects of pregnancy on CYPs protein expression in rat liver. Exp Mol Pathol 78:64–70

    CAS  PubMed  Google Scholar 

  296. Dickmann LJ, Tay S, Senn TD, Zhang H, Visone A, Unadkat JD, Hebert MF, Isoherranen N (2008) Changes in maternal liver Cyp2c and Cyp2d expression and activity during rat pregnancy. Biochem Pharmacol 75:1677–1687

    PubMed Central  CAS  PubMed  Google Scholar 

  297. Shuster DL, Bammler TK, Beyer RP, MacDonald JW, Tsai JM, Farin FM, Hebert MF, Thummel KE, Mao Q (2013) Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice. Drug Metab Dispos 41:332–342

    PubMed Central  CAS  PubMed  Google Scholar 

  298. He XJ, Ejiri N, Nakayama H, Doi K (2005) Changes in cytochrome P450 isozymes (CYPs) protein levels during lactation in rat liver. Exp Mol Pathol 79:224–228

    CAS  PubMed  Google Scholar 

  299. Chang TKH., Waxman DJ (2006) Synthetic drugs and natural products as modulators of constitutive androstane receptor (CAR) and pregnane X receptor (PXR). Drug Metab Rev 38:51–73

    CAS  PubMed  Google Scholar 

  300. Elenkov IJ, Wilder RL, Bakalov VK, Link AA, Dimitrov MA, Fisher S, Crane M, Kanik KS, Chrousos GP (2001) IL-12, TNF-a, and hormonal changes during late pregnancy and early postpartum: implications for autoimmune disease activity during these times. J Clin Endocrinol Metab 86:4933–4938

    CAS  PubMed  Google Scholar 

  301. Lof M, Hilakivi-Clarke L, Sandin S, de Assis S, Yu W, Weiderpass E (2009) Dietary fat intake and gestational weight gain in relation to estradiol and progesterone plasma levels during pregnancy: a longitudinal study in Swedish women. BMC Women’s Health 9:10

    PubMed Central  PubMed  Google Scholar 

  302. Koh KH, Jurkovic S, Yang K, Choi SY, Jung JW, Kim KP, Zhang W, Jeong H (2012) Estradiol induces cytochrome P450 2B6 expression at high concentrations: implication in estrogen-mediated gene regulation in pregnancy. Biochem Pharmacol 84:93–103

    PubMed Central  CAS  PubMed  Google Scholar 

  303. Choi SY, Koh KH, Jeong H (2013) Isoform-specific regulation of cytochrome P450 expression by estradiol and progesterone. Drug Metab Dispos 41:263–269

    PubMed Central  CAS  PubMed  Google Scholar 

  304. Dickmann LJ, Isoherranen N (2013) Quantitative prediction of CYP2B6 induction by estradiol during pregnancy: potential explanation for increased methadone clearance during pregnancy. Drug Metab Dispos 41:270–274

    CAS  PubMed  Google Scholar 

  305. Faucette SR, Wang H, Hamilton GA, Jolley SL, Gilbert D, Lindley C, Yan B, Negishi M, LeCluyse EL (2004) Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos 32:348–358

    CAS  PubMed  Google Scholar 

  306. Pond SM, Kreek MJ, Tong TG, Raghunath J, Benowitz NL (1985) Altered methadone pharmacokinetics in methadone-maintained pregnant women. J Pharmacol Exp Ther 233:1–6

    CAS  PubMed  Google Scholar 

  307. Wolff K, Boys A, Rostami-Hodjegan A, Hay A, Raistrick D (2005) Changes to methadone clearance during pregnancy. Eur J Clin Pharmacol 61:763–768

    CAS  PubMed  Google Scholar 

  308. Totah RA, Allen KE, Sheffels P, Whittington D, Thummel K, Kharasch ED (2008) Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology 108:363–374

    CAS  PubMed  Google Scholar 

  309. Nemoto N, Sakurai J (1995) Glucocorticoids and sex hormones as activating or modulating factors for expression of Cyp2b-9 and Cyp2b-10 in the mouse liver and hepatocytes. Arch Biochem Biophys 319:286–292

    CAS  PubMed  Google Scholar 

  310. Kawamoto T, Kakizaki S, Yoshinari K, Negishi M (2000) Estrogen activation of the nuclear orphan receptor CAR (constitutive androstane receptor) in induction of the mouse Cyp2b10 gene. Mol Endocrinol 14:1897–1905

    CAS  PubMed  Google Scholar 

  311. Yamada H, Gohyama N, Honda S, Hara T, Harada N, Oguri K (2002) Estrogen-dependent regulation of the expression of hepatic Cyp2b and 3a isoforms: assessment using aromatase-deficient mice. Toxicol Appl Pharmacol 180:1–10

    CAS  PubMed  Google Scholar 

  312. Makinen J, Reinisalo M, Niemi K, Viitala P, Jyrkkarinne J, Chung H, Pelkonen O, Honkakoski P (2003) Dual action of oestrogens on the mouse constitutive androstane receptor. Biochem J 376:465–472

    PubMed Central  PubMed  Google Scholar 

  313. Ueda A, Kakizaki S, Negishi M, Sueyoshi T (2002) Residue threonine 350 confers steroid hormone responsiveness to the mouse nuclear orphan receptor CAR. Mol Pharmacol 61:1284–1288

    CAS  PubMed  Google Scholar 

  314. Dempsey D, Jacob III P, Benowitz NL (2002) Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther 301:594–598

    CAS  PubMed  Google Scholar 

  315. Messina ES, Tyndale RF, Sellers EM (1997) A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther 282:1608–1614

    CAS  PubMed  Google Scholar 

  316. Blumberg B, Sabbagh Jr W, Juguilon H, Bolado Jr J, van Meter CM, Ong ES, Evans RM (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 12:3195–3205

    PubMed Central  CAS  PubMed  Google Scholar 

  317. Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Backman M, Ohlsson R, Postlind H, Blomquist P, Berkenstam A (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci U S A 95:12208–12213

    PubMed Central  CAS  PubMed  Google Scholar 

  318. Xue Y, Moore LB, Orans J, Peng L, Bencharit S, Kliewer SA, Redinbo MR (2007) Crystal structure of the pregnane X receptor-estradiol complex provides insight into endobiotic recognition. Mol Endocrinol 21:1028–1038

    CAS  PubMed  Google Scholar 

  319. Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023

    PubMed Central  CAS  PubMed  Google Scholar 

  320. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, Lehmann JM, Negishi M (2002) Diverse role of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol 61:1–6

    CAS  PubMed  Google Scholar 

  321. Masuyama H, Hiramatsu Y (2011) Potential role of estradiol and progesterone in insulin resistance through constitutive androstane receptor. J Mol Endocrinol 47:229–239

    CAS  PubMed  Google Scholar 

  322. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    CAS  PubMed  Google Scholar 

  323. McClellan-Green P, Waxman DJ, Caveness M, Goldstein JA (1987) Phenotypic differences in expression of cytochrome P-450 g but not its mRNA in outbred male Sprague-Dawley rats. Arch Biochem Biophys 253:13–25

    CAS  PubMed  Google Scholar 

  324. Shapiro BH, Pampori NA, Ram PA, Waxman DJ (1993) Irreversible suppression of growth hormone-dependent cytochrome P450 2C11 in adult rats neonatally treated with monosodium glutamate. J Pharmacol Exp Ther 265:979–984

    CAS  PubMed  Google Scholar 

  325. Pampori NA, Shapiro BH (1994) Over-expression of CYP2C11, the major male-specific form of hepatic cytochrome P450, in the presence of nominal pulses of circulating growth hormone in adult male rats neonatally exposed to low levels of monosodium glutamate. J Pharmacol Exp Ther 271:1067–1073

    CAS  PubMed  Google Scholar 

  326. Pampori NA, Shapiro BH (2000) Nominal growth hormone pulses in otherwise normal masculine plasma profiles induce intron retention of overexpressed hepatic CYP2C11 with associated nuclear splicing deficiency. Endocrinology 141:4100–4106

    CAS  PubMed  Google Scholar 

  327. Agrawal AK, Shapiro BH (2000) Differential expression of gender-dependent hepatic isoforms of cytochrome P-450 by pulse signals in the circulating masculine episodic growth hormone profile of the rat. J Pharmacol Exp Ther 292:228–237

    CAS  PubMed  Google Scholar 

  328. Pampori NA, Agrawal AK, Shapiro BH (2001) Infusion of gender-dependent plasma growth hormone profiles into intact rats: effects of subcutaneous, intraperitoneal, and intravenous routes of rat and human growth hormone on endogenous circulating growth hormone profiles and expression of sexually dimorphic hepatic CYP isoforms. Drug Metab Dispos 29:8–16

    CAS  PubMed  Google Scholar 

  329. Waxman DJ, Morrissey JJ, MacLeod JN, Shapiro BH (1990) Depletion of serum growth hormone in adult female rats by neonatal monosodium glutamate treatment without loss of female-specific hepatic enzymes P450 2d (IIC12) and steroid 5a-reductase. Endocrinology 126:712–720

    CAS  PubMed  Google Scholar 

  330. Clark RG, Carlsson LMS., Robinson ICAF (1987) Growth hormone secretory profiles in conscious female rats. J Endocrinol 114:399–407

    CAS  PubMed  Google Scholar 

  331. Jaffe CA, Ocampo-Lim B, Guo W, Krueger K, Sugahara I, Demott-Friberg R, Bermann M, Barkan AL (1998) Regulatory mechanisms of growth hormone secretion are sexually dimorphic. J Clin Invest 102:153–164

    PubMed Central  CAS  PubMed  Google Scholar 

  332. Waxman DJ, O’Connor C (2006) Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol 20:2613–2629

    CAS  PubMed  Google Scholar 

  333. Waxman DJ, Chang TKH. Hormonal regulation of liver cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed). Cytochrome P450, DOI 10.1007/978-3-319-12108-6_11. Springer International Publishing Switzerland 2015.

    Google Scholar 

Download references

Acknowledgment

Studies carried out in the laboratory of DJW were supported in part by National Institutes of Health grant DK33765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Waxman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waxman, D., Chang, T. (2015). Hormonal Regulation of Liver Cytochrome P450 Enzymes. In: Ortiz de Montellano, P. (eds) Cytochrome P450. Springer, Cham. https://doi.org/10.1007/978-3-319-12108-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12108-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12107-9

  • Online ISBN: 978-3-319-12108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics