Skip to main content

Using Nanoparticles as Gas Foam Stabilizing Agents for Enhanced Oil Recovery Applications

  • Chapter
  • First Online:
Nanoparticles: An Emerging Technology for Oil Production and Processing Applications

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 32))

  • 599 Accesses

Abstract

There are currently extensive studies that have evidenced the capability of nanoparticles in stabilizing foam via irreversible adsorption at the gas/liquid interface. Nanoparticle adsorption enhances both the dilatational viscoelasticity and interfacial properties of foam liquid films, retards film thinning and bubble coalescence, and decreases the Ostwald ripening. Many studies have investigated the potential of several types of nanoparticles including silica, metal oxides, graphene, and fly ash nanoparticles and the synergistic effect between surfactants and nanoparticles for foam stabilization. The selection of the appropriate surface wettability and the optimum nanoparticle concentration remains the most crucial criteria. Literature results suggested that hydrophilic nanoparticles (contact angle between 40° and 70°) can maximize the detachment energy of nanoparticles at the gas/liquid interface and contribute to maximum static and dynamic foam stability. Therefore, in this chapter, we review the fundamentals of foam stability, the mechanisms of foam stabilization by nanoparticles, and the major factors influencing nanoparticle-stabilized foam including nanoparticle surface wettability and surface hydrophilicity modification. Moreover, the remarkable foam studies discussed in this chapter provide evidence on the role of nanoparticles in enhancing the static and dynamic foam stability and recovering residual oil in porous media during gas enhanced oil recovery (EOR). Hence, nanoparticle-stabilized foam can be an alternative solution for the drawbacks of gas EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.G. Aarra, P.A. Ormehaug, A. Skauge, S.K. Masalmeh, Experimental study of CO2- and methane- foam using carbonate core material at reservoir conditions. Paper presented at the SPE Middle East oil and gas show and conference, Manama, Bahrain, 2011. https://doi.org/10.2118/141614-MS

  2. M.G. Aarra, A. Skauge, J. Solbakken, P.A. Ormehaug, Properties of N2- and CO2-foams as a function of pressure. J. Pet. Sci. Eng. 116, 72–80 (2014). https://doi.org/10.1016/j.petrol.2014.02.017

    Article  Google Scholar 

  3. V.O. Abramov, A.V. Abramova, V.M. Bayazitov, L.K. Altunina, A.S. Gerasin, D.M. Pashin, T.J. Mason, Sonochemical approaches to enhanced oil recovery. Ultrason. Sonochem. 25, 76–81 (2015). https://doi.org/10.1016/j.ultsonch.2014.08.014

    Article  Google Scholar 

  4. S. Akbari, A. Nour, R. Yunus, A. Farhan, Biosurfactants as promising multifunctional agent: A mini review. Int. J. Innov. Res. Sci. Stud. 1, 1–6 (2018)

    Google Scholar 

  5. A. Al Sumaiti, A.R. Shaik, E.S. Mathew, W. Al Ameri, Tuning foam parameters for mobility control using CO2 foam: Field application to maximize oil recovery from a high temperature high salinity layered carbonate reservoir. Energy Fuel 31(5), 4637–4654 (2017). https://doi.org/10.1021/acs.energyfuels.6b02595

    Article  Google Scholar 

  6. Z. AlYousef, D. Schechter, The synergy of surfactant and nanoparticles: Towards enhancing foam stability. Paper presented at the SPE Kuwait oil & gas show and conference, Mishref, Kuwait, 2019. https://doi.org/10.2118/198190-MS

  7. Z. AlYousef, M. Almobarky, D. Schechter, Enhancing the stability of foam by the use of nanoparticles. Energy Fuel 31(10), 10620–10627 (2017). https://doi.org/10.1021/acs.energyfuels.7b01697

    Article  Google Scholar 

  8. S. Alzobaidi, M. Lotfollahi, I. Kim, K.P. Johnston, D.A. DiCarlo, Carbon dioxide-in-brine foams at high temperatures and extreme salinities stabilized with silica nanoparticles. Energy Fuel 31(10), 10680–10690 (2017). https://doi.org/10.1021/acs.energyfuels.7b01814

    Article  Google Scholar 

  9. A. Andrianov, R. Farajzadeh, M. Mahmoodi Nick, M. Talanana, P.L.J. Zitha, Immiscible foam for enhancing oil recovery: Bulk and porous media experiments. Ind. Eng. Chem. Res. 51(5), 2214–2226 (2012). https://doi.org/10.1021/ie201872v

    Article  Google Scholar 

  10. N. Anuar, M.H. Yunan, F. Sagala, A. Katende, The effect of WAG ratio and oil density on oil recovery by immiscible water alternating gas flooding. Am. J. Sci. Technol. 4(5), 80–90 (2017)

    Google Scholar 

  11. A. Aronson, V. Bergeron, M.E. Fagan, C.J.C. Radke, S.A. Physicochemical, E. Aspects, The influence of disjoining pressure on foam stability and flow in porous media. Colloids Surf. A Physicochem. Eng. Asp. 83(2), 109–120 (1994)

    Article  Google Scholar 

  12. A. Aroonsri, A.J. Worthen, T. Hariz, K.P. Johnston, C. Huh, S.L. Bryant, Conditions for generating nanoparticle-stabilized CO2 foams in fracture and matrix flow. Paper presented at the SPE annual technical conference and exhibition, New Orleans, LA, USA, 2013. https://doi.org/10.2118/166319-MS

  13. S. Banerjee, E. Hassenklöver, J.M. Kleijn, M.A. Cohen Stuart, F.A.M. Leermakers, Interfacial tension and wettability in water–carbon dioxide systems: Experiments and self-consistent field modeling. J. Phys. Chem. B 117(28), 8524–8535 (2013). https://doi.org/10.1021/jp400940s

    Article  Google Scholar 

  14. A. Barrabino, T. Holt, E. Lindeberg, An evaluation of graphene oxides as possible foam stabilizing agents for CO2 based enhanced oil recovery. Nanomaterials (Basel, Switzerland) 8(8), 603 (2018). https://doi.org/10.3390/nano8080603

    Article  Google Scholar 

  15. G. Batôt, M. Fleury, E. Rosenberg, L. Nabzar, M. Chabert, Foam propagation in rock samples: Impact of oil and flow characterization. Paper presented at the SPE EOR conference at oil and gas West Asia, Muscat, Oman, 2016. https://doi.org/10.2118/179855-MS

  16. A.E. Bayat, K. Rajaei, R. Junin, Assessing the effects of nanoparticle type and concentration on the stability of CO2 foams and the performance in enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 511, 222–231 (2016). https://doi.org/10.1016/j.colsurfa.2016.09.083

    Article  Google Scholar 

  17. E.J. Behrens, Investigation of Loss of Surfactants During Enhanced Oil Recovery Applications-Adsorption of Surfactants onto Clay Materials (Institutt for kjemisk prosessteknologi, 2013)

    Google Scholar 

  18. D. Beneventi, B. Carre, A. Gandini, Role of surfactant structure on surface and foaming properties. Colloids Surf. A Physicochem. Eng. Asp. 189(1), 65–73 (2001). https://doi.org/10.1016/S0927-7757(01)00602-1

    Article  Google Scholar 

  19. B.P. Binks, Particles as surfactants – Similarities and differences. Curr. Opin. Colloid Interface Sci. 7(1), 21–41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0

    Article  Google Scholar 

  20. B.P. Binks, S.O. Lumsdon, Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16(23), 8622–8631 (2000). https://doi.org/10.1021/la000189s

    Article  Google Scholar 

  21. B.P. Binks, M. Kirkland, J.A. Rodrigues, Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures. Soft Matter 4(12), 2373–2382 (2008). https://doi.org/10.1039/B811291F

    Article  Google Scholar 

  22. C.S. Boeije, W. Rossen, Fitting foam-simulation-model parameters to data: I. Coinjection of gas and liquid. SPE Reserv. Eval. Eng. 18(02), 264–272 (2015). https://doi.org/10.2118/174544-PA

    Article  Google Scholar 

  23. J. Boos, W. Drenckhan, C. Stubenrauch, Protocol for studying aqueous foams stabilized by surfactant mixtures. J. Surfactant Deterg. 16(1), 1–12 (2013). https://doi.org/10.1007/s11743-012-1416-2

    Article  Google Scholar 

  24. C. Boyère, C. Jérôme, A. Debuigne, Input of supercritical carbon dioxide to polymer synthesis: An overview. Eur. Polym. J. 61, 45–63 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.019

    Article  Google Scholar 

  25. R. Butler, I. Hopkinson, A.I. Cooper, Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions. J. Am. Chem. Soc. 125(47), 14473–14481 (2003). https://doi.org/10.1021/ja037570u

    Article  Google Scholar 

  26. B.T. Campbell, F.M. Orr, Jr., Flow Visualization for CO2/Crude Oil Displacements (1985)

    Google Scholar 

  27. E. Carey, C. Stubenrauch, Foaming properties of mixtures of a non-ionic (C12DMPO) and an ionic surfactant (C12TAB). J. Colloid Interface Sci. 346(2), 414–423 (2010). https://doi.org/10.1016/j.jcis.2010.03.013

    Article  Google Scholar 

  28. F. Carn, A. Colin, O. Pitois, M. Vignes-Adler, R. Backov, Foam drainage in the presence of nanoparticle−surfactant mixtures. Langmuir 25(14), 7847–7856 (2009). https://doi.org/10.1021/la900414q

    Article  Google Scholar 

  29. D. Chakravarthy, V. Muralidharan, E. Putra, D.S. Schechter, Application of x-ray CT for investigation of CO2 and WAG injection in fractured reservoirs. Paper presented at the Canadian International Petroleum Conference, Calgary, AB, USA, 2004. https://doi.org/10.2118/2004-232

  30. Q. Chen, M. Gerritsen, A.R. Kovscek, Modeling foam displacement with the local equilibrium approximation: Theory and experiment verification. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 2008. https://doi.org/10.2118/116735-MS

  31. Y. Chen, A.S. Elhag, B.M. Poon, L. Cui, K. Ma, S.Y. Liao, … K.P. Johnston, Ethoxylated cationic surfactants for CO2 EOR in high temperature, high salinity reservoirs. Paper presented at the SPE improved oil recovery symposium, Tulsa, OK, USA, 2012. https://doi.org/10.2118/154222-MS

  32. Y. Chen, A.S. Elhag, B.M. Poon, L. Cui, K. Ma, S.Y. Liao, et al., Switchable nonionic to cationic ethoxylated amine surfactants for CO2 enhanced oil recovery in high-temperature, high-salinity carbonate reservoirs. SPE J. 19(02), 249–259 (2014). https://doi.org/10.2118/154222-PA

    Article  Google Scholar 

  33. Y. Chen, A.S. Elhag, P.P. Reddy, H. Chen, L. Cui, A.J. Worthen, et al., Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams. J. Colloid Interface Sci. 470, 80–91 (2016). https://doi.org/10.1016/j.jcis.2016.02.028

    Article  Google Scholar 

  34. K.-O. Choi, N.P. Aditya, S. Ko, Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem. 147, 239–244 (2014). https://doi.org/10.1016/j.foodchem.2013.09.095

    Article  Google Scholar 

  35. B.C. Craft, M. Hawkins, Applied Petroleum Reservoir Engineering (Pearson, Upper Saddle River, 2015)

    Google Scholar 

  36. Z.G. Cui, Y.Z. Cui, C.F. Cui, Z. Chen, B.P. Binks, Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant. Langmuir 26(15), 12567–12574 (2010). https://doi.org/10.1021/la1016559

    Article  Google Scholar 

  37. L. Cui, K. Ma, M. Puerto, A.A. Abdala, I. Tanakov, L.J. Lu, et al., Mobility of Ethomeen C12 and carbon dioxide (CO2) foam at high temperature/high salinity and in carbonate cores. SPE J. 21(04), 1151–1163 (2016). https://doi.org/10.2118/179726-PA

    Article  Google Scholar 

  38. C. Da, G. Jian, S. Alzobaidi, J. Yang, S.L. Biswal, G.J. Hirasaki, K.P. Johnston, Design of CO2-in-water foam stabilized with switchable amine surfactants at high temperature in high-salinity brine and effect of oil. Energy Fuel 32(12), 12259–12267 (2018). https://doi.org/10.1021/acs.energyfuels.8b02959

    Article  Google Scholar 

  39. T.W. de Haas, H. Fadaei, U. Guerrero, D. Sinton, Steam-on-a-chip for oil recovery: The role of alkaline additives in steam assisted gravity drainage. Lab Chip 13(19), 3832–3839 (2013). https://doi.org/10.1039/C3LC50612F

    Article  Google Scholar 

  40. R. Deleurence, C. Parneix, C. Monteux, Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers – Influence of particle contact angle, zeta potential, flocculation and shear energy. Soft Matter 10(36), 7088–7095 (2014). https://doi.org/10.1039/C4SM00237G

    Article  Google Scholar 

  41. N.D. Denkov, Mechanisms of foam destruction by oil-based antifoams. Langmuir 20(22), 9463–9505 (2004). https://doi.org/10.1021/la049676o

    Article  Google Scholar 

  42. N.D. Denkov, I.B. Ivanov, P.A. Kralchevsky, D.T. Wasan, A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 150(2), 589–593 (1992). https://doi.org/10.1016/0021-9797(92)90228-E

    Article  Google Scholar 

  43. N.D. Denkov, P. Cooper, J.-Y. Martin, Mechanisms of action of mixed solid−liquid antifoams. 1. Dynamics of foam film rupture. Langmuir 15(24), 8514–8529 (1999). https://doi.org/10.1021/la9902136

    Article  Google Scholar 

  44. J.L. Dickson, B.P. Binks, K.P. Johnston, Stabilization of carbon dioxide-in-water emulsions with silica nanoparticles. Langmuir 20(19), 7976–7983 (2004). https://doi.org/10.1021/la0488102

    Article  Google Scholar 

  45. W. Drenckhan, S. Hutzler, Structure and energy of liquid foams. Adv. Colloid Interf. Sci. 224, 1–16 (2015). https://doi.org/10.1016/j.cis.2015.05.004

    Article  Google Scholar 

  46. W. Drenckhan, D. Langevin, Monodisperse foams in one to three dimensions. Curr. Opin. Colloid Interface Sci. 15(5), 341–358 (2010). https://doi.org/10.1016/j.cocis.2010.06.002

    Article  Google Scholar 

  47. Z. Du, M.P. Bilbao-Montoya, B.P. Binks, E. Dickinson, R. Ettelaie, B.S. Murray, Outstanding stability of particle-stabilized bubbles. Langmuir 19(8), 3106–3108 (2003). https://doi.org/10.1021/la034042n

    Article  Google Scholar 

  48. A.A. Eftekhari, R. Krastev, R. Farajzadeh, Foam stabilized by fly ash nanoparticles for enhancing oil recovery. Ind. Eng. Chem. Res. 54(50), 12482–12491 (2015). https://doi.org/10.1021/acs.iecr.5b03955

    Article  Google Scholar 

  49. H. Ehtesabi, M.M. Ahadian, V.J.E. Taghikhani, Enhanced heavy oil recovery using TiO2 nanoparticles: Investigation of deposition during transport in core plug. Energy Fuel 29(1), 1–8 (2015)

    Article  Google Scholar 

  50. A.S. Elhag, C. Da, Y. Chen, N. Mukherjee, J.A. Noguera, S. Alzobaidi, et al., Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature. J. Colloid Interface Sci. 522, 151–162 (2018). https://doi.org/10.1016/j.jcis.2018.03.037

    Article  Google Scholar 

  51. A.S. Emrani, H.A. Nasr-El-Din, Stabilizing CO2-foam using nanoparticles. Paper presented at the SPE European formation damage conference and exhibition, Budapest, Hungary, 2015. https://doi.org/10.2118/174254-MS

  52. A.S. Emrani, H.A. Nasr-El-Din, An experimental study of nanoparticle-polymer-stabilized CO2 foam. Colloids Surf. A Physicochem. Eng. Asp. 524, 17–27 (2017a). https://doi.org/10.1016/j.colsurfa.2017.04.023

    Article  Google Scholar 

  53. A.S. Emrani, H.A. Nasr-El-Din, Stabilizing CO2 foam by use of nanoparticles. SPE J. 22(02), 494–504 (2017b). https://doi.org/10.2118/174254-PA

    Article  Google Scholar 

  54. R.M. Enick, D.K. Olsen, J.R. Ammer, W. Schuller, Mobility and conformance control for CO2 eor via thickeners, foams, and gels – A literature review of 40 years of research and pilot tests. Paper presented at the SPE improved oil recovery symposium, Tulsa, OK, USA, 2012. https://doi.org/10.2118/154122-MS

  55. D.A. Espinoza, F.M. Caldelas, K.P. Johnston, S.L. Bryant, C. Huh, Nanoparticle-stabilized supercritical CO2 foams for potential mobility control applications. Paper presented at the SPE improved oil recovery symposium, Tulsa, OK, USA, 2010. https://doi.org/10.2118/129925-MS

  56. A.H. Falls, G.J. Hirasaki, T.W. Patzek, D.A. Gauglitz, D.D. Miller, T. Ratulowski, Development of a mechanistic foam simulator: The population balance and generation by snap-off. SPE Reserv. Eng. 3(03), 884–892 (1988). https://doi.org/10.2118/14961-PA

    Article  Google Scholar 

  57. A.H. Falls, J.J. Musters, J. Ratulowski, The apparent viscosity of foams in homogeneous bead packs. SPE Reserv. Eng. 4(02), 155–164 (1989). https://doi.org/10.2118/16048-PA

    Article  Google Scholar 

  58. S. Farad, H.K. Nsamba, A. Al Hassan, W. Joseph, I. Kabenge, Effect of pH and slug ratio of alkaline surfactant polymer alternating gas flooding on oil recovery. Am. Assoc. Sci. Technol. 3(2), 47–52 (2016)

    Google Scholar 

  59. R. Farajzadeh, A. Andrianov, H. Bruining, P.L.J. Zitha, Comparative study of CO2 and N2 foams in porous media at low and high pressure−temperatures. Ind. Eng. Chem. Res. 48(9), 4542–4552 (2009). https://doi.org/10.1021/ie801760u

    Article  Google Scholar 

  60. R. Farajzadeh, A. Andrianov, P.L.J. Zitha, Investigation of immiscible and miscible foam for enhancing oil recovery. Ind. Eng. Chem. Res. 49(4), 1910–1919 (2010). https://doi.org/10.1021/ie901109d

    Article  Google Scholar 

  61. R. Farajzadeh, M. Lotfollahi, A.A. Eftekhari, W.R. Rossen, G.J.H. Hirasaki, Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure. Energy Fuel 29(5), 3011–3018 (2015). https://doi.org/10.1021/acs.energyfuels.5b00248

    Article  Google Scholar 

  62. R.N. Gajbhiye, S.I. Kam, Characterization of foam flow in horizontal pipes by using two-flow-regime concept. Chem. Eng. Sci. 66(8), 1536–1549 (2011). https://doi.org/10.1016/j.ces.2010.12.012

    Article  Google Scholar 

  63. D. Georgieva, V. Schmitt, F. Leal-Calderon, D. Langevin, On the possible role of surface elasticity in emulsion stability. Langmuir 25(10), 5565–5573 (2009). https://doi.org/10.1021/la804240e

    Article  Google Scholar 

  64. R.B. Ghahfarokhi, United States Patent No. (2019)

    Google Scholar 

  65. D.W. Green, G.P. Willhite, Enhanced Oil Recovery, vol 8 (Texas, United States of America: Society of Petroleum Engineers, 1998)

    Google Scholar 

  66. F. Guo, S. Aryana, An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel 186, 430–442 (2016). https://doi.org/10.1016/j.fuel.2016.08.058

    Article  Google Scholar 

  67. F. Guo, J. He, P.A. Johnson, S.A. Aryana, Stabilization of CO2 foam using by-product fly ash and recyclable iron oxide nanoparticles to improve carbon utilization in EOR processes. Sustain. Energy Fuels 1(4), 814–822 (2017). https://doi.org/10.1039/c7se00098g

    Article  Google Scholar 

  68. J.E. Hanssen, M. Dalland, Increased oil tolerance of polymer-enhanced foams: Deep chemistry or just “Simple” displacement effects? Paper presented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 2000. https://doi.org/10.2118/59282-MS

  69. T.R. Hariz, Nanoparticle-Stabilized CO2 Foams for Potential Mobility Control Applications (The University of Texas at Austin, Austin, 2012)

    Google Scholar 

  70. W.D. Harkins, A general thermodynamic theory of the spreading of liquids to form duplex films and of liquids or solids to form monolayers. J. Chem. Phys. 9, 552 (1941)

    Article  Google Scholar 

  71. P.C. Harris, Dynamic fluid-loss characteristics of CO2-foam fracturing fluids. SPE Prod. Eng. 2(02), 89–94 (1987). https://doi.org/10.2118/13180-PA

    Article  Google Scholar 

  72. R. Hashemi, N.N. Nassar, P. Pereira-Almao, Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure. Energy Fuel 26(3), 1645–1655 (2012). https://doi.org/10.1021/ef201939f

    Article  Google Scholar 

  73. R. Hashemi, N.N. Nassar, P. Pereira Almao, Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges. Appl. Energy 133, 374–387 (2014). https://doi.org/10.1016/j.apenergy.2014.07.069

    Article  Google Scholar 

  74. A. Heydarian, R. Kharrat, S. Heydarian, A. Hashemi, Impact of nano-particles on static performance of surfactant foams. J. Am. Sci. 9(6) (2013)

    Google Scholar 

  75. G.J. Hirasaki, J.B. Lawson, Mechanisms of foam flow in porous media: Apparent viscosity in smooth capillaries. Soc. Pet. Eng. J. 25(02), 176–190 (1985). https://doi.org/10.2118/12129-PA

    Article  Google Scholar 

  76. G. Hirasaki, C.A. Miller, M. Puerto, Recent advances in surfactant EOR. SPE J. 16(04), 889–907 (2011). https://doi.org/10.2118/115386-PA

    Article  Google Scholar 

  77. T.S. Horozov, Foams and foam films stabilised by solid particles. Curr. Opin. Colloid Interface Sci. 13(3), 134–140 (2008). https://doi.org/10.1016/j.cocis.2007.11.009

    Article  Google Scholar 

  78. J. Hou, Z. Liu, S. Zhang, X.a. Yue, J. Yang, The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery. J. Pet. Sci. Eng. 47, 219–235 (2005). https://doi.org/10.1016/j.petrol.2005.04.001

    Article  Google Scholar 

  79. A.M. Howe, A. Clarke, J. Mitchell, J. Staniland, L. Hawkes, C. Whalan, Visualising surfactant enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 480, 449–461 (2015). https://doi.org/10.1016/j.colsurfa.2014.08.032

    Article  Google Scholar 

  80. T.N. Hunter, R.J. Pugh, G.V. Franks, G.J. Jameson, The role of particles in stabilising foams and emulsions. Adv. Colloid Interf. Sci. 137(2), 57–81 (2008). https://doi.org/10.1016/j.cis.2007.07.007

    Article  Google Scholar 

  81. A.F. Ibrahim, A. Emrani, H. Nasraldin, Stabilized CO2 foam for EOR applications. Paper presented at the Carbon Management Technology conference, Houston, TX, USA, 2017. https://doi.org/10.7122/486215-MS

  82. S. Jikich, CO2 EOR: Nanotechnology for mobility control studied. J. Pet. Technol. 64(07), 28–31 (2012). https://doi.org/10.2118/0712-0028-JPT

    Article  Google Scholar 

  83. S.I. Kam, W.R. Rossen, Anomalous capillary pressure, stress, and stability of solids-coated bubbles. J. Colloid Interface Sci. 213, 329 (1999)

    Article  Google Scholar 

  84. M.S. Kamal, I.A. Hussein, A.S. Sultan, Review on surfactant flooding: Phase behavior, retention, IFT, and field applications. Energy Fuel 31(8), 7701–7720 (2017). https://doi.org/10.1021/acs.energyfuels.7b00353

    Article  Google Scholar 

  85. S.I. Karakashev, O. Ozdemir, M.A. Hampton, A.V. Nguyen, Formation and stability of foams stabilized by fine particles with similar size, contact angle and different shapes. Colloids Surf. A Physicochem. Eng. Asp. 382(1), 132–138 (2011). https://doi.org/10.1016/j.colsurfa.2010.09.023

    Article  Google Scholar 

  86. M. Khajehpour, S.R. Etminan, J. Goldman, F. Wassmuth, S. Bryant, Nanoparticles as foam stabilizer for steam-foam process. SPE J. 23(06), 2232–2242 (2018). https://doi.org/10.2118/179826-PA

    Article  Google Scholar 

  87. J. Kim, L. Cote, F. Kim, W. Yuan, K. Shull, J. Huang, Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132(23), 8180–8186 (2010). https://doi.org/10.1021/ja102777p

    Article  Google Scholar 

  88. I. Kim, A. Taghavy, D. DiCarlo, C. Huh, Aggregation of silica nanoparticles and its impact on particle mobility under high-salinity conditions. J. Pet. Sci. Eng. 133, 376–383 (2015). https://doi.org/10.1016/j.petrol.2015.06.019

    Article  Google Scholar 

  89. I. Kim, A.J. Worthen, K.P. Johnston, D.A. DiCarlo, C. Huh, Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. J. Nanopart. Res. 18(4), 82 (2016). https://doi.org/10.1007/s11051-016-3395-0

    Article  Google Scholar 

  90. K. Koczo, L.A. Lobo, D.T. Wasan, Effect of oil on foam stability: Aqueous foams stabilized by emulsions. J. Colloid Interface Sci. 150(2), 492–506 (1992). https://doi.org/10.1016/0021-9797(92)90218-B

    Article  Google Scholar 

  91. T. Kostakis, R. Ettelaie, B.S. Murray, Effect of high salt concentrations on the stabilization of bubbles by silica particles. Langmuir 22(3), 1273–1280 (2006). https://doi.org/10.1021/la052193f

    Article  Google Scholar 

  92. P.M. Kruglyakov, S.I. Elaneva, N.G. Vilkova, About mechanism of foam stabilization by solid particles. Adv. Colloid Interf. Sci. 165(2), 108–116 (2011). https://doi.org/10.1016/j.cis.2011.02.003

    Article  Google Scholar 

  93. S. Kumar, A. Mandal, Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery. Appl. Surf. Sci. 420, 9–20 (2017). https://doi.org/10.1016/j.apsusc.2017.05.126

    Article  Google Scholar 

  94. L.W. Lake, Enhanced Oil Recovery (Prentice Hall, Englewood Cliffs, 1989)

    Google Scholar 

  95. D. Lee, H. Cho, J. Lee, C. Huh, K. Mohanty, Fly ash nanoparticles as a CO2 foam stabilizer. Powder Technol. 283, 77–84 (2015). https://doi.org/10.1016/j.powtec.2015.05.010

    Article  Google Scholar 

  96. Z. Li, Z. Liu, B. Li, S. Li, Q. Sun, S. Wang, Aqueous foams stabilized with particles and surfactants. Paper presented at the SPE Saudi Arabia section technical symposium and exhibition, Al-Khobar, Saudi Arabia, 2012. https://doi.org/10.2118/160840-MS

  97. S. Li, Z. Li, P. Wang, Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles. Ind. Eng. Chem. Res. 55(5), 1243–1253 (2016). https://doi.org/10.1021/acs.iecr.5b04443

    Article  Google Scholar 

  98. S. Li, C. Qiao, Z. Li, S. Wanambwa, Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide. Energy Fuel 31(2), 1478–1488 (2017). https://doi.org/10.1021/acs.energyfuels.6b03130

    Article  Google Scholar 

  99. S. Li, K. Yang, Z. Li, K. Zhang, N. Jia, Properties of CO2 foam stabilized by hydrophilic nanoparticles and nonionic surfactants. Energy Fuel 33(6), 5043–5054 (2019). https://doi.org/10.1021/acs.energyfuels.9b00773

    Article  Google Scholar 

  100. M. Liu, A. Andrianov, W.R. Rossen, Sweep efficiency in CO2 foam simulations with oil. Paper presented at the IOR 2011-16th European symposium on improved oil recovery, 2011

    Google Scholar 

  101. C. Liu, J. Zhang, I. Orcid, X. Sang, X. Kang, B. Zhang, et al., CO(2)/water emulsions stabilized by partially reduced graphene oxide. ACS Appl. Mater. Interfaces 9(20), 17613–17619 (2017)

    Article  Google Scholar 

  102. Q. Liu, H. Qu, S. Liu, Y. Zhang, S. Zhang, J. Liu, et al., Modified Fe3O4 nanoparticle used for stabilizing foam flooding for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp., 125383 (2020). https://doi.org/10.1016/j.colsurfa.2020.125383

  103. L. Lobo, D.T. Wasan, Mechanisms of aqueous foam stability in the presence of emulsified non-aqueous-phase liquids: Structure and stability of the pseudoemulsion film. Langmuir 9(7), 1668–1677 (1993). https://doi.org/10.1021/la00031a012

    Article  Google Scholar 

  104. T. Lu, Z. Li, D. Hou, Z. Xu, X. Ban, B. Zhou, Experimental and numerical evaluation of surfactant-nanoparticles foam for enhanced oil recovery under high temperature. Energy Fuel 34(1), 1005–1013 (2020). https://doi.org/10.1021/acs.energyfuels.9b03000

    Article  Google Scholar 

  105. J. Luo, L. Cote, V. Tung, A. Tan, P. Goins, J. Wu, J. Huang, Graphene oxide nanocolloids. J. Am. Chem. Soc. 132(50), 17667–17669 (2010). https://doi.org/10.1021/ja1078943

    Article  Google Scholar 

  106. Q. Lv, T. Zhou, X. Zhang, B. Zuo, Z. Dong, J. Zhang, Enhanced oil recovery using aqueous CO2 foam stabilized by particulate matter from coal combustion. Energy Fuel 34(3), 2880–2892 (2020). https://doi.org/10.1021/acs.energyfuels.9b04066

    Article  Google Scholar 

  107. K. Ma, Transport of Surfactant and Foam in Porous Media for Enhanced Oil Recovery Process (Rice University, 2013)

    Google Scholar 

  108. M. Manan, S. Farad, A. Piroozian, M. Esmail, Effects of nanoparticle types on carbon dioxide foam flooding in enhanced oil recovery. Pet. Sci. Technol. 33(12), 1286–1294 (2015)

    Article  Google Scholar 

  109. D.J. Manlowe, C.J. Radke, A pore-level investigation of foam/oil interactions in porous media. SPE Reserv. Eng. 5(04), 495–502 (1990). https://doi.org/10.2118/18069-PA

    Article  Google Scholar 

  110. S.K. Masalmeh, H. Hillgartner, R.A.-M. Al-Mjeni, X. Jing, Simultaneous injection of miscible gas and polymer (SIMGAP) to improve oil recovery and sweep efficiency from layered carbonate reservoirs. Paper presented at the SPE EOR Conference at Oil & Gas West Asia, Muscat, Oman, 2010. https://doi.org/10.2118/129645-MS

  111. E.S. Mathew, A.R. Shaik, A. Al Sumaiti, W. AlAmeri, Effect of oil presence on CO2 foam based mobility control in high temperature high salinity carbonate reservoirs. Energy Fuel 32(3), 2983–2992 (2018). https://doi.org/10.1021/acs.energyfuels.7b03490

    Article  Google Scholar 

  112. W.D. McCain, The Properties of Petroleum Fluids (Pennwell Books, Tulsa, 1990), p. 19900301

    Google Scholar 

  113. M.B.J. Meinders, T. van Vliet, The role of interfacial rheological properties on Ostwald ripening in emulsions. Adv. Colloid Interf. Sci. 108–109, 119–126 (2004). https://doi.org/10.1016/j.cis.2003.10.005

    Article  Google Scholar 

  114. D. Mo, J. Yu, N. Liu, R.L. Lee, Study of the effect of different factors on nanoparticle-stablized CO2 foam for mobility control. Paper presented at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 2012. https://doi.org/10.2118/159282-MS

  115. D. Mo, B. Jia, J. Yu, N. Liu, R. Lee, Study nanoparticle-stabilized CO2 foam for oil recovery at different pressure, temperature, and rock samples. Paper presented at the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 2014. https://doi.org/10.2118/169110-MS

  116. M. Morvan, P. Moreau, G. Degre, J. Leng, C. Masselon, J. Bouillot, A. Zaitoun, New viscoelastic fluid for chemical EOR. Paper presented at the SPE international symposium on oilfield chemistry, The Woodlands, TX, USA, 2009. https://doi.org/10.2118/121675-MS

  117. C. Negin, A. Saeedi, Q. Xie, Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3 (2016). https://doi.org/10.1016/j.petlm.2016.11.007

  118. P. Nguyen, H. Fadaei, D. Sinton, Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery. Energy Fuel 28(10), 6221–6227 (2014). https://doi.org/10.1021/ef5011995

    Article  Google Scholar 

  119. A.D. Nikolov, D.T. Wasan, D.W. Huang, D.A. Edwards, The effect of oil on foam stability: Mechanisms and implications for oil displacement by foam in porous media. Paper presented at the SPE annual technical conference and exhibition, New Orleans, LA, USA, 1986. https://doi.org/10.2118/15443-MS

  120. G. Palazzo, D. Berti, Colloidal Foundations of Nanoscience (Elsevier, 2014)

    Google Scholar 

  121. C. Palocci, A. Barbetta, A. La Grotta, M. Dentini, Porous biomaterials obtained using supercritical CO2−water emulsions. Langmuir 23(15), 8243–8251 (2007). https://doi.org/10.1021/la700947g

    Article  Google Scholar 

  122. R.J. Pugh, Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interf. Sci. 64, 67–142 (1996). https://doi.org/10.1016/0001-8686(95)00280-4

    Article  Google Scholar 

  123. C. Qian, A. Telmadarreie, M. Dong, S. Bryant, Synergistic effect between surfactant and nanoparticles on the stability of foam in EOR processes. SPE J. 25(02), 883–894 (2020). https://doi.org/10.2118/195310-PA

    Article  Google Scholar 

  124. M.D. Rad, Natural Gas Foam Stabilization by a Mixture of Oppositely Charged Nanoparticle and Surfactant and the Underlying Mechanisms. Master of Science, University of Calgary. (2018)

    Google Scholar 

  125. R. Rafati, A.S. Haddad, H. Hamidi, Experimental study on stability and rheological properties of aqueous foam in the presence of reservoir natural solid particles. Colloids Surf. A Physicochem. Eng. Asp. 509, 19–31 (2016). https://doi.org/10.1016/j.colsurfa.2016.08.087

    Article  Google Scholar 

  126. K. Raghav Chaturvedi, R. Kumar, J. Trivedi, J.J. Sheng, T. Sharma, Stable silica nanofluids of an oilfield polymer for enhanced CO2 absorption for oilfield applications. Energy Fuel 32(12), 12730–12741 (2018). https://doi.org/10.1021/acs.energyfuels.8b02969

    Article  Google Scholar 

  127. K.T. Raterman, An investigation of oil destabilization of nitrogen foams in porous media. Paper presented at the SPE annual technical conference and exhibition, San Antonio, TX, USA, 1989. https://doi.org/10.2118/19692-MS

  128. P. Rattanaudom, B.-J. Shiau, U. Suriyapraphadilok, A. Charoensaeng, Effect of pH on silica nanoparticle-stabilized foam for enhanced oil recovery using carboxylate-based extended surfactants. J. Pet. Sci. Eng. 196, 107729 (2021). https://doi.org/10.1016/j.petrol.2020.107729

    Article  Google Scholar 

  129. F. Ravera, E. Santini, G. Loglio, M. Ferrari, L. Liggieri, Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers. J. Phys. Chem. B 110(39), 19543–19551 (2006). https://doi.org/10.1021/jp0636468

    Article  Google Scholar 

  130. V.G. Reidenbach, P.C. Harris, Y.N. Lee, D.L. Lord, Rheological study of foam fracturing fluids using nitrogen and carbon dioxide. SPE Prod. Eng. 1(01), 31–41 (1986). https://doi.org/10.2118/12026-PA

    Article  Google Scholar 

  131. J.V. Robinson, W.W. Woods, A method of selecting foam inhibitors. J. Soc. Chem. Ind. 67(9), 361–365 (1948). https://doi.org/10.1002/jctb.5000670908

    Article  Google Scholar 

  132. A.U. Rognmo, N. Al-Khayyat, S. Heldal, I. Vikingstad, O. Eide, S.B. Fredriksen, … M.A. Ferno, Performance of silica nanoparticles in CO2-foam for EOR and CCUS at tough reservoir conditions. Paper presented at the SPE Norway one day seminar, Bergen, Norway, 2018a. https://doi.org/10.2118/191318-MS

  133. A.U. Rognmo, S. Heldal, M.A. Fernø, Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: Enhanced CO2 storage and oil recovery from mature oil reservoirs. Fuel 216, 621–626 (2018b). https://doi.org/10.1016/j.fuel.2017.11.144

    Article  Google Scholar 

  134. W.R. Rossen, W.J. Renkema, Success of foam SAG processes in heterogeneous reservoirs. Paper presented at the SPE annual technical conference and exhibition, Anaheim, CA, USA, 2007. https://doi.org/10.2118/110408-MS

  135. W.R. Rossen, M.W. Wang, Modeling foams for acid diversion. SPE J. 4(02), 92–100 (1999). https://doi.org/10.2118/56396-PA

    Article  Google Scholar 

  136. S. Sakthivel, A. Adebayo, M.Y. Kanj, Experimental evaluation of carbon dots stabilized foam for enhanced oil recovery. Energy Fuel 33(10), 9629–9643 (2019). https://doi.org/10.1021/acs.energyfuels.9b02235

    Article  Google Scholar 

  137. O.O. Samuel, Effect of Reservoir Heterogeneity on Immiscible Foam Enhanced Oil Recovery (Delft University of Technology, 2009)

    Google Scholar 

  138. L.L. Schramm, J.J. Novosad, Micro-visualization of foam interactions with a crude oil. Colloids Surf. 46(1), 21–43 (1990). https://doi.org/10.1016/0166-6622(90)80046-7

    Article  Google Scholar 

  139. L.L. Schramm, J.J. Novosad, The destabilization of foams for improved oil recovery by crude oils: Effect of the nature of the oil. J. Pet. Sci. Eng. 7(1), 77–90 (1992). https://doi.org/10.1016/0920-4105(92)90010-X

    Article  Google Scholar 

  140. L.L. Schramm, F. Wassmuth, Foams: Basic principles, in Foams: Fundamentals and Applications in the Petroleum Industry, vol. 242, (American Chemical Society, 1994), pp. 3–45

    Chapter  Google Scholar 

  141. D. Shan, W.R. Rossen, Optimal injection strategies for foam IOR. Paper presented at the SPE/DOE improved oil recovery symposium, Tulsa, OK, USA, 2002. https://doi.org/10.2118/75180-MS

  142. S. Shayegi, P.A. Schenewerk, J.M. Wolcott, Enhancement of Residual Oil Recovery Using a Mixture of Nitrogen or Methane Diluted with Carbon Dioxide in a Single-Well Injection Process (Google Patents, 1998)

    Google Scholar 

  143. J. Sheng, Enhanced Oil Recovery Field Case Studies (Elsevier Science & Technology, Oxford, 2013)

    Google Scholar 

  144. L. Siggel, M. Santa, M. Hansch, M. Nowak, M. Ranft, H. Weiss, … J. Tinsley, A new class of viscoelastic surfactants for enhanced oil recovery. Paper presented at the SPE improved oil recovery symposium, Tulsa, OK, USA, 2012. https://doi.org/10.2118/153969-MS

  145. R. Singh, K.K. Mohanty, Foams stabilized by in-situ surface activated nanoparticles in bulk and porous media. Paper presented at the SPE annual technical conference and exhibition, Amsterdam, The Netherlands, 2014. https://doi.org/10.2118/170942-MS

  146. R. Singh, K.K. Mohanty, Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery. Energy Fuel 29(2), 467–479 (2015). https://doi.org/10.1021/ef5015007

    Article  Google Scholar 

  147. R. Singh, K.K. Mohanty, Foams stabilized by in-situ surface-activated nanoparticles in bulk and porous media. SPE J. 21(01), 121–130 (2016). https://doi.org/10.2118/170942-PA

    Article  Google Scholar 

  148. R. Singh, K.K. Mohanty, Nanoparticle-stabilized foams for high-temperature, high-salinity oil reservoirs. Paper presented at the SPE annual technical conference and exhibition, San Antonio, TX, USA, 2017. https://doi.org/10.2118/187165-MS

  149. R. Singh, A. Gupta, K.K. Mohanty, C. Huh, D. Lee, H. Cho, Fly ash nanoparticle-stabilized CO2-in-water foams for gas mobility control applications. Paper presented at the SPE annual technical conference and exhibition, Houston, TX, USA, 2015. https://doi.org/10.2118/175057-MS

  150. R. Singh, K. Panthi, U. Weerasooriya, K.K. Mohanty, Multistimuli-responsive foams using an anionic surfactant. Langmuir 34(37), 11010–11020 (2018). https://doi.org/10.1021/acs.langmuir.8b01796

    Article  Google Scholar 

  151. T. Skauge, K. Spildo, A. Skauge, Nano-sized particles for EOR. Paper presented at the SPE improved oil recovery symposium, 2010

    Google Scholar 

  152. R.L. Slobod, H.A. Jr. Koch, High-pressure gas injection- mechanism of recovery increase. Paper presented at the drilling and production practice, New York, NY, USA, 1953

    Google Scholar 

  153. K. Spildo, A.M. Johannessen, A. Skauge, Low salinity waterflood at reduced capillarity. Paper presented at the SPE improved oil recovery symposium, Tulsa, OK, USA, 2012. https://doi.org/10.2118/154236-MS

  154. A. Stocco, E. Rio, B.P. Binks, D. Langevin, Aqueous foams stabilized solely by particles. Soft Matter 7(4), 1260–1267 (2011). https://doi.org/10.1039/C0SM01290D

    Article  Google Scholar 

  155. Y.Q. Sun, T. Gao, The optimum wetting angle for the stabilization of liquid-metal foams by ceramic particles: Experimental simulations. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33, 3285–3292 (2002). https://doi.org/10.1007/s11661-002-0315-y

    Article  Google Scholar 

  156. Q. Sun, Z. Li, S. Li, L. Jiang, J. Wang, P. Wang, Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles. Energy Fuel 28(4), 2384–2394 (2014). https://doi.org/10.1021/ef402453b

    Article  Google Scholar 

  157. X. Sun, Y. Zhang, G. Chen, Z.J.E. Gai, Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies 10(3), 345 (2017)

    Article  Google Scholar 

  158. F.-Q. Tang, Z. Xiao, J.-A. Tang, L. Jiang, The effect of SiO2 particles upon stabilization of foam. J. Colloid Interface Sci. 131(2), 498–502 (1989). https://doi.org/10.1016/0021-9797(89)90192-6

    Article  Google Scholar 

  159. S. Tcholakova, Z. Mitrinova, K. Golemanov, N.D. Denkov, M. Vethamuthu, K.P. Ananthapadmanabhan, Control of Ostwald ripening by using surfactants with high surface modulus. Langmuir 27(24), 14807–14819 (2011). https://doi.org/10.1021/la203952p

    Article  Google Scholar 

  160. A.K. Vikingstad, Static and Dynamic Studies of Foam and Foam-Oil Interactions. PhD, University of Bergen, (2006)

    Google Scholar 

  161. T.-F. Wang, J.-X. Wang, L. Han, J.-H. Wang, Y. Zhu, Study on the stabilizing effect of aluminum hydroxide nanoparticles on foams. J. Xian Shiyou Univ., 78–81 (2012)

    Google Scholar 

  162. S. Wang, Y. Shi, B.-M. Li, Neural representation of cost–benefit selections in rat anterior cingulate cortex in self-paced decision making. Neurobiol. Learn. Mem. 139, 1–10 (2017). https://doi.org/10.1016/j.nlm.2016.12.003

    Article  Google Scholar 

  163. P. Wang, Q. You, L. Han, W. Deng, Y. Liu, J. Fang, et al., Experimental study on the stabilization mechanisms of CO2 foams by hydrophilic silica nanoparticles. Energy Fuel 32(3), 3709–3715 (2018). https://doi.org/10.1021/acs.energyfuels.7b04125

    Article  Google Scholar 

  164. D.T. Wasan, K. Koczo, A.D. Nikolov, Mechanisms of aqueous foam stability and antifoaming action with and without oil, in Foams: Fundamentals and Applications in the Petroleum Industry, vol. 242, (American Chemical Society, 1994), pp. 47–114

    Chapter  Google Scholar 

  165. D. Weaire, S. Hutzler, P.-G. Gennes, The physics of foams. Phys. Today 54 (2001). https://doi.org/10.1063/1.1366070

  166. T. Witten, P. Pincus, Structured Fluids: Polymers, Colloids (Surfactants, 2010)

    Google Scholar 

  167. A. Worthen, H. Bagaria, Y. Chen, S.L. Bryant, C. Huh, K.P. Johnston, Nanoparticle stabilized carbon dioxide in water foams for enhanced oil recovery. Paper presented at the SPE improved oil recovery symposium, Tulsa, OK, USA, 2012. https://doi.org/10.2118/154285-MS

  168. A. Worthen, H. Bagaria, Y. Chen, S. Bryant, C. Huh, K. Johnston, Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture. J. Colloid Interface Sci. 391, 142–151 (2013). https://doi.org/10.1016/j.jcis.2012.09.043

    Article  Google Scholar 

  169. D. Xing, B. Wei, W. McLendon, R. Enick, S. McNulty, K. Trickett, et al., CO2-soluble/nonionic, water-soluble surfactants that stabilize CO2-in-brine foams. SPE J. 17(4), 1172–1185 (2012). https://doi.org/10.2118/129907-PA

    Article  Google Scholar 

  170. Z. Xue, K. Panthi, Y. Fei, K.P. Johnston, K.K. Mohanty, CO2-soluble ionic surfactants and CO2 foams for high-temperature and high-salinity sandstone reservoirs. Energy Fuel 29(9), 5750–5760 (2015). https://doi.org/10.1021/acs.energyfuels.5b01568

    Article  Google Scholar 

  171. Z. Xue, A. Worthen, A. Qajar, I. Robert, S.L. Bryant, C. Huh, et al., Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes. J. Colloid Interface Sci. 461, 383–395 (2016). https://doi.org/10.1016/j.jcis.2015.08.031

    Article  Google Scholar 

  172. W. Yang, T. Wang, Z. Fan, Highly stable foam stabilized by alumina nanoparticles for EOR: Effects of sodium cumenesulfonate and electrolyte concentrations. Energy Fuel 31(9), 9016–9025 (2017a). https://doi.org/10.1021/acs.energyfuels.7b01248

    Article  Google Scholar 

  173. W. Yang, T. Wang, Z. Fan, Q. Miao, Z. Deng, Y. Zhu, Foams stabilized by in situ-modified nanoparticles and anionic surfactants for enhanced oil recovery. Energy Fuel 31(5), 4721–4730 (2017b). https://doi.org/10.1021/acs.energyfuels.6b03217

    Article  Google Scholar 

  174. N. Yekeen, A.K. Idris, M.A. Manan, A.M. Samin, A.R. Risal, T.X. Kun, Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chin. J. Chem. Eng. 25(3), 347–357 (2017). https://doi.org/10.1016/j.cjche.2016.08.012

    Article  Google Scholar 

  175. N. Yekeen, M.A. Manan, A.K. Idris, E. Padmanabhan, R. Junin, A.M. Samin, et al., A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery. J. Pet. Sci. Eng. 164, 43–74 (2018). https://doi.org/10.1016/j.petrol.2018.01.035

    Article  Google Scholar 

  176. J. Yu, C. An, D. Mo, N. Liu, R.L. Lee, Foam mobility control for nanoparticle-stabilized supercritical CO2 foam. Paper presented at the SPE improved oil recovery symposium, Tulsa, OK, USA, 2012a. https://doi.org/10.2118/153336-MS

  177. J. Yu, N. Liu, L. Li, R.L. Lee, Generation of nanoparticle-stabilized supercritical CO2 foams. Paper presented at the Carbon Management Technology conference, Orlando, FL, USA, 2012b. https://doi.org/10.7122/150849-MS

  178. J. Yu, D. Mo, N. Liu, R. Lee, The application of nanoparticle-stabilized CO2 foam for oil recovery. Paper presented at the SPE international symposium on oilfield chemistry, The Woodlands, TX, USA, 2013. https://doi.org/10.2118/164074-MS

  179. Y. Zeng, R. Farajzadeh, A.A. Eftekhari, S. Vincent-Bonnieu, A. Muthuswamy, W.R. Rossen, et al., Role of gas type on foam transport in porous media. Langmuir 32(25), 6239–6245 (2016). https://doi.org/10.1021/acs.langmuir.6b00949

    Article  Google Scholar 

  180. S.Y. Zhang, Foams Stabilized by Laponite/Surfactants and HMHEC/Surfactants (Shandong University, Shandong, 2008)

    Google Scholar 

  181. X. Zhang, G. Zhang, J. Ge, Y. Wang, CO foam stabilized with switchable surfactants and modified nanoparticles effected by PH and salinity. Paper presented at the SPE Europec featured at 82nd EAGE Conference and Exhibition, Amsterdam, The Netherlands, 2020. https://doi.org/10.2118/200584-MS

Download references

Acknowledgments

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC). The second author thanks the Islamic Development Bank (IDB) for its support during his internship at Dr. Nassar Research Group at the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashaat N. Nassar .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

A :

Surface area, also used as the cross-sectional area of a core

B :

Bridging coefficient

C s :

Surfactant concentration in solution

D i :

Diameter of a foam bubble

D med :

Median of the volume-averaged bubble diameter in the foam

D sm :

Sauter mean diameter

E :

Entering coefficient

E:

Energy required to remove particle from the gas/liquid interface

EG:

Gibbs surface elasticity

EM:

Marangoni surface elasticity

f g :

Foam quality

k :

Core permeability

L :

Lamella number, core length

MRF :

Mobility reduction ratio

\( {P}_c^{\mathrm{max}} \) :

Maximum capillary pressure

\( {P}_c^{\ast } \) :

Limiting capillary pressure

PG, PL:

Pressure on each side of an interface (gas, liquid)

P:

Pressure difference across an interface or pressure change

p :

Nanoparticle packing parameter

Q :

Injection rate

R :

Radius of a curved surface or interface, also used as the gas constant, radius of nanoparticles

S :

Spreading coefficient

R1, R2:

Principal radii of curvature of a surface or interface

T :

Absolute temperature

Ug:

The superficial velocity of the gas

U poly :

Polydispersity

Uw:

The superficial velocity of water

ut:

The total foam superficial velocity

σ :

Surface or interfacial tension

σ og :

The interfacial tension between oil and gas

σ wo :

The interfacial tension between water and oil

σ wg :

The interfacial tension between water and gas

ε :

Viscoelastic modulus

θ :

Contact angle

Γs:

Surface excess concentration of surfactant

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mheibesh, Y., Sagala, F., Nassar, N.N. (2021). Using Nanoparticles as Gas Foam Stabilizing Agents for Enhanced Oil Recovery Applications. In: Nassar, N.N., Cortés, F.B., Franco, C.A. (eds) Nanoparticles: An Emerging Technology for Oil Production and Processing Applications. Lecture Notes in Nanoscale Science and Technology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-12051-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12051-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12050-8

  • Online ISBN: 978-3-319-12051-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics