Skip to main content

Using a Biomechanical Model for Tongue Tracking in Ultrasound Images

  • Conference paper
Biomedical Simulation (ISBMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8789))

Included in the following conference series:

Abstract

We propose in this paper a new method for tongue tracking in ultrasound images which is based on a biomechanical model of the tongue. The deformation is guided both by points tracked at the surface of the tongue and by inner points of the tongue. Possible uncertainties on the tracked points are handled by this algorithm. Experiments prove that the method is efficient even in case of abrupt movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aron, M., Roussos, A., Berger, M.-O., Kerrien, E., Maragos, P.: Multimodality Acquisition of Articulatory Data and Processing. In: 16th European Signal Processing Conference, EUSIPCO 2008 (2008)

    Google Scholar 

  2. Bressmann, T., Thind, P., Uy, C., Bollig, C., Gilbert, R.W., Irish, J.C.: Quantitative three-dimensional ultrasound analysis of tongue protrusion, grooving and symmetry: data from 12 normal speakers and a partial glossectomee. Clin. Linguist. Phon. 19(6-7), 573–588 (2005)

    Article  Google Scholar 

  3. Buchaillard, S., Perrier, P., Payan, Y.: A biomechanical model of cardinal vowel production: muscle activations and the impact of gravity on tongue positioning. Journal of the Acoustical Society of America 126(4), 2033–2051 (2009)

    Article  Google Scholar 

  4. Farhadloo, M.: Miguel Á.: Carreira-Perpiñán. Learning and adaptation of a tongue shape model with missing data. In: ICASSP, pp. 3981–3984 (2012)

    Google Scholar 

  5. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Gerard, J.M., Ohayon, J., Luboz, V., Perrier, P., Payan, Y.: Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique. Application to the biomechanics of speech production. Medical Engineering and Physics 27(10), 884–892 (2005)

    Article  Google Scholar 

  7. Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79, 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.-O., Cotin, S.: Image-guided Simulation of Heterogeneous Tissue Deformation For Augmented Reality during Hepatic Surgery. In: ISMAR - IEEE International Symposium on Mixed and Augmented Reality 2013, Adelaide, Australia (October 2013)

    Google Scholar 

  9. Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011)

    Article  Google Scholar 

  10. Li, M., Kambhamettu, C., Stone, M.: A level set approach for shape recovery of open contours. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 601–611. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging 25(8), 987–1010 (2006)

    Article  Google Scholar 

  12. Roussos, A., Katsamanis, A., Maragos, P.: Tongue tracking in ultrasound images with active appearance models. In: ICIP, pp. 1733–1736 (2009)

    Google Scholar 

  13. Sin, F., Schroeder, D., Barbic, J.: Vega: Non-linear fem deformable object simulator. Comput. Graph. Forum 32(1), 36–48 (2013)

    Article  Google Scholar 

  14. Stone, M., Stock, G., Bunin, K., Kumar, K., Epstein, M., Kambhamettu, C., Li, M., Prince, J.: Comparison of speech production in upright and supine position. Journal of The Acoustical Society of America 122(1) (2007)

    Google Scholar 

  15. Tang, L., Bressmann, T., Hamarneh, G.: Tongue contour tracking in dynamic ultrasound via higher-order MRFs and efficient fusion moves. Medical Image Analysis 16(8), 1503–1520 (2012)

    Article  Google Scholar 

  16. Wuhrer, S., Lang, J., Shu, C.: Tracking complete deformable objects with finite elements. In: 3DIMPVT, pp. 1–8 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Loosvelt, M., Villard, PF., Berger, MO. (2014). Using a Biomechanical Model for Tongue Tracking in Ultrasound Images. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2014. Lecture Notes in Computer Science, vol 8789. Springer, Cham. https://doi.org/10.1007/978-3-319-12057-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12057-7_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12056-0

  • Online ISBN: 978-3-319-12057-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics