Skip to main content

Structures of Cytochrome P450 Enzymes

  • Chapter
  • First Online:
Cytochrome P450

Abstract

The protein database has >  450 entries with P450 in the title and of these there are approximately 54 unique structures. Although this sample of unique structures is small relative to the large number of P450s in Nature, it now is clear that the overall P450-fold is highly conserved and restricted to P450s and a small handful of other heme–thiolate enzymes. These crystal structures exhibit adaptations that underlie interactions with specific protein partners and in eukaryotes contribute to membrane binding. A handful of structures now have been solved in both the substrate-free open and substrate-bound closed states, and, while the details may differ among P450s, the open/close motion is very similar and involves the same elements of secondary structure. While the open form is more flexible, and thus may sample a number of isoenergetic conformations, highly specific P450s have only one unique substrate-bound conformation. In sharp contrast, for drug-metabolizing P450s, those regions most important for the open/close equilibrium also can adapt to substrates of different sizes, shapes, and chemical properties and is a unique design feature of these nonspecific P450s. Critical to understanding precisely how and which regions are most adaptable in drug-metabolizing P450s are the increasing number of ligand-bound structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130

    CAS  PubMed  Google Scholar 

  2. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700

    Article  CAS  PubMed  Google Scholar 

  3. Ravichandran KG, Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261:731–736

    Article  CAS  PubMed  Google Scholar 

  4. Shimizu H, Park SY, Shiro Y, Adachi S (2002) X-ray structure of nitric oxide reductase (cytochrome P450nor) at atomic resolution. Acta Crystallogr D Biol Crystallogr 58:81–89

    Article  PubMed  CAS  Google Scholar 

  5. Shoun H, Sudo Y, Seto Y, Beppu T (1983) Purification and properties of a cytochrome P-450 of a fungus, Fusarium oxysporum. J Biochem 94:1219–1229

    CAS  PubMed  Google Scholar 

  6. Chiang CW, Yeh HC, Wang LH, Chan NL (2006) Crystal structure of the human prostacyclin synthase. J Mol Biol 364:266–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hecker M, Ullrich V (1989) On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem 264:141–150

    CAS  PubMed  Google Scholar 

  8. Li L, Chang Z, Pan Z, Fu ZQ, Wang X (2008) Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci U S A 105:13883–13888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brash AR (2009) Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 70:1522–1531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Song WC, Brash AR (1991) Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science 253:781–784

    Article  CAS  PubMed  Google Scholar 

  11. Lee DS, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–368

    Article  CAS  PubMed  Google Scholar 

  12. Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem 278:9761–9767

    Article  CAS  PubMed  Google Scholar 

  13. Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SEJ, Nelson DR, Potts D, Baynham MT, Parker DA, Leys D, Munro AW (2014) Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem 289:6535–6550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure 3:1367–1377

    Article  CAS  PubMed  Google Scholar 

  15. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279:2121–2126

    Article  CAS  PubMed  Google Scholar 

  16. Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK, Weber PC (1999) Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol 6:233–242

    Article  CAS  PubMed  Google Scholar 

  17. Raman CS, Li H, Martasek P, Kral V, Masters BS, Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95:939–950

    Article  CAS  PubMed  Google Scholar 

  18. Adman E, Watenpaugh KD, Jensen LH (1975) NH—S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. Proc Natl Acad Sci U S A 72:4854–4858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ueyama N, Nishikawa N, Yamada Y, Okamura T, Nakamura A (1996) Cytochrome P-450 model (porphinato)(thiolatio)iron(III) complexes with and double NH-S hydrogen bonds. J Am Chem Soc 118:1286–1287

    Article  Google Scholar 

  20. Ueyama N, Terakawa T, Nakata M, Nakamura A (1983) Positive shift of redox potential of [Fe2S4(Z-cys-Gly-Ala-OMe)4]2− in dichloromethane. J Am Chem Soc 105:7098–7102

    Article  CAS  Google Scholar 

  21. Poulos TL, Finzel BC (1984) Heme enzyme structure and function. In: Mearn MT (ed) Peptide and protein reviews. Marcel Dekker, New York, pp 115–171

    Google Scholar 

  22. Doeff MA, Sweigart DA, O’Brien P (1983) Hydrogen bonding from coordinated imidazole in ferric porphyrin complexes. Effect on the iron(III)/iron(II) reduction potential. Inorg Chem 22:851–852

    Article  CAS  Google Scholar 

  23. Banci L, Bertini I, Pease EA, Tien M, Turano P (1992) 1H NMR investigation of manganese peroxidase from Phanerochaete chrysosporium. A comparison with other peroxidases. Biochemistry 31:10009–10017

    Article  CAS  PubMed  Google Scholar 

  24. Chang CK, Traylor TG (1973) Proximal base influence on the binding of oxygen and carbon monoxide to heme. J Am Chem Soc 95:8477–8479

    Article  CAS  PubMed  Google Scholar 

  25. Nappa M, Valentine JS, Snyder PA (1977) Imidazolate complexes of ferric porphyrins. J Am Chem Soc 99:5799–5800

    Article  CAS  PubMed  Google Scholar 

  26. Valentine JS, Sheridan RP, Allen LC, Kahn PC (1979) Coupling between oxidation state and hydrogen bond conformation in heme proteins. Proc Natl Acad Sci U S A 76:1009–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Cupp-Vickery JR, Poulos TL (1995) Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat Struct Biol 2:144–153

    Article  CAS  PubMed  Google Scholar 

  28. Meharenna YT, Li H, Hawkes DB, Pearson AG, De Voss J, Poulos TL (2004) Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam. Biochemistry 43:9487–9494

    Article  PubMed  CAS  Google Scholar 

  29. Benson DE, Suslick KS, Sligar SG (1997) Reduced oxy intermediate observed in D251N cytochrome P450cam. Biochemistry 36:5104–5107

    Article  CAS  PubMed  Google Scholar 

  30. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277

    Article  CAS  PubMed  Google Scholar 

  31. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  32. Vidakovic M, Sligar SG, Li H, Poulos TL (1998) Understanding the role of the essential Asp251 in cytochrome P450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. Biochemistry 37:9211–9219

    Article  CAS  PubMed  Google Scholar 

  33. Nagano S, Poulos TL (2005) Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam. Implications for the dioxygen activation mechanism. J Biol Chem 280:31659–31663

    Article  CAS  PubMed  Google Scholar 

  34. Nagano S, Cupp-Vickery JR, Poulos TL (2005) Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF. J Biol Chem 280:22102–22107

    Article  CAS  PubMed  Google Scholar 

  35. Cupp-Vickery JR, Han O, Hutchinson CR, Poulos TL (1996) Substrate-assisted catalysis in cytochrome P450eryF. Nat Struct Biol 3:632–637

    Article  CAS  PubMed  Google Scholar 

  36. Omura T, Ito A (1991) Biosynthesis and intracellular sorting of mitochondrial forms of cytochrome P450. Methods Enzymol 206:75–81

    Article  CAS  PubMed  Google Scholar 

  37. Sakaguchi M, Omura T (1993) Topology and biogenesis of microsomal cytochrome P-450s. In: Ruckpaul K, Rein H (eds) Medicinal implications in cytochrome P-450 catalyzed biotransformations. Akademie, Berlin, pp 59–73

    Google Scholar 

  38. White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 276:32395–32398

    Article  CAS  PubMed  Google Scholar 

  39. Andersen OS, Koeppe RE (2007) Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 36:107–130

    Article  CAS  PubMed  Google Scholar 

  40. Von Wachenfeldt C, Richardson TH, Cosme J, Johnson EF (1997) Microsomal P450 2C3 is expressed as a soluble dimer in Echerichia coli following modifications of its N-terminus. Arch Biochem Biophys 339:107–114

    Article  Google Scholar 

  41. Cosme J, Johnson EF (2000) Engineering microsomal cytochrome P450 2C5 to be a soluble, monomeric enzyme. Mutations that alter aggregation, phospholipid dependence of catalysis, and membrane binding. J Biol Chem 275:2545–2553

    Article  CAS  PubMed  Google Scholar 

  42. Andersen JF, Hutchinson CR (1992) Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J Bacteriol 174:725–735

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Koga H, Sagara Y, Yaoi T, Tsujimura M, Nakamura K, Sekimizu K, Makino R, Shimada H, Ishimura Y, Yura K, et al (1993) Essential role of the Arg112 residue of cytochrome P450cam for electron transfer from reduced putidaredoxin. FEBS Lett 331:109–113

    Article  CAS  PubMed  Google Scholar 

  44. Pernecky SJ, Larson JR, Philpot RM, Coon MJ (1993) Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coli: influence of NH 2-terminal region on localization in cytosol and membranes. Proc Natl Acad Sci U S A 90:2651–2655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Johnson EF, Stout CD (2013) Structural diversity of eukaryotic membrane cytochrome P450s. J Biol Chem 288:17082–17090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ghosh D, Griswold J, Erman M, Pangborn W (2009) Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature 457:219–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lo J, Di NG, Griswold J, Egbuta C, Jiang W, Gilardi G, Ghosh D (2013) Structural basis for the functional roles of critical residues in human cytochrome P450 aromatase. Biochemistry 52:5821–5829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Yamamoto K, Gildenberg M, Ahuja S, Im SC, Pearcy P, Waskell L, Ramamoorthy A (2013) Probing the transmembrane structure and topology of microsomal cytochrome-P450 by solid-state NMR on temperature-resistant bicelles. Sci Rep 3:2556

    PubMed Central  PubMed  Google Scholar 

  49. Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O’Connel J,Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM (2014) Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A 111:3865–3870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) The crystallographic structure of a mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–132

    Article  CAS  PubMed  Google Scholar 

  51. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. J Inorg Biochem 81:183–190

    Article  CAS  PubMed  Google Scholar 

  52. Denisov IG, Shih AY, Sligar SG (2012) Structural differences between soluble and membrane bound cytochrome P450s. J Inorg Biochem 108:150–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. De Lemos-Chiarandini C, Frey AB, Sabatini DD, Kreibich G (1987) Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies. J Cell Biol 104:209–219

    Article  CAS  PubMed  Google Scholar 

  54. Von Wachenfeldt C, Johnson EF (1995) Structures of eukaryotic cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 2nd edn. Plenum Press, New York, pp 183–244

    Chapter  Google Scholar 

  55. Bayburt TH, Sligar SG (2002) Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc Natl Acad Sci U S A 99:6725–6730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Shank-Retzlaff ML, Raner GM, Coon MJ, Sligar SG (1998) Membrane topology of cytochrome P450 2B4 in langmuir-blodgett monolayers. Arch Biochem Biophys 359:82–88

    Article  CAS  PubMed  Google Scholar 

  57. Cojocaru V, Balali-Mood K, Sansom MS, Wade RC (2011) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7:e1002152

    Google Scholar 

  58. Berka K, Hendrychova T, Anzenbacher P, Otyepka M (2011) Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site. J Phys Chem A 115:11248–11255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Berka K, Paloncyova M, Anzenbacher P, Otyepka M (2013) Behavior of human cytochromes P450 on lipid membranes. J Phys Chem B 117:11556–11564

    Article  CAS  PubMed  Google Scholar 

  60. Baylon JL, Lenov IL, Sligar SG, Tajkhorshid E (2013) Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc 135:8542–8551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ohta Y, Kawato S, Tagashira H, Takemori S, Kominami S (1992) Dynamic structures of adrenocortical cytochrome P-450 in proteoliposomes and microsomes: protein rotation study. Biochemistry 31:12680–12687

    Article  CAS  PubMed  Google Scholar 

  62. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686

    Article  CAS  PubMed  Google Scholar 

  63. Schoch GA, Yano JK, Wester MR, Griffin KJ, Stout CD, Johnson EF (2004) Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site. J Biol Chem 279:9497–9503

    Article  CAS  PubMed  Google Scholar 

  64. Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355

    Article  CAS  PubMed  Google Scholar 

  65. Ozalp C, Szczesna-Skorupa E, Kemper B (2006) Identification of membrane-contacting loops of the catalytic domain of cytochrome P450 2C2 by tryptophan fluorescence scanning. Biochemistry 45:4629–4637

    Article  CAS  PubMed  Google Scholar 

  66. Davydov DR (2011) Microsomal monooxygenase as a multienzyme system: the role of P450-P450 interactions. Expert Opin Drug Metab Toxicol 7:543–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Szczesna-Skorupa E, Mallah B, Kemper B (2003) Fluorescence resonance energy transfer analysis of cytochromes P450 2C2 and 2E1 molecular interactions in living cells. J Biol Chem 278:31269–31276

    Article  CAS  PubMed  Google Scholar 

  68. Hu G, Johnson EF, Kemper B (2010) CYP2C8 exists as a dimer in natural membranes. Drug Metab Dispos 38:1976–1983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mast N, Annalora AJ, Lodowski DT, Palczewski K, Stout CD, Pikuleva IA (2011) Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1. J Biol Chem 286:5607–5613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW (2011) Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci U S A 108:10139–10143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, Park HW (2013) Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol 27:315–324

    Article  CAS  PubMed  Google Scholar 

  72. Annalora AJ, Goodin DB, Hong WX, Zhang Q, Johnson EF, Stout CD (2010) The crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 396:441–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Murtazina D, Puchkaev AV, Schein CH, Oezguen N, Braun W, Nanavati A, Pikuleva IA (2002) Membrane-protein interactions contribute to efficient 27-hydroxylation of cholesterol by mitochondrial cytochrome P450 27A1. J Biol Chem 277:37582–37589

    Article  CAS  PubMed  Google Scholar 

  74. Headlam MJ, Wilce MC, Tuckey RC (2003) The F-G loop region of cytochrome P450scc (CYP11A1) interacts with the phospholipid membrane. Biochim Biophys Acta 1617:96–108

    Article  CAS  PubMed  Google Scholar 

  75. Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS, Chenery RJ, Bridges AM (2006) Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622

    Article  CAS  PubMed  Google Scholar 

  76. Nakayama K, Puchkaev A, Pikuleva IA (2001) Membrane binding and substrate access merge in cytochrome P450 7A1, a key enzyme in degradation of cholesterol. J Biol Chem 276:31459–31465

    Article  CAS  PubMed  Google Scholar 

  77. Poulos TL, Finzel BC, Howard AJ (1986) Crystal structure of substrate-free Pseudomonas putida cytochrome P450. Biochemistry 25:5314–5322

    Article  CAS  PubMed  Google Scholar 

  78. Li H, Poulos TL (1997) The structure of the cytochrome P450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4:140–146

    Article  CAS  PubMed  Google Scholar 

  79. Haines DC, Tomchick DR, Machius M, Peterson JA (2001) Pivotal role of water in the mechanism of P450BM-3. Biochemistry 40:13456–13465

    Article  CAS  PubMed  Google Scholar 

  80. Li H, Poulos TL (1995) Modeling protein substrate interactions in the heme domain of cytochrome P450BM-3. Acta Crystallogr D 51:21–32

    Article  CAS  PubMed  Google Scholar 

  81. Paulsen MD, Ornstein RL (1995) Dramatic differences in the motions of the mouth of open and closed cytochrome P450BM-3 by molecular dynamics simulations. Proteins 21:237–243

    Article  CAS  PubMed  Google Scholar 

  82. Lee YT, Wilson RF, Rupniewski I, Goodin DB (2010) P450cam visits an open conformation in the absence of substrate. Biochemistry 49:3412–3419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Hays AM, Dunn AR, Chiu R, Gray HB, Stout CD, Goodin DB (2004) Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires. J Mol Biol 344:455–469

    Article  CAS  PubMed  Google Scholar 

  84. Lee Y-T, Glazer EC, Wilson RF, Stout CD, Goodin DB (2011) Three clusters of conformational states in P450cam reveal a multistep pathway for closing of the substrate access channel. Biochemistry 50:693–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, Bartlam M, Wong L-L, Rao Z (2010) Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM1(2444). J Biol Chem 285:27372–27384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Yang W, Bell SG, Wang H, Zhou W, Bartlam M, Wong L-L, Rao Z (2010) The structure of CYP101D2 unveils a potential path for substrate entry into the active site. Biochem J 433:85–93

    Article  CAS  Google Scholar 

  87. Vohra S, Musgaard M, Bell S, Wong LL, Zhou W, Biggin PC (2013) The dynamics of camphor in the cytochrome P450 CYP101D2. Protein Sci 22:1218–1229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Batabyal D, Poulos TL (2013) Crystal structures and functional characterization of wild-type CYP101D1 and its active site mutants. Biochemistry 52:8898–8906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Gay SC, Shah MB, Talakad JC, Maekawa K, Roberts AG, Wilderman PR, Sun L, Yang JY, Huelga SC, Hong WX, Zhang Q, Stout CD, Halpert JR (2010) Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-A resolution. Mol Pharmacol 77:529–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Shah MB, Wilderman PR, Pascual J, Zhang Q, Stout CD, Halpert JR (2012) Conformational adaptation of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 revealed upon binding multiple amlodipine molecules. Biochemistry 18:7225–7238

    Article  CAS  Google Scholar 

  91. Zhao Y, White MA, Muralidhara BK, Sun L, Halpert JR, Stout CD (2006) Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J Biol Chem 281:5973–5981

    Article  CAS  PubMed  Google Scholar 

  92. Scott EE, He YA, Wester MR, White MA, Chin CC, Halpert JR, Johnson EF, Stout CD (2003) An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proc Natl Acad Sci U S A 100:13196–13201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Cojocaru V, Winn PJ, Wade RC (2007) The ins and outs of cytochrome P450s. Biochim Biophys Acta 1770:390–401

    Article  CAS  PubMed  Google Scholar 

  94. Modi S, Sutcliffe MJ, Primrose WU, Lian LY, Roberts GC (1996) The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nat Struct Biol 3:414–417

    Article  CAS  PubMed  Google Scholar 

  95. Nagano S, Li H, Shimizu H, Nishida C, Ogura H, Ortiz de Montellano PR, Poulos TL (2003) Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450epoK. J Biol Chem 278:44886–44893

    Article  CAS  PubMed  Google Scholar 

  96. Bower S, Perkins JB, Yocum RR, Howitt CL, Rahaim P, Pero J (1996) Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol 178:4122–4130

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Cryle MJ, De Voss JJ (2004) Carbon-carbon bond cleavage by cytochrome p450(BioI)(CYP107H1). Chem Commun (Camb) 86–87

    Google Scholar 

  98. Cryle MJ, Matovic NJ, De Voss JJ (2003) Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids. Org Lett 5:3341–3344

    Article  CAS  PubMed  Google Scholar 

  99. Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc Natl Acad Sci U S A 105:15696–15701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Zhao B, Lei L, Vassylyev DG, Lin X, Cane DE, Kelly SL, Yuan H, Lamb DC, Waterman MR (2009) Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J Biol Chem 284:36711–36719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Miller DJ, Allemann RK (2012) Sesquiterpene synthases: passive catalysts or active players? Nat Prod Rep 29:60–71

    Article  CAS  PubMed  Google Scholar 

  102. Akhtar M, Wright JN, Lee-Robichaud P (2011) A review of mechanistic studies on aromatase (CYP19) and 17alpha-hydroxylase-17,20-lyase (CYP17) J Steroid Biochem Mol Biol 125:2–12

    Article  CAS  PubMed  Google Scholar 

  103. Mast N, White MA, Bjorkhem I, Johnson EF, Stout CD, Pikuleva IA (2008) Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc Natl Acad Sci U S A 105:9546–9551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW (2008) Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 380:95–106

    Article  CAS  PubMed  Google Scholar 

  105. Ghosh D, Griswold J, Erman M, Pangborn W (2010) X-ray structure of human aromatase reveals an androgen-specific active site. J Steroid Biochem Mol Biol 118:197–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Zhao B, Lei L, Kagawa N, Sundaramoorthy M, Banerjee S, Nagy LD, Guengerich FP, Waterman MR (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J Biol Chem 287:10613–10622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. DeVore NM, Scott EE (2012) Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 482:116–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Strushkevich N, Usanov SA, Park HW (2010) Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 397:1067–1078

    Article  CAS  PubMed  Google Scholar 

  109. Lepesheva GI, Hargrove TY, Anderson S, Kleshchenko Y, Furtak V, Wawrzak Z, Villalta F, Waterman MR (2010) Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. J Biol Chem 285:25582–25590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Walsh AA, Szklarz GD, Scott EE (2013) Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J Biol Chem 288:12932–12943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Wang A, Savas U, Stout CD, Johnson EF (2011) Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. J Biol Chem 286:5736–5743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J Biol Chem 279:38091–38094

    Article  CAS  PubMed  Google Scholar 

  113. Ekroos M, Sjogren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A 103:13682–13687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Porubsky PR, Meneely KM, Scott EE (2008) Structures of human cytochrome P450 2E1: insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J Biol Chem 283:33698–33707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Porubsky PR, Battaile KP, Scott EE (2010) Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode. J Biol Chem 285:22282–22290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Yano JK, Hsu MH, Griffin KJ, Stout CD, Johnson EF (2005) Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat Struct Mol Biol 12:822–823

    Article  CAS  PubMed  Google Scholar 

  117. Smith BD, Sanders JL, Porubsky PR, Lushington GH, Stout CD, Scott EE (2007) Structure of the human lung cytochrome P450 2A13. J Biol Chem 282:17306–17313

    Article  CAS  PubMed  Google Scholar 

  118. Williams PA, Cosme J, Ward A, Angove HC, Matak VD, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468

    Article  CAS  PubMed  Google Scholar 

  119. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human microsomal cytochrome P450 2C9 complexed with flurbiprofen at 2.0 Å resolution. J Biol Chem 279:35630–35637

    Article  CAS  PubMed  Google Scholar 

  120. Reynald RL, Sansen S, Stout CD, Johnson EF (2012) Structural characterization of human cytochrome P450 2C19: active site differences between P450’s 2C8, 2C9 and 2C19. J Biol Chem 287:44581–44591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Wang A, Savas U, Hsu MH, Stout CD, Johnson EF (2012) Crystal structure of human cytochrome P450 2D6 with prinomastat bound. J Biol Chem 287:10834–10843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL (1999) Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Natl Acad Sci U S A 96:1863–1868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Sevrioukova IF, Hazzard JT, Tollin G, Poulos TL (1999) The FMN to heme electron transfer in cytochrome P450BM-3. Effect of chemical modification of cysteines engineered at the FMN-heme domain interaction site. J Biol Chem 274:36097–36106

    Article  CAS  PubMed  Google Scholar 

  124. Sevrioukova IF, Immoos CE, Poulos TL, Farmer P (2000) Electron transfer in the ruthenated heme domain of cytochrome P450BM-3. Isr J Chem 40:47–53

    Article  CAS  Google Scholar 

  125. Adamovich TB, Pikuleva IA, Chashchin VL, Usanov SA (1989) Selective chemical modification of cytochrome P-450SCC lysine residues. Identification of lysines involved in the interaction with adrenodoxin. Biochim Biophys Acta 996:247–253

    Google Scholar 

  126. Coghlan VM, Vickery LE (1991) Site-specific mutations in human ferredoxin that affect binding to ferredoxin reductase and cytochrome P450scc. J Biol Chem 266:18606–18612

    CAS  PubMed  Google Scholar 

  127. Wada A, Waterman MR (1992) Identification by site-directed mutagenesis of two lysine residues in cholesterol side-chain cleavage cytochrome P450 that are essential for adrenodoxin binding. J Biol Chem 267:22877–22882

    CAS  PubMed  Google Scholar 

  128. Hiruma Y, Hass MA, Kikui Y, Liu WM, Olmez B, Skinner SP, Blok A, Kloosterman A, Koteishi H, Lohr F, Schwalbe H, Nojiri M, Ubbink M (2013) The structure of the cytochrome P450cam-putidaredoxin complex determined by paramagnetic NMR spectroscopy and crystallography. J Mol Biol. http://www.ncbi.nlm.nih.gov/pubmed/23856620

  129. Tripathi S, Li H, Poulos TL (2013) Structural basis for effector control and redox partner recognition in cytochrome P450. Science 340:1227–1230

    Article  CAS  PubMed  Google Scholar 

  130. Lipscomb JD, Sligar SG, Namtvedt MJ, Gunsalus IC (1976) Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam. J Biol Chem 251:1116–1124

    CAS  PubMed  Google Scholar 

  131. Sligar SG, Debrunner PG, Lipscomb JD, Namtvedt MJ, Gunsalus IC (1974) A role of the putidaredoxin COOH-terminus in P-450cam (cytochrome m) hydroxylations. Proc Natl Acad Sci U S A 71:3906–3910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Tyson CA, Lipscomb JD, Gunsalus IC (1972) The role of putidaredoxin and P450 cam in methylene hydroxylation. J Biol Chem 247:5777–5784

    CAS  PubMed  Google Scholar 

  133. Pochapsky TC, Lyons TA, Kazanis S, Arakaki T, Ratnaswamy G (1996) A structure-based model for cytochrome P450cam-putidaredoxin interactions. Biochimie 78:723–733

    Article  CAS  PubMed  Google Scholar 

  134. Geren L, Tuls J, O’Brien P, Millett F, Peterson JA (1986) The involvement of carboxylate groups of putidaredoxin in the reaction with putidaredoxin reductase. J Biol Chem 261:15491–15495

    CAS  PubMed  Google Scholar 

  135. Imai M, Shimada H, Watanabe Y, Matsushimahibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine–a possible role of the hydroxy amino-acid in oxygen activation. Proc Natl Acad Sci U S A 86:7823–7827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Kuznetsov VY, Poulos TL, Sevrioukova IF (2006) Putidaredoxin-to-cytochrome P450cam electron transfer: differences between the two reductive steps required for catalysis. Biochemistry 45:11934–11944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Unno M, Shimada H, Toba Y, Makino R, Ishimura Y (1996) Role of Arg112 of cytochrome P450cam in the electron transfer from reduced putidaredoxin. Analyses with site-directed mutants. J Biol Chem 271:17869–17874

    Article  CAS  PubMed  Google Scholar 

  138. Shimada H, Nagano S, Hori H, Ishimura Y (2001) Putidaredoxin-cytochrome P450cam interaction. J Inorg Biochem 83:255–260

    Article  CAS  PubMed  Google Scholar 

  139. Unno M, Christian JF, Sjodin T, Benson DE, Macdonald ID, Sligar SG, Champion PM (2002) Complex formation of cytochrome P450cam with putidaredoxin. Evidence for protein-specific interactions involving the proximal thiolate ligand. J Biol Chem 277:2547–2553

    Article  CAS  PubMed  Google Scholar 

  140. Nagano S, Shimada H, Tarumi A, Hishiki T, Kimata-Ariga Y, Egawa T, Suematsu M, Park SY, Adachi S, Shiro Y, Ishimura Y (2003) Infrared spectroscopic and mutational studies on putidaredoxin-induced conformational changes in ferrous CO-P450cam. Biochemistry 42:14507–14514

    Article  CAS  PubMed  Google Scholar 

  141. Shiro Y, Iizuka T, Makino R, Ishimura Y, Morishima I (1989) N-15 NMR-Study on cyanide (C-15n-) complex of cytochrome-P-450cam–Effects of D-camphor and putidaredoxin on the iron ligand structure. J Am Chem Soc 111:7707–7711

    Article  CAS  Google Scholar 

  142. Tosha T, Yoshioka S, Ishimori K, Morishima I (2004) L358P mutation on cytochrome P450cam simulates structural changes upon putidaredoxin binding: the structural changes trigger electron transfer to oxy-P450cam from electron donors. J Biol Chem 279:42836–42843

    Article  CAS  PubMed  Google Scholar 

  143. Tosha T, Yoshioka S, Takahashi S, Ishimori K, Shimada H, Morishima I (2003) NMR study on the structural changes of cytochrome P450cam upon the complex formation with putidaredoxin. Functional significance of the putidaredoxin-induced structural changes. J Biol Chem 278:39809–39821

    Article  CAS  PubMed  Google Scholar 

  144. Pochapsky SS, Pochapsky TC, Wei JW (2003) A model for effector activity in a highly specific biological electron transfer complex: the cytochrome P450(cam)-putidaredoxin couple. Biochemistry 42:5649–5656

    Article  PubMed  CAS  Google Scholar 

  145. Zhang W, Pochapsky SS, Pochapsky TC, Jain NU (2008) Solution NMR structure of putidaredoxin-cytochrome P450cam complex via a combined residual dipolar coupling-spin labeling approach suggests a role for Trp106 of putidaredoxin in complex formation. J Mol Biol 384:349–363

    Article  CAS  PubMed  Google Scholar 

  146. OuYang B, Pochapsky SS, Dang M, Pochapsky TC (2008) A functional proline switch in cytochrome P450cam. Structure 16:916–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Glascock MC, Ballou DP, Dawson JH (2005) Direct observation of a novel perturbed oxyferrous catalytic intermediate during reduced putidaredoxin-initiated turnover of cytochrome P-450-CAM: probing the effector role of putidaredoxin in catalysis. J Biol Chem 280:42134–42141

    Article  CAS  PubMed  Google Scholar 

  148. Unno M, Christian JF, Benson DE, Gerber NC, SLigar SG, Champion PM (1997) Resonance Raman investigations of cytochrome P450cam complexed with putidaredoxin. J Am Chem Soc 119:6614–6620

    Article  CAS  Google Scholar 

  149. Davies MD, Qin L, Beck JL, Suslick KS, Koga H, Horiuchi T, Sligar SG (1990) Putidaredoxin reduction of cytochrome P-450cam–dependence of electron-transfer on the identity of putidaredoxins C-terminal amino-acid. J Am Chem Soc 112:7396–7398

    Article  CAS  Google Scholar 

  150. Davies MD, Sligar SG (1992) Genetic variants in the putidaredoxin-cytochrome P-450cam electron-transfer complex: identification of the residue responsible for redox-state-dependent conformers. Biochemistry 31:11383–11389

    Article  CAS  PubMed  Google Scholar 

  151. Holden M, Mayhew M, Bunk D, Roitberg A, Vilker V (1997) Probing the interactions of putidaredoxin with redox partners in camphor P450 5-monooxygenase by mutagenesis of surface residues. J Biol Chem 272:21720–21725

    Article  CAS  PubMed  Google Scholar 

  152. Pochapsky T, Lyons TA, Kazanis S, Arakaki T, Ratnaswamy G (1996) A structure-based model for cytochrome P450cam-putidaredoxin interactions. Biochimie 78:723–733

    Article  CAS  PubMed  Google Scholar 

  153. Stayton PS, Sligar SG (1991) Structural microheterogeneity of a tryptophan residue required for efficient biological electron transfer between putidaredoxin and cytochrome P-450cam. Biochemistry 30:1845–1851

    Article  CAS  PubMed  Google Scholar 

  154. Gerber NC, Sligar SG (1994) A role for Asp-251 in cytochrome P-450cam oxygen activation. J Biol Chem 269:4260–4266

    CAS  PubMed  Google Scholar 

  155. Stok JE, Yamada S, Farlow AJ, Slessor KE, De Voss JJ (2013) Cytochrome P450(cin) (CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s. Biochim Biophys Acta 1834:688–696

    Article  CAS  PubMed  Google Scholar 

  156. Bridges A, Gruenke L, Chang YT, Vakser IA, Loew G, Waskell L (1998) Identification of the binding site on cytochrome P450 2B4 for cytochrome 5 and cytochrome P450 reductase. J Biol Chem 273:17036–17049

    Article  CAS  PubMed  Google Scholar 

  157. Kleywegt GJ, Jones TA (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 50:178–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TLP would like to thank members of the UCI P450 group, Dipanwita Batabyal, Huiying Li, Irina Sevrioukova, and Sarvind Tripathi, as well as NIH grant GM32688. EFJ would like to thank his colleagues at TSRI, Mei Hsu, Ying Fan, and C. David Stout, as well as the support of NIH Grant GM031001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Poulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poulos, T., Johnson, E. (2015). Structures of Cytochrome P450 Enzymes. In: Ortiz de Montellano, P. (eds) Cytochrome P450. Springer, Cham. https://doi.org/10.1007/978-3-319-12108-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12108-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12107-9

  • Online ISBN: 978-3-319-12108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics