Skip to main content

Modelling Global Container Freight Transport Demand

  • Chapter
  • First Online:
Handbook of Ocean Container Transport Logistics

Abstract

The objective of this chapter is to discuss methods and techniques for a quantitative and descriptive analysis of future container transport demand at a global level. Information on future container transport flows is useful for various purposes. It is instrumental for the assessment of returns of investments in network infrastructure and fleets, the prediction of environmental impacts of transport and the analysis of success of governmental policies about maritime markets and hinterland transport systems. As the future development of global freight flows is unknown and quite uncertain, models are used to define plausible and consistent scenarios of the future performance of the sector.

Models of global container transport demand can follow the generic architecture available for freight transport modelling. We describe the methods and techniques available by reviewing the literature with a specific focus on global level freight modelling and treat the subject in two main parts. One part involves modelling the demand for movement between regions, i.e. the outcome of the processes of production, consumption and trade. The second part involves the modelling of demand for transport services by mode and route of transport, including the demand for maritime and inland port services. In both parts we find that surprisingly little research has been conducted specifically for descriptive models of global container movements.

Future work can focus on the linkages between container transport and supply chain management. This may include a better understanding of the contribution of shippers’ preferences to observed shipping choices. Also, future developments in geographic restructuring of supply chains because of changes in manufacturing locations or distribution structures, could be looked into. Finally, as global, integrative models do not yet exist, combining new trade and transport network models in a consistent way should provide new tools for long term forecasting and policy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this entails a simple, static view on the system. Due to several reasons (imperfect knowledge and anticipating capability, non-zero response times, delayed responses due to inertia, etcetera) spatial equilibrium will probably never be reached. Nevertheless, this model provides an explanation of freight transport and its relation to the global economy that is tractable with currently available aggregate data (see e.g. Harker 1985 for an early formulation).

  2. 2.

    A relatively new approach is the application of Systems Dynamics modelling, following the Club of Rome’s world model. We do not discuss this stream of work here as we limit ourselves to models which allow a detailed spatial analysis at global scale and are based on widely accepted economic theories.

  3. 3.

    From a micro-economic theoretical perspective, the CES function is closely related to the logit model. Anderson et al. (1987) demonstrate that it is a special case of the logit model.

References

  • Anderson, J. E., & Yoto, V. (2010). The changing incidence of geography. The American Economic Review, 100(5), 2157–2186.

    Article  Google Scholar 

  • Anderson, S. P., De Palma, A., & Jacques-Francois, T. (1987). The CES is a discrete choice model? Economics Letters, 24(2), 139–140.

    Article  Google Scholar 

  • Bergstrand, J. H., Egger, P., & Larch, M. (2013). Gravity redux: Estimation of gravity-equation coefficients, elasticities of substitution, and general equilibrium comparative statics under asymmetric bilateral trade costs. Journal of International Economics, 89, 110121.

    Article  Google Scholar 

  • Brooks, M. R., Puckett, S. M., Hensher, D. A., & Sammons, A. (2011). Understanding mode choice decisions: A study of Australian freight shippers, ITLS working paper ITLS-WP-11-20. Sydney: University of Sydney.

    Google Scholar 

  • Capros, P., Georgakopoulos, T., Filippoupolitis, A., Kotsomiti, S., & Atsaves, G. (1997). The GEM-E3 model for the European Union: Reference manual National Technical University of Athens and others.

    Google Scholar 

  • Chou, C. C. (2009). An empirical study on port choice behaviors of shippers in a multiple-port region. Marine Technology Society Journal, 43(3), 71–77.

    Article  Google Scholar 

  • Davydenko, I., Thissen, M., & Tavasszy, L. (2014). Translation of trade flows into transport flows in European logistics facility choice model. In Transportation Research Board 93rd Annual Meeting (No. 14-2847).

    Google Scholar 

  • De Benedictis, L., & Tajoli, L. (2011). The world trade network. World Economy, 34, 1417–1454.

    Google Scholar 

  • De Jong, G. (2014). Freight service valuation and elasticities. In L. A. Tavasszy & G. de Jong (Eds.), Modelling freight transport. London: Elsevier.

    Google Scholar 

  • De Langen, P. W. (2007). Port competition and selection in contestable hinterlands; the case of Austria. European Journal of Transport and Infrastructure Research, 7(1), 1–14.

    Google Scholar 

  • De Langen, P. W., Van Meijeren, J., & Tavasszy, L. A. (2012). Combining models and commodity chain research for making long-term projections of port throughput: An application to the Hamburg-Le Havre range. European Journal of Transport & Infrastructure Research, 12(3), 310–331.

    Google Scholar 

  • DHL. (2012). Delivering tomorrow—Dialogue on future trends. www.delivering-tomorrow.com/. Accessed 27 Oct 2014.

  • Erlander, S., & Stewart, N. F. (1990). The gravity model in transportation analysis. Utrecht: VSP.

    Google Scholar 

  • Feo-Valero, M., García-Menéndez, L., & Garrido-Hidalgo, R. (2011). Valuing freight transport time using transport demand modeling: A bibliographical review. Transport Reviews, 31(5), 625–651.

    Article  Google Scholar 

  • Fremont, A. (2007). Global maritime networks: The case of Maersk. Journal of Transport Geography, 15(6), 431–442.

    Google Scholar 

  • Friedrich, H., Tavasszy, L. A., & Davydenko, I. (2014). Distribution structures. In L. A. Tavasszy, & G. de Jong (Eds.), Modelling freight transport. London: Elsevier.

    Google Scholar 

  • Giannopoulos, G., Aifadopoulou, G., & Torok, A. (2007). A port choice model for the transshipment of containers in eastern Mediterranean. Athens: Hellenic Institute of Transport.

    Google Scholar 

  • Gunning, J. W., & Keyzer, M. A. (1995). Applied general equilibrium models for policy analysis. Handbook of development economics, 3(1), 2025–2107.

    Article  Google Scholar 

  • Guy, E., & Urli, B. (2006). Port selection and multicriteria analysis: An application to the Montreal-New York alternative. Maritime Economics & Logistics, 8(2), 169–186.

    Google Scholar 

  • Halim, R. A., Tavasszy, L. A., & Seck, M. D. (2012). Modeling the global freight transportation system: A multi-level modeling perspective. Proceedings of the 2012 Winter Simulation Conference (WSC), pp. 1–13.

    Google Scholar 

  • Hummels, D., & Schaur, G. (2012). Time as a trade barrier (No. w17758). National Bureau of Economic Research.

    Google Scholar 

  • Hausman, W. H., Lee, H. L., & Subramanian, U. (2013) The impact of logistics performance on trade. Production and Operations Management, 22(2), 236–252.

    Article  Google Scholar 

  • HIDC. (2014). http://www.ndl.nl/services/faq/what-is-the-difference-between-an-edc-an-rdc-and-a-bdc/. Accessed 5 Feb 2014.

  • Ivanova, O. (2014). Modelling inter-regional freight demand with inputoutput, gravity and SCGE methodologies. In L. A. Tavasszy & G. de Jong (eds.), Modelling freight transport. London: Elsevier.

    Google Scholar 

  • Ivanova, O., Heyndrickx, C., Spitaels, K., Tavasszy, L. A., Manshanden, W., & Snelder, M. (2007). RAEM: version 3.0. Leuven: TML. www.tmleuven.be/project/raem/RAEMFinalreport.pdf. Accessed 27 Oct 2014.

  • Jong, G. de, & Ben-Akiva, M. (2007). A micro-simulation model of shipment size and transport chain choice. Transportation Research B, 41(9), 950–965.

    Article  Google Scholar 

  • Jourquin, B., & Beuthe, M. (1996). Transportation policy analysis with a geographic information system: The virtual network of freight transportation in Europe. Transportation Research Part C, 4(6), 359371.

    Article  Google Scholar 

  • Jula, P., & Leachman, R. C. (2011). Long-and short-run supply-chain optimization models for the allocation and congestion management of containerized imports from Asia to the United States. Transportation Research Part E: Logistics and Transportation Review, 47(5), 593–608.

    Google Scholar 

  • Kato, T., Hanaoka, S., Chin, A. T., & Kawasaki, T. (2012). Investigating sea shift in international freight transport: A case between Southeast Asia and the US. www.titech.ac.jp. Accessed 27 Oct 2014.

  • Lewis, D. B (1994). Freight mode choice: Air transport versus ocean transport in the 1990’s, FTL Report 94-9. Cambridge: MIT.

    Google Scholar 

  • Lirn, T. C., Thanopoulou, H. A., Beynon, M. J., & Beresford, A. K. C. (2004). An application of AHP on transhipment port selection: A global perspective. Maritime Economics and Logistics, 6, 70–91.

    Article  Google Scholar 

  • Lloyd’s Register, QinetiQ, & University of Strathclyde. (2013). Global marine trends 2030. London: Lloyd’s Register Group Limited.

    Google Scholar 

  • Malchow, M., & Kanafani, A. (2001). A disaggregate analysis of factors influencing port selection. Maritime Policy & Management, 28(3), 265–277.

    Google Scholar 

  • Malchow, M. B., & Kanafani, A. (2004). A disaggregate analysis of port selection. Transportation Research E, 40, 317–337.

    Article  Google Scholar 

  • Mansur, A., Whalley, J. S., & Shoven, J. B. (1981). Numerical specification of applied general equilibrium models: Estimation, calibration, and data. Applied general equilibrium analysis. 3. Conference on Applied General Equilibrium Analysis, San Diego.

    Google Scholar 

  • Mazzarino, M. (2012). Strategic scenarios of global logistics: What lies ahead for Europe? European Transport Research Review, 4, 1–18.

    Article  Google Scholar 

  • Maurer, H. (2008). Development of an Integrated Model for Estimating Emissions from Freight Transport, PhD. Dissertation. Leeds: University of Leeds, Institute for Transport Studies.

    Google Scholar 

  • Meng, Q., Wang, X., & Miao, L. (2013). Boundary estimation of probabilistic port hinterland for intermodal freight transportation operations, Selected proceedings of the WCTR. London: WCTRS.

    Google Scholar 

  • MIT. (2011). Future freight flows study. http://ctl.mit.edu/research/futurefreightflows/scenarios. Accessed 27 Oct 2014.

  • Murphy, P., & Daley, J. (1994). A comparative analysis of port selection factors. Transportation Journal, 3, 15–21.

    Google Scholar 

  • Murphy, P., Daley, J., & Dalenberg, D. (1992). Port selection criteria: An application of a transportation research framework. Logistics and Transportation Review, 28, 237–255.

    Google Scholar 

  • Nir, A.-S., Lin, K., & Liang, G.-S. (2003). Port choice behaviour—From the perspective of the shipper. Maritime Policy and Management, 30, 165–173.

    Article  Google Scholar 

  • Notteboom, T., & Rodrigue, J.-P. (2009). The future of containerization: Perspectives from maritime and inland freight distribution. Geojournal, 74(1), 7–22.

    Article  Google Scholar 

  • Port of Rotterdam. (2011). Port vision 2030. Rotterdam: Port of Rotterdam.

    Google Scholar 

  • Rodrigue, J.-P. (2006). Challenging the derived transport demand thesis: Issues in freight distribution. Environment & Planning A, 38(8), 1449–1462.

    Article  Google Scholar 

  • Song, D. W., & Yeo, K. T. (2004). A competitive analysis of Chinese container ports using the analytic hierarchy process. Maritime Economics and Logistics, 6, 34–52.

    Article  Google Scholar 

  • Srinivasan, T. N., & Archana, V. (2009). India in the global and regional trade: Determinants of Aggregate and Bilateral Trade Flows and Firms’ Decision to Export. ICRIER Working Paper 232.

    Google Scholar 

  • Tang, L. C., Low, J. M. W., & Lam, S. W. (2008). Understanding port choice behavior—A network perspective, Networks and Spatial Economics.

    Google Scholar 

  • Tavasszy, L. A., & G. de Jong (2014). Modelling freight transport. London: Elsevier.

    Google Scholar 

  • Tavasszy, L. A., Minderhoud, M., Perrin, J.-F., & Notteboom, T. (2011). A strategic network choice model for global container flows: Specification, estimation and application. Journal of Transport Geography, 19(6), 1163–1172

    Google Scholar 

  • Tavasszy, L. A., Ruijgrok, C. J., Thissen, M. J. P. M. 2003). Emerging global logistics networks: Implications for transport systems and policies, Growth and Change: A Journal of Urban and Regional Policy, 34(4), 456–472.

    Google Scholar 

  • Tavasszy, L. A., Smeenk, B., & Ruijgrok, C. J. (1998). A DSS for modelling logistics chains in freight transport systems analysis. International Transactions in Operational Research, 5(6), 447–459.

    Google Scholar 

  • Tavasszy, L. A., Ruijgrok, K., & Davydenko, I. (2012). Incorporating logistics in freight transport demand models: State-of-the-art and research opportunities. Transport Reviews, 32(2), 203–219.

    Article  Google Scholar 

  • Tiwari, P., Itoh, H., & Doi, M. (2003). Shippers’ port and carrier selection behavior in China: A discrete choice analysis. Maritime Economics and Logistics, 5, 23–39.

    Article  Google Scholar 

  • Tongzon, J. L. (2009). Port choice and freight forwarders. Transportation research Part E, 45, 186–195.

    Article  Google Scholar 

  • Tsuboi, T., Hyodo, T., & Wakita, T. (2010). International Marine/Air cargo modal split model considering logistics cost. Transport Policy Studies’ Review, 12(4), 32–41.

    Google Scholar 

  • Van Diepen, L. A., & Tavasszy, K. C. (2012). Predicting the effects of global economic scenarios on long term container port throughput, 2nd Asian Logistics Round Table, Vancouver.

    Google Scholar 

  • Veldman, S. J., & Bückmann, E. H. (2003). A model on container port competition: An application for the west European container hub-ports. Maritime Economics & Logistics, 5(1), 3–22.

    Article  Google Scholar 

  • Walmsley, T., Aguiar, A., & Narayanan B. (2012). Introduction to the Global Trade Analysis Project and the GTAP Data Base, GTAP Working Paper No. 67. West Lafayette: Purdue University.

    Google Scholar 

  • Yamada, T., Imai, K., Nakamura, T., & Taniguchi, E. (2011). A supply chain-transport supernetwork equilibrium model with the behaviour of freight carriers. Transportation Research E, 47(6), 887907.

    Article  Google Scholar 

  • Yang, D., Ong, G. P., & Chin, T. H. (2013). An exploratory study on the effect of trade data aggregation on international freight mode choice. Maritime Policy & Management, 41(3), 212–223.

    Google Scholar 

  • Yeo, G. T., Ng, A. K., Lee, P. T. W., & Yang, Z. (2013). Modelling port choice in an uncertain environment. Maritime Policy & Management, 41(3), 251–267.

    Google Scholar 

  • Zhang, M., Wiegmans, B., & Tavasszy, L. (2013). Optimization of multimodal networks including environmental costs: A model and findings for transport policy. Computers in Industry, 64(2), 136–145.

    Article  Google Scholar 

  • Zondag, B., Bucci, P., Gützkow, P., & de Jong, G. (2010). Port competition modeling including maritime, port, and hinterland characteristics. Maritime Policy & Management, 37(3), 179–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lóránt A. Tavasszy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tavasszy, L., Ivanova, O., Aprilyanto Halim, R. (2015). Modelling Global Container Freight Transport Demand. In: Lee, CY., Meng, Q. (eds) Handbook of Ocean Container Transport Logistics. International Series in Operations Research & Management Science, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-11891-8_15

Download citation

Publish with us

Policies and ethics