Skip to main content

Abstract

The Trk family is composed of three principal members (A, B and C), also termed neurotrophin tyrosine kinase receptors (NTRK1, NTRK2, NTRK3), with several additional splice variants, which in humans are located on three different chromosomes (1, 9, 15). The Trk proteins are receptors for the neurotrophin family of growth factors (NGF, BDNF, NT-3, and NT4/5); they also bind and respond more weakly to the proforms of these neurotrophins. Both the neurotrophins and pro-neurotrophins utilize other receptors (p75NTR, sortilin) that can interact with the Trks and affect their activity. The Trks are predominantly expressed in nervous tissues, where they are essential for the growth, development, and maintenance of select types of both peripheral and central neurons and are involved in neurodegenerative diseases. The Trks are also found in some nonneuronal tissues and in a wide variety of tumors, where they can play an active role in tumor progression and metastasis. The activated Trk receptors primarily bind and signal through Shc, FRS2, and PLCγ, which in turn activate PI3K, the Erks, and the hydrolysis of inositol phospholipids, among other events, leading to the modulation of gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin-Zanca D, Mitra G, Long LK, Barbacid M. Molecular characterization of the human trk oncogene. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 2):983–92.

    CAS  PubMed  Google Scholar 

  2. Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991;252:554–8.

    CAS  PubMed  Google Scholar 

  3. Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350:158–60.

    CAS  PubMed  Google Scholar 

  4. Klein R, Jing SQ, Nanduri V, O'Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65:189–97.

    CAS  PubMed  Google Scholar 

  5. Klein R, Lamballe F, Bryant S, Barbacid M. The trkB tyrosine protein kinase is a receptor for neurotrophin-4. Neuron. 1992;8:947–56.

    CAS  PubMed  Google Scholar 

  6. Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J, Burton LE, Stanton BR, Kaplan DR, Hunter T, Nikolics K, Parade LF. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell. 1991;65:895–903.

    CAS  PubMed  Google Scholar 

  7. Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, Radziejewski C, Glass DJ, Masiakowski P, Furth ME, Valenzuela DM, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell. 1991;65:885–93.

    CAS  PubMed  Google Scholar 

  8. Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991;66:967–79.

    CAS  PubMed  Google Scholar 

  9. Kouchalakos RN, Bradshaw RA. Nerve growth factor receptor from rabbit sympathetic ganglia membranes: relationship between subforms. J Biol Chem. 1986;261:16054–9.

    CAS  PubMed  Google Scholar 

  10. Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1991;350:678–83.

    CAS  PubMed  Google Scholar 

  11. Barker PA. High affinity not in the vicinity? Neuron. 2007;53:1–4.

    CAS  PubMed  Google Scholar 

  12. Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron. 2007;53:25–38.

    CAS  PubMed  Google Scholar 

  13. Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci USA. 1993;90:7859–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bibel M, Hoppe E, Barde YA. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J. 1999;18:616–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Brennan C, Rivas-Plata K, Landis SC. The p75 neurotrophin receptor influences NT-3 responsiveness of sympathetic neurons in vivo. Nat Neurosci. 1999;2:699–705.

    CAS  PubMed  Google Scholar 

  16. Clary DO, Reichardt LF. An alternatively spliced form of the nerve growth factor receptor TrkA confers an enhanced response to neurotrophin 3. Proc Natl Acad Sci USA. 1994;91:11133–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell. 2004;118:243–55.

    CAS  PubMed  Google Scholar 

  18. Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol. 2012;846:1–12.

    CAS  PubMed  Google Scholar 

  19. Sharma N, Deppmann CD, Harrington AW, St. Hillaire C, Chen ZY, Lee FS, Ginty DD. Long-distance control of synapse assembly by target-derived NGF. Neuron. 2010;67:422–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Holtzman DM, Li Y, Parada LF, Kinsman S, Chen CK, Valletta JS, Zhou J, Long JB, Mobley WC. p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron. 1992;9:465–78.

    CAS  PubMed  Google Scholar 

  21. Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci. 2006;29:507–38.

    CAS  PubMed  Google Scholar 

  22. Zhuang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci. 2004;24:8300–9.

    CAS  PubMed  Google Scholar 

  23. Shibayama E, Koizumi H. Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues. Am J Pathol. 1996;148:1807–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237:1154–62.

    CAS  PubMed  Google Scholar 

  25. Hondermarck H. Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev. 2012;23:357–65.

    CAS  PubMed  Google Scholar 

  26. Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H. Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem. 1998;273:16659–62.

    CAS  PubMed  Google Scholar 

  27. Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H. Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene. 2003;22:5592–601.

    CAS  PubMed  Google Scholar 

  28. Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem. 2001;276:17864–70.

    CAS  PubMed  Google Scholar 

  29. El Yazidi-Belkoura I, Adriaenssens E, Dolle L, Descamps S, Hondermarck H. Tumor necrosis factor receptor-associated death domain protein is involved in the neurotrophin receptor-mediated antiapoptotic activity of nerve growth factor in breast cancer cells. J Biol Chem. 2003;278:16952–6.

    PubMed  Google Scholar 

  30. Verbeke S, Meignan S, Lagadec C, Germain E, Hondermarck H, Adriaenssens E, Le Bourhis X. Overexpression of p75 (NTR) increases survival of breast cancer cells through p21(waf1). Cell Signal. 2010;22:1864–73.

    CAS  PubMed  Google Scholar 

  31. Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, Nurcombe V, Le Bourhis X, Hondermarck H. Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 2011;17:1741–52.

    CAS  PubMed  Google Scholar 

  32. Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP. Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res. 2001;61:4337–40.

    CAS  PubMed  Google Scholar 

  33. Davidson B, Reich R, Lazarovici P, Ann Florenes V, Nielsen S, Nesland JM. Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat. 2004;83:119–28.

    CAS  PubMed  Google Scholar 

  34. Popnikolov NK, Cavone SM, Schultz PM, Garcia FU. Diagnostic utility of p75 neurotrophin receptor (p75NTR) as a marker of breast myoepithelial cells. Mod Pathol. 2005;18:1535–41.

    CAS  PubMed  Google Scholar 

  35. Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M, Milanezi F, Schmitt FC, Ashworth A. Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol. 2006;19:307–19.

    CAS  PubMed  Google Scholar 

  36. Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, Nurcombe V, Le Bourhis X, Hondermarck H. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008;68:346–51.

    CAS  PubMed  Google Scholar 

  37. Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R, Toillon RA, Oxombre B, Hondermarck H, Le Bourhis X. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene. 2009;28:1960–70.

    CAS  PubMed  Google Scholar 

  38. Tagliabue E, Castiglioni F, Ghirelli C, Modugno M, Asnaghi L, Somenzi G, Melani C, Menard S. Nerve growth factor cooperates with p185(HER2) in activating growth of human breast carcinoma cells. J Biol Chem. 2000;275:5388–94.

    CAS  PubMed  Google Scholar 

  39. Chiarenza A, Lazarovici P, Lempereur L, Cantarella G, Bianchi A, Bernardini R. Tamoxifen inhibits nerve growth factor-induced proliferation of the human breast cancerous cell line MCF-7. Cancer Res. 2001;61:3002–8.

    CAS  PubMed  Google Scholar 

  40. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PH. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.

    CAS  PubMed  Google Scholar 

  41. Shonukan O, Bagayogo I, McCrea P, Chao M, Hempstead B. Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene. 2003;22:3616–23.

    CAS  PubMed  Google Scholar 

  42. Truzzi F, Marconi A, Lotti R, Dallaglio K, French LE, Hempstead BL, Pincelli C. Neurotrophins and their receptors stimulate melanoma cell proliferation and migration. J Invest Dermatol. 2008;128:2031–40.

    CAS  PubMed  Google Scholar 

  43. Renne C, Willenbrock K, Kuppers R, Hansmann ML, Brauninger A. Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood. 2005;105:4051–9.

    CAS  PubMed  Google Scholar 

  44. Renne C, Minner S, Kuppers R, Hansmann ML, Brauninger A. Autocrine NGFbeta/TRKA signalling is an important survival factor for Hodgkin lymphoma derived cell lines. Leuk Res. 2008;32:163–7.

    CAS  PubMed  Google Scholar 

  45. Koch A, Scherr M, Breyer B, Mancini A, Kardinal C, Battmer K, Eder M, Tamura T. Inhibition of Abl tyrosine kinase enhances nerve growth factor-mediated signaling in Bcr-Abl transformed cells via the alteration of signaling complex and the receptor turnover. Oncogene. 2008;27:4678–89.

    CAS  PubMed  Google Scholar 

  46. Du JJ, Dou KF, Peng SY, Qian BZ, Xiao HS, Liu F, Wang WZ, Guan WX, Gao ZQ, Liu YB, Han ZG. Expression of NGF family and their receptors in gastric carcinoma: a cDNA microarray study. World J Gastroenterol. 2003;9:1431–4.

    CAS  PubMed  Google Scholar 

  47. Jin H, Pan Y, Zhao L, Zhai H, Li X, Sun L, He L, Chen Y, Hong L, Du Y, Fan D. p75 neurotrophin receptor suppresses the proliferation of human gastric cancer cells. Neoplasia. 2007;9:471–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Tokusashi Y, Asai K, Tamakawa S, Yamamoto M, Yoshie M, Yaginuma Y, Miyokawa N, Aoki T, Kino S, Kasai S, Ogawa K. Expression of NGF in hepatocellular carcinoma cells with its receptors in non-tumor cell components. Int J Cancer. 2005;114:39–45.

    CAS  PubMed  Google Scholar 

  49. Yuanlong H, Haifeng J, Xiaoyin Z, Jialin S, Jie L, Li Y, Huahong X, Jiugang S, Yanglin P, Kaichun W, Jie D, Daiming F. The inhibitory effect of p75 neurotrophin receptor on growth of human hepatocellular carcinoma cells. Cancer Lett. 2008;268:110–9.

    PubMed  Google Scholar 

  50. Mijatovic T, Gailly P, Mathieu V, De Neve N, Yeaton P, Kiss R, Decaestecker C. Neurotensin is a versatile modulator of in vitro human pancreatic ductal adenocarcinoma cell (PDAC) migration. Cell Oncol. 2007;29:315–26.

    CAS  PubMed  Google Scholar 

  51. Miknyoczki SJ, Wan W, Chang H, Dobrzanski P, Ruggeri BA, Dionne CA, Buchkovich K. The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res. 2002;8:1924–31.

    CAS  PubMed  Google Scholar 

  52. Festuccia C, Gravina GL, Muzi P, Pomante R, Ventura L, Ricevuto E, Vicentini C, Bologna M. In vitro and in vivo effects of bicalutamide on the expression of TrkA and P75 neurotrophin receptors in prostate carcinoma. Prostate. 2007;67:1255–64.

    CAS  PubMed  Google Scholar 

  53. Greco A, Mariani C, Miranda C, Lupas A, Pagliardini S, Pomati M, Pierotti MA. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995;15:6118–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA. Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer. 1997;19:112–23.

    CAS  PubMed  Google Scholar 

  55. Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics. 1995;28:15–24.

    CAS  PubMed  Google Scholar 

  56. McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD. Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA. 1999;96:4540–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Ricci A, Greco S, Mariotta S, Felici L, Bronzetti E, Cavazzana A, Cardillo G, Amenta F, Bisetti A, Barbolini G. Neurotrophins and neurotrophin receptors in human lung cancer. Am J Respir Cell Mol Biol. 2001;25:439–46.

    CAS  PubMed  Google Scholar 

  58. Perez-Pinera P, Hernandez T, Garcia-Suarez O, de Carlos F, Germana A, Del Valle M, Astudillo A, Vega JA. The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol Cell Biochem. 2007;295:19–26.

    CAS  PubMed  Google Scholar 

  59. Odegaard E, Staff AC, Abeler VM, Kopolovic J, Onsrud M, Lazarovici P, Davidson B. The activated nerve growth factor receptor p-TrkA is selectively expressed in advanced-stage ovarian carcinoma. Hum Pathol. 2007;38:140–6.

    CAS  PubMed  Google Scholar 

  60. Davidson B, Reich R, Lazarovici P, Nesland JM, Skrede M, Risberg B, Trope CG, Florenes VA. Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res. 2003;9:2248–59.

    CAS  PubMed  Google Scholar 

  61. Nakagawara A, Brodeur GM. Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer. 1997;33:2050–3.

    CAS  PubMed  Google Scholar 

  62. Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res. 2009;15:3244–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res. 1993;53:2044–50.

    CAS  PubMed  Google Scholar 

  64. Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM. Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res. 1992;52:1364–8.

    CAS  PubMed  Google Scholar 

  65. Tacconelli A, Farina AR, Cappabianca L, Desantis G, Tessitore A, Vetuschi A, Sferra R, Rucci N, Argenti B, Screpanti I, Gulino A, Mackay AR. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6:347–60.

    CAS  PubMed  Google Scholar 

  66. Tacconelli A, Farina AR, Cappabianca L, Gulino A, Mackay AR. TrkAIII. A novel hypoxia-regulated alternative TrkA splice variant of potential physiological and pathological importance. Cell Cycle. 2005;4:8–9.

    CAS  PubMed  Google Scholar 

  67. Eggert A, Grotzer MA, Ikegaki N, Liu XG, Evans AE, Brodeur GM. Expression of the neurotrophin receptor TrkA down-regulates expression and function of angiogenic stimulators in SH-SY5Y neuroblastoma cells. Cancer Res. 2002;62:1802–8.

    CAS  PubMed  Google Scholar 

  68. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, Camoratto AM, Evans AE, Brodeur GM. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002;62:6462–6.

    CAS  PubMed  Google Scholar 

  69. Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I, Caffarelli E. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA. 2007;104:7957–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994;368:246–9.

    CAS  PubMed  Google Scholar 

  71. Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, Awaya Y, Matsuda I. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet. 1996;13:485–8.

    CAS  PubMed  Google Scholar 

  72. Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, Barbacid M. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell. 1993;75:113–22.

    CAS  PubMed  Google Scholar 

  73. Lewin GR, Rueff A, Mendell LM. Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur J Neurosci. 1994;6:1903–12.

    CAS  PubMed  Google Scholar 

  74. Longo FM, Massa SM. Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov. 2013;12:507–25.

    PubMed  Google Scholar 

  75. McKelvey L, Shorten GD, O'Keeffe GW. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J Neurochem. 2013;124:276–89.

    CAS  PubMed  Google Scholar 

  76. Cattaneo A. Tanezumab: A recombinant humanized mAb against nerve growth factor for the treatment of acute and chronic pain. Curr Opin Mol Ther. 2010;12:94–106.

    CAS  PubMed  Google Scholar 

  77. Schmidt BL. The neurobiology of cancer pain. Neuroscientist. 2014;20:546–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Fahnestock M, Michalski B, Xu B, Coughlin MD. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci. 2001;18:210–20.

    CAS  PubMed  Google Scholar 

  79. Stoica G, Lungu G, Kim HT, Wong PK. Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res. 2008;1208:204–16.

    CAS  PubMed  Google Scholar 

  80. Pedraza CE, Podlesniy P, Vidal N, Arevalo JC, Lee R, Hempstead B, Ferrer I, Iglesias M, Espinet C. Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol. 2005;166:533–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, Bresnahan JC, Hempstead BL, Yoon SO. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron. 2002;36:375–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Harrington AW, Leiner B, Blechschmitt C, Arevalo JC, Lee R, Morl K, Meyer M, Hempstead BL, Yoon SO, Giehl KM. Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci USA. 2004;101:6226–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Volosin M, Song W, Almeida RD, Kaplan DR, Hempstead BL, Friedman WJ. Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J Neurosci. 2006;26:7756–66.

    CAS  PubMed  Google Scholar 

  84. Volosin M, Trotter C, Cragnolini A, Kenchappa RS, Light M, Hempstead BL, Carter BD, Friedman WJ. Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. J Neurosci. 2008;28:9870–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Sobottka B, Reinhardt D, Brockhaus M, Jacobsen H, Metzger F. ProNGF inhibits NGF-mediated TrkA activation in PC12 cells. J Neurochem. 2008;107:1294–303.

    CAS  PubMed  Google Scholar 

  86. Hallbook F. Evolution of the vertebrate neurotrophin and Trk receptor gene families. Curr Opin Neurobiol. 1999;9:616–21.

    CAS  PubMed  Google Scholar 

  87. Sacristán MP, de Diego JG, Bonilla M, Martín-Zanca D. Molecular cloning and characterization of the 5′ region of the mouse trkA proto-oncogene. Oncogene. 1999;18:5836–42.

    PubMed  Google Scholar 

  88. Palani M, Arunkumar R, Vanisree AJ. Methylation and expression patterns of tropomyosin-related kinase genes in different grades of glioma. Neuromolecular Med. 2014;16:529–39.

    CAS  PubMed  Google Scholar 

  89. Lau DT, Hesson LB, Norris MD, Marshall GM, Haber M, Ashton LJ. Prognostic significance of promoter DNA methylation in patients with childhood neuroblastoma. Clin Cancer Res. 2012;18:5690–700.

    CAS  PubMed  Google Scholar 

  90. Jin W, Lee JJ, Kim MS, Son BH, Cho YK, Kim HP. DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2011;406:89–95.

    CAS  PubMed  Google Scholar 

  91. Rochman M, Kartashov AV, Caldwell JM, Collins MH, Stucke EM, Kc K, Sherrill JD, Herren J, Barski A, Rothenberg ME. Neurotrophic tyrosine kinase receptor 1 is a direct transcriptional and epigenetic target of IL-13 involved in allergic inflammation. Mucosal Immunol. 2014. Nov 12 [Epub ahead of print].

    Google Scholar 

  92. Shah AG, Friedman MJ, Huang S, Roberts M, Li XJ, Li S. Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17. Hum Mol Genet. 2009;18:4141–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Valderrama X, Misra V. Novel Brn3a cis-acting sequences mediate transcription of human trkA in neurons. J Neurochem. 2008;105:425–35.

    CAS  PubMed  Google Scholar 

  94. Zhang J, Chen X. DeltaNp73 modulates nerve growth factor-mediated neuronal differentiation through repression of TrkA. Mol Cell Biol. 2007;27:3868–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Kingsbury TJ, Murray PD, Bambrick LL, Krueger BK. Ca(2+)-dependent regulation of TrkB expression in neurons. J Biol Chem. 2003;278:40744–8.

    CAS  PubMed  Google Scholar 

  96. Kingsbury TJ, Krueger BK. Ca2+, CREB and krüppel: a novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription. Mol Cell Neurosci. 2007;35:447–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Deogracias R, Espliguero G, Iglesias T, Rodríguez-Peña A. Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci. 2004;26:470–80.

    CAS  PubMed  Google Scholar 

  98. Martens LK, Kirschner KM, Warnecke C, Scholz H. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. J Biol Chem. 2007;282:14379–88.

    CAS  PubMed  Google Scholar 

  99. Pombo PM, Barettino D, Espliguero G, Metsis M, Iglesias T, Rodriguez-Pena A. Transcriptional repression of neurotrophin receptor trkB by thyroid hormone in the developing rat brain. J Biol Chem. 2000;275:37510–7.

    CAS  PubMed  Google Scholar 

  100. Inoue K, Ito K, Osato M, Lee B, Bae SC, Ito Y. The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. J Biol Chem. 2007;282:24175–84.

    CAS  PubMed  Google Scholar 

  101. Arevalo JC, Conde B, Hempstead BL, Chao MV, Martin-Zanca D, Perez P. TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor. Mol Cell Biol. 2000;20:5908–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Watson FL, Porcionatto MA, Bhattacharyya A, Stiles CD, Segal RA. TrkA glycosylation regulates receptor localization and activity. J Neurobiol. 1999;39:323–36.

    CAS  PubMed  Google Scholar 

  103. de Pablo Y, Perez-Garcia MJ, Georgieva MV, Sanchis D, Lindqvist N, Soler RM, Comella JX, Llovera M. Tyr-701 is a new regulatory site for neurotrophin receptor TrkA trafficking and function. J Neurochem. 2008;104:124–39.

    PubMed  Google Scholar 

  104. Obermeier A, Halfter H, Wiesmuller KH, Jung G, Schlessinger J, Ullrich A. Tyrosine 785 is a major determinant of Trk–substrate interaction. EMBO J. 1993;12:933–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Obermeier A, Lammers R, Wiesmüller KH, Jung G, Schlessinger J, Ullrich A. Identification of Trk binding sites for SHC and phosphatidylinositol 3′-kinase and formation of a multimeric signaling complex. J Biol Chem. 1993;268:22963–6.

    CAS  PubMed  Google Scholar 

  106. Zhang X, Huang J, McNaugton PA. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005;24:4211–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA. Dissecting the roles of tyrosines 490 and 785 of TrkA in the induction of downstream protein phosphorylation using chimeric receptors. J Biol Chem. 2013;288:16606–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Makkerh JPS, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA. p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO Rep. 2005;6:936–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Arevalo JC, Pereira DB, Yano H, Teng KK, Chao MV. Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation. J Biol Chem. 2006;281:1001–7.

    CAS  PubMed  Google Scholar 

  110. Arevalo JC, Waite J, Rajagopal R, Beyna M, Chen Z-Y, Lee FS, Chao MV. Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron. 2006;50:549–59.

    CAS  PubMed  Google Scholar 

  111. Yu T, Calvo L, Anta B, Lopez-Benito S, Lopez-Bellido R, Vicente-García C, Tessarollo L, Rodriguez RE, Arevalo JC. In vivo regulation of NGF-mediated functions by Nedd4-2 ubiquitination of TrkA. J Neurosci. 2014;34:6098–106.

    PubMed Central  PubMed  Google Scholar 

  112. Kiris E, Wang T, Yanpallewar S, Dorsey SG, Becker J, Bavari S, Palko ME, Coppola V, Tessarollo L. TrkA in vivo function is negatively regulated by ubiquitination. J Neurosci. 2014;34:4090–8.

    PubMed Central  PubMed  Google Scholar 

  113. Barker PA, Lomen-Hoerth C, Gensch EM, Meakin SO, Glass DJ, Shooter EM. Tissue-specific alternative splicing generates two isoforms of the trkA receptor. J Biol Chem. 1993;268:15150–7.

    CAS  PubMed  Google Scholar 

  114. Tacconelli A, Farina AR, Cappabianca L, Cea G, Panella S, Chioda A, Gallo R, Cinque B, Sferra R, Vetuschi A, Campese AF, Screpanti I, Gulino A, Mackay AR. TrkAIII expression in the thymus. J Neuroimmunol. 2007;183:151–61.

    CAS  PubMed  Google Scholar 

  115. Shelton DL, Sutherland J, Gripp J, Camerato T, Armanini MP, Phillips HS, Carroll K, Spencer SD, Levinson AD. Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J Neurosci. 1995;15:477–91.

    CAS  PubMed  Google Scholar 

  116. Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, de Mascarel A, Merlio JP. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol. 1999;154:405–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Stoilov P, Castren E, Stamm S. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun. 2002;290:1054–65.

    CAS  PubMed  Google Scholar 

  118. Biffo S, Offenhauser N, Carter BD, Barde YA. Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development. 1995;121:2461–70.

    CAS  PubMed  Google Scholar 

  119. Haapasalo A, Koponen E, Hoppe E, Wong G, Castren E. Truncated trkB.T1 is dominant negative inhibitor of trkB.TK + -mediated cell survival. Biochem Biophys Res Commun. 2001;280:1352–8.

    CAS  PubMed  Google Scholar 

  120. Ohira K, Kumanogoh H, Sahara Y, Homma KJ, Hirai H, Nakamura S, Hayashi M. A truncated tropomyosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J Neurosci. 2005;25:1343–53.

    CAS  PubMed  Google Scholar 

  121. Nishida Y, Adati N, Ozawa R, Maeda A, Sakaki Y, Takeda T. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y. BMC Res Notes. 2008;1:95.

    PubMed Central  PubMed  Google Scholar 

  122. Guiton M, Gunn-Moore FJ, Glass DJ, Geis DR, Yancopoulos GD, Tavare JM. Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling. J Biol Chem. 1995;270:20384–90.

    CAS  PubMed  Google Scholar 

  123. McGregor LM, Baylin SB, Griffin CA, Hawkins AL, Nelkin BD. Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant. Genomics. 1994;22:267–72.

    CAS  PubMed  Google Scholar 

  124. Palko ME, Coppola V, Tessarollo L. Evidence for a role of truncated trkC receptor isoforms in mouse development. J Neurosci. 1999;19:775–82.

    CAS  PubMed  Google Scholar 

  125. Shooter EM. Early days of the nerve growth factor proteins. Annu Rev Neurosci. 2001;24:601–29.

    CAS  PubMed  Google Scholar 

  126. McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature. 1991;354:411–4.

    CAS  PubMed  Google Scholar 

  127. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. Embo J. 1982;1:549–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Hohn A, Leibrock J, Bailey K, Barde YA. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990;344:339–41.

    CAS  PubMed  Google Scholar 

  129. Jones KR, Reichardt LF. Molecular cloning of a human gene that is a member of the nerve growth factor family. Proc Natl Acad Sci USA. 1990;87:8060–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990;247:1446–51.

    CAS  PubMed  Google Scholar 

  131. Rosenthal A, Goeddel DV, Nguyen T, Lewis M, Shih A, Laramee GR, Nikolics K, Winslow JW. Primary structure and biological activity of a novel human neurotrophic factor. Neuron. 1990;4:767–73.

    CAS  PubMed  Google Scholar 

  132. Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 1991;7:857–66.

    CAS  PubMed  Google Scholar 

  133. Hallbook F, Ibanez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron. 1991;6:845–58.

    CAS  PubMed  Google Scholar 

  134. Ip NY, Ibanez CF, Nye SH, McClain J, Jones PF, Gies DR, Belluscio L, Le Beau MM, Espinosa 3rd R, Squinto SP, et al. Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA. 1992;89:3060–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945–8.

    CAS  PubMed  Google Scholar 

  136. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004;427:843–8.

    CAS  PubMed  Google Scholar 

  137. Robinson RC, Radziejewski C, Spraggon G, Greenwald J, Kostura MR, Burtnick LD, Stuart DI, Choe S, Jones EY. The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci. 1999;8:2589–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306:487–91.

    CAS  PubMed  Google Scholar 

  139. Murray-Rust J, McDonald NQ, Blundell TL, Hosang M, Oefner C, Winkler F, Bradshaw RA. Topological similarities in TGF-β2, PDGF-BB, and NGF Define a Superfamily of Polypeptide Growth Factors. Structure. 1993;1:153–9.

    CAS  PubMed  Google Scholar 

  140. McDonald NQ, Hendrickson WA. A structural superfamily of growth factors containing a cystine knot motif. Cell. 1993;73:421–4.

    CAS  PubMed  Google Scholar 

  141. Kliemannel M, Rattenholl A, Golbik R, Balbach J, Lilie H, Rudolph R, Schwarz E. The mature part of proNGF induces the structure of its pro-peptide. FEBS Lett. 2004;566:207–12.

    CAS  PubMed  Google Scholar 

  142. Paoletti F, Covaceuszach S, Konarev PV, Gonfloni S, Malerba F, Schwarz E, Svergun DI, Cattaneo A, Lamba D. Intrinsic structural disorder of mouse proNGF. Proteins. 2009;75:990–1009.

    CAS  PubMed  Google Scholar 

  143. Arakawa T, Haniu M, Narhi LO, Miller JA, Talvenheimo J, Philo JS, Chute HT, Matheson C, Carnahan J, Louis JC, et al. Formation of heterodimers from three neurotrophins, nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor. J Biol Chem. 1994;269:27833–9.

    CAS  PubMed  Google Scholar 

  144. Heymach Jr JV, Shooter EM. The biosynthesis of neurotrophin heterodimers by transfected mammalian cells. J Biol Chem. 1995;270:12297–304.

    CAS  PubMed  Google Scholar 

  145. Radziejewski C, Robinson RC. Heterodimers of the neurotrophic factors: formation, isolation, and differential stability. Biochemistry. 1993;32:13350–6.

    CAS  PubMed  Google Scholar 

  146. Hauburger A, Kliemannel M, Madsen P, Rudolph R, Schwarz E. Oxidative folding of nerve growth factor can be mediated by the pro-peptide of neurotrophin-3. FEBS Lett. 2007;581:4159–64.

    CAS  PubMed  Google Scholar 

  147. Rattenholl A, Lilie H, Grossmann A, Stern A, Schwarz E, Rudolph R. The pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies. Eur J Biochem. 2001;268:3296–303.

    CAS  PubMed  Google Scholar 

  148. Rattenholl A, Ruoppolo M, Flagiello A, Monti M, Vinci F, Marino G, Lilie H, Schwarz E, Rudolph R. Pro-sequence assisted folding and disulfide bond formation of human nerve growth factor. J Mol Biol. 2001;305:523–33.

    CAS  PubMed  Google Scholar 

  149. Kliemannel M, Golbik R, Rudolph R, Schwarz E, Lilie H. The pro-peptide of proNGF: structure formation and intramolecular association with NGF. Protein Sci. 2007;16:411–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Paiardini A, Caputo V. Insights into the interaction of sortilin with proneurotrophins: a computational approach. Neuropeptides. 2008;42:205–14.

    CAS  PubMed  Google Scholar 

  151. Willnow TE, Petersen CM, Nykjaer A. VPS10P-domain receptors - regulators of neuronal viability and function. Nat Rev Neurosci. 2008;9:899–909.

    CAS  PubMed  Google Scholar 

  152. Bierl MA, Jones EE, Crutcher KA, Isaacson LG. ‘Mature’ nerve growth factor is a minor species in most peripheral tissues. Neurosci Lett. 2005;380:133–7.

    CAS  PubMed  Google Scholar 

  153. Bruno MA, Cuello AC. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci USA. 2006;103:6735–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Hasan W, Pedchenko T, Krizsan-Agbas D, Baum L, Smith PG. Sympathetic neurons synthesize and secrete pro-nerve growth factor protein. J Neurobiol. 2003;57:38–53.

    CAS  PubMed  Google Scholar 

  155. Srinivasan B, Roque CH, Hempstead BL, Al-Ubaidi MR, Roque RS. Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J Biol Chem. 2004;279:41839–45.

    CAS  PubMed  Google Scholar 

  156. Domeniconi M, Hempstead BL, Chao MV. Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol Cell Neurosci. 2007;34:271–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Fauchais AL, Lalloue F, Lise MC, Boumediene A, Preud'homme JL, Vidal E, Jauberteau MO. Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. J Immunol. 2008;181:3027–38.

    CAS  PubMed  Google Scholar 

  158. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 2005;25:5455–63.

    CAS  PubMed  Google Scholar 

  159. Butte MJ, Hwang PK, Mobley WC, Fletterick RJ. Crystal structure of neurotrophin-3 homodimer shows distinct regions are used to bind its receptors. Biochemistry. 1998;37:16846–52.

    CAS  PubMed  Google Scholar 

  160. Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos AM. Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J Mol Biol. 1999;290:149–59.

    CAS  PubMed  Google Scholar 

  161. Wiesmann C, Ultsch MH, Bass SH, de Vos AM. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature. 1999;401:184–8.

    CAS  PubMed  Google Scholar 

  162. Ivanisevic L, Zheng W, Woo SB, Neet KE, Saragovi HU. TrkA receptor “hot spots” for binding of NT-3 as a heterologous ligand. J Biol Chem. 2007;282:16754–63.

    CAS  PubMed  Google Scholar 

  163. Boeshore KL, Luckey CN, Zigmond RE, Large TH. TrkB isoforms with distinct neurotrophin specificities are expressed in predominantly nonoverlapping populations of avian dorsal root ganglion neurons. J Neurosci. 1999;19:4739–47.

    CAS  PubMed  Google Scholar 

  164. Strohmaier C, Carter BD, Urfer R, Barde YA, Dechant G. A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. EMBO J. 1996;15:3332–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Fahnestock M, Yu G, Michalski B, Mathew S, Colquhoun A, Ross GM, Coughlin MD. The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. J Neurochem. 2004;89:581–92.

    CAS  PubMed  Google Scholar 

  166. Demont Y, Corbet C, Page A, Ataman-Onal Y, Choquet-Kastylevsky G, Fliniaux I, Le Bourhis X, Toillon RA, Bradshaw RA, Hondermarck H. Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein. J Biol Chem. 2012;287:1923–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Al-Shawi R, Hafner A, Olsen J, Chun S, Raza S, Thrasivoulou C, Lovestone S, Killick R, Simons P, Cowen T. Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci. 2008;27:2103–14.

    PubMed  Google Scholar 

  168. Masoudi R, Ioannou MS, Coughlin MD, Pagadala P, Neet KE, Clewes O, Allen SJ, Dawbarn D, Fahnestock M. Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors. J Biol Chem. 2009;284:18424–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.

    CAS  PubMed  Google Scholar 

  170. Pawson T. Protein modules and signalling networks. Nature. 1995;373:573–80.

    CAS  PubMed  Google Scholar 

  171. Gadella Jr T, Jovin T. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol. 1995;129:1543–958.

    CAS  PubMed  Google Scholar 

  172. Tyson D, Bradshaw RA. Transmembrane receptor oligomerization. In: Bradshaw RA, Dennis EA, editors. Handbook of cell signaling, vol. 1. San Diego, CA: Elsevier Academic Press; 2003. p. 361–6.

    Google Scholar 

  173. Mischel PS, Umbach JA, Eskandari S, Smith SG, Gundersen CB, Zampighi GA. Nerve growth factor signals via preexisting TrkA receptor oligomers. Biophys J. 2002;83:968–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Shen J, Maruyama IN. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett. 2011;585:295–9.

    CAS  PubMed  Google Scholar 

  175. Shen J, Maruyama IN. Brain-derived neurotrophic factor receptor TrkB exists as a preformed dimer in living cells. J Mol Signal. 2012;7:2.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Obermeier A, Bradshaw RA, Seedorf K, Choidas A, Schlessinger J, Ullrich A. Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. EMBO J. 1994;13:1585–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA. 1976;73:2424–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA. The induction of serine/threonine protein phosphorylations by a PDGFR/TrkA chimera in stably transfected PC12 cells. Mol Cell Proteomics. 2012;11:15–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Rockow S, Tang J, Xiong W, Li W. Nck inhibits NGF and basic FGF induced PC12 cell differentiation via mitogen-activated protein kinase-independent pathway. Oncogene. 1996;12:2351–9.

    CAS  PubMed  Google Scholar 

  181. Suzuki S, Mizutani M, Suzuki K, Yamada M, Kojima M, Hatanaka H, Koizumi S. Brain-derived neurotrophic factor promotes interaction of the Nck2 adaptor protein with the TrkB tyrosine kinase receptor. Biochem Biophys Res Commun. 2002;294:1087–92.

    CAS  PubMed  Google Scholar 

  182. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature. 1996;384:638–41.

    CAS  PubMed  Google Scholar 

  183. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4:299–309.

    CAS  PubMed  Google Scholar 

  184. Raffioni S, Bradshaw RA. Staurosporine causes epidermal growth factor to induce differentiation in PC12 cells via receptor up-regulation. J Biol Chem. 1995;270:7568–72.

    CAS  PubMed  Google Scholar 

  185. Qiu MS, Green SH. NGF and EGF rapidly activate p21ras in PC12 cells by distinct, convergent pathways involving tyrosine phosphorylation. Neuron. 1991;7:937–46.

    CAS  PubMed  Google Scholar 

  186. Hagag N, Halegoua S, Viola M. Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature. 1986;319:680–2.

    CAS  PubMed  Google Scholar 

  187. Stephens RM, Loeb DM, Copeland TD, Pawson T, Greene LA, Kaplan DR. Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron. 1994;12:691–705.

    CAS  PubMed  Google Scholar 

  188. Dikic I, Batzer AG, Blaikie P, Obermeier A, Ullrich A, Schlessinger J, Margolis B. Shc binding to nerve growth factor receptor is mediated by the phosphotyrosine interaction domain. J Biol Chem. 1995;270:15125–9.

    CAS  PubMed  Google Scholar 

  189. Nimnual AS, Yatsula BA, Bar-Sagi D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 1998;279:560–3.

    CAS  PubMed  Google Scholar 

  190. Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell. 1992;68:1031–40.

    CAS  PubMed  Google Scholar 

  191. Troppmair J, Bruder JT, App H, Cai H, Liptak L, Szeberenyi J, Cooper GM, Rapp UR. Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-1 and B-Raf protein serine kinases in the cytosol. Oncogene. 1992;7:1867–73.

    CAS  PubMed  Google Scholar 

  192. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ. First-line Herceptin monotherapy in metastatic breast cancer. Oncology. 2001;61 Suppl 2:37–42.

    CAS  PubMed  Google Scholar 

  193. Kao S, Jaiswal RK, Kolch W, Landreth GE. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem. 2001;276:18169–77.

    CAS  PubMed  Google Scholar 

  194. Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998;17:4426–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science. 1996;273:959–63.

    CAS  PubMed  Google Scholar 

  196. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–23.

    CAS  PubMed  Google Scholar 

  197. Wong AW, Willingham M, Xiao J, Kilpatrick TJ, Murray SS. Neurotrophin receptor homolog-2 regulates nerve growth factor signaling. J Neurochem. 2008;106:1964–76.

    CAS  PubMed  Google Scholar 

  198. York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW, Stork PJ. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature. 1998;392:622–6.

    CAS  PubMed  Google Scholar 

  199. Wu C, Lai CF, Mobley WC. Nerve growth factor activates persistent Rap1 signaling in endosomes. J Neurosci. 2001;21:5406–16.

    CAS  PubMed  Google Scholar 

  200. York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol. 2000;20:8069–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Dixon SJ, MacDonald JI, Robinson KN, Kubu CJ, Meakin SO. Trk receptor binding and neurotrophin/fibroblast growth factor (FGF)-dependent activation of the FGF receptor substrate (FRS)-3. Biochim Biophys Acta. 2006;1763:366–80.

    CAS  PubMed  Google Scholar 

  202. Postigo A, Calella AM, Fritzsch B, Knipper M, Katz D, Eilers A, Schimmang T, Lewin GR, Klein R, Minichiello L. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev. 2002;16:633–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Arevalo JC, Yano H, Teng KK, Chao MV. A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein. Embo J. 2004;23:2358–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Kong H, Boulter J, Weber JL, Lai C, Chao MV. An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J Neurosci. 2001;21:176–85.

    CAS  PubMed  Google Scholar 

  205. Wright JH, Drueckes P, Bartoe J, Zhao Z, Shen SH, Krebs EG. A role for the SHP-2 tyrosine phosphatase in nerve growth-induced PC12 cell differentiation. Mol Biol Cell. 1997;8:1575–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Rosario M, Franke R, Bednarski C, Birchmeier W. The neurite outgrowth multiadaptor RhoGAP, NOMA-GAP, regulates neurite extension through SHP2 and Cdc42. J Cell Biol. 2007;178:503–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Pazyra-Murphy MF, Hans A, Courchesne SL, Karch C, Cosker KE, Heerssen HM, Watson FL, Kim T, Greenberg ME, Segal RA. A retrograde neuronal survival response: target-derived neurotrophins regulate MEF2D and bcl-w. J Neurosci. 2009;29:6700–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Holgado-Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ. Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci USA. 1997;94:12419–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    CAS  PubMed  Google Scholar 

  210. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    CAS  PubMed  Google Scholar 

  211. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol. 2002;156:817–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Zheng WH, Kar S, Quirion R. FKHRL1 and its homologs are new targets of nerve growth factor Trk receptor signaling. J Neurochem. 2002;80:1049–61.

    CAS  PubMed  Google Scholar 

  213. Foehr ED, Lin X, O'Mahony A, Geleziunas R, Bradshaw RA, Greene WC. NF-kappa B signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC12 cells. J Neurosci. 2000;20:7556–63.

    CAS  PubMed  Google Scholar 

  214. Kim UH, Fink Jr D, Kim HS, Park DJ, Contreras ML, Guroff G, Rhee SG. Nerve growth factor stimulates phosphorylation of phospholipase C-gamma in PC12 cells. J Biol Chem. 1991;266:1359–62.

    CAS  PubMed  Google Scholar 

  215. Corbit KC, Foster DA, Rosner MR. Protein kinase Cdelta mediates neurogenic but not mitogenic activation of mitogen-activated protein kinase in neuronal cells. Mol Cell Biol. 1999;19:4209–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Zhang D, Dhillon H, Prasad MR, Markesbery WR. Regional levels of brain phospholipase Cgamma in Alzheimer’s disease. Brain Res. 1998;811:161–5.

    CAS  PubMed  Google Scholar 

  217. Matrone C, Marolda R, Ciafre S, Ciotti MT, Mercanti D, Calissano P. Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. Proc Natl Acad Sci USA. 2009;106:11358–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A. Development of a non invasive NGF-based therapy for Alzheimer’s disease. Curr Alzheimer Res. 2009;6:158–70.

    CAS  PubMed  Google Scholar 

  219. Raffioni S, Bradshaw RA, Buxser SE. The receptors for nerve growth factor and other neurotrophins. Ann Rev Biochem. 1993;62:823–50.

    CAS  PubMed  Google Scholar 

  220. Chao MV, Bothwell MA, Ross AH, Koprowski H, Lanahan AA, Buck CR, Sehgal A. Gene transfer and molecular cloning of the human NGF receptor. Science. 1986;232:518–21.

    CAS  PubMed  Google Scholar 

  221. Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter EM. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature. 1987;325:593–7.

    CAS  PubMed  Google Scholar 

  222. Johnson D, Lanahan A, Buck CR, Sehgal A, Morgan C, Mercer E, Bothwell M, Chao M. Expression and structure of the human NGF receptor. Cell. 1986;47:545–54.

    CAS  PubMed  Google Scholar 

  223. Rodriguez-Tebar A, Dechant G, Barde YA. Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron. 1990;4:487–92.

    CAS  PubMed  Google Scholar 

  224. Rodriguez-Tebar A, Dechant G, Gotz R, Barde YA. Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J. 1992;11:917–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Metsis M. Genes for neurotrophic factors and their receptors: structure and regulation. Cell Mol Life Sci. 2001;58:1014–20.

    CAS  PubMed  Google Scholar 

  226. Ramos A, Ho WC, Forte S, Dickson K, Boutilier J, Favell K, Barker PA. Hypo-osmolar stress induces p75NTR expression by activating Sp1-dependent transcription. J Neurosci. 2007;27:1498–506.

    CAS  PubMed  Google Scholar 

  227. Sehgal A, Patil N, Chao M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol. 1988;8:3160–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Chiaramello A, Neuman K, Palm K, Metsis M, Neuman T. Helix-loop-helix transcription factors mediate activation and repression of the p75LNGFR gene. Mol Cell Biol. 1995;15:6036–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Metsis M, Timmusk T, Allikmets R, Saarma M, Persson H. Regulatory elements and transcriptional regulation by testosterone and retinoic acid of the rat nerve growth factor receptor promoter. Gene. 1992;121:247–54.

    CAS  PubMed  Google Scholar 

  230. Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol. 2002;67:203–33.

    CAS  PubMed  Google Scholar 

  231. Large TH, Weskamp G, Helder JC, Radeke MJ, Misko TP, Shooter EM, Reichardt LF. Structure and developmental expression of the nerve growth factor receptor in the chicken central nervous system. Neuron. 1989;2:1123–34.

    CAS  PubMed  Google Scholar 

  232. Monlauzeur L, Breuza L, Le Bivic A. Putative O-glycosylation sites and a membrane anchor are necessary for apical delivery of the human neurotrophin receptor in Caco-2 cells. J Biol Chem. 1998;273:30263–70.

    CAS  PubMed  Google Scholar 

  233. Gong Y, Cao P, Yu HJ, Jiang T. Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature. 2008;454:789–93.

    CAS  PubMed  Google Scholar 

  234. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.

    CAS  PubMed  Google Scholar 

  235. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994;76:959–62.

    CAS  PubMed  Google Scholar 

  236. Yan H, Chao MV. Disruption of cysteine-rich repeats of the p75 nerve growth factor receptor leads to loss of ligand binding. J Biol Chem. 1991;266:12099–104.

    CAS  PubMed  Google Scholar 

  237. Barker PA. A p75(NTR) pivoting paradigm propels perspicacity. Neuron. 2009;62:3–5.

    CAS  PubMed  Google Scholar 

  238. Vilar M, Charalampopoulos I, Kenchappa RS, Simi A, Karaca E, Reversi A, Choi S, Bothwell M, Mingarro I, Friedman WJ, Schiavo G, Bastiaens PI, Verveer PJ, Carter BD, Ibanez CF. Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron. 2009;62:72–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Barker PA, Barbee G, Misko TP, Shooter EM. The low affinity neurotrophin receptor, p75LNTR, is palmitoylated by thioester formation through cysteine 279. J Biol Chem. 1994;269:30645–50.

    CAS  PubMed  Google Scholar 

  240. Mirnics ZK, Yan C, Portugal C, Kim TW, Saragovi HU, Sisodia SS, Mirnics K, Schor NF. P75 neurotrophin receptor regulates expression of neural cell adhesion molecule 1. Neurobiol Dis. 2005;20:969–85.

    CAS  PubMed  Google Scholar 

  241. Underwood CK, Reid K, May LM, Bartlett PF, Coulson EJ. Palmitoylation of the C-terminal fragment of p75(NTR) regulates death signaling and is required for subsequent cleavage by gamma-secretase. Mol Cell Neurosci. 2008;37:346–58.

    CAS  PubMed  Google Scholar 

  242. Grob PM, Ross AH, Koprowski H, Bothwell M. Characterization of the human melanoma nerve growth factor receptor. J Biol Chem. 1985;260:8044–9.

    CAS  PubMed  Google Scholar 

  243. Taniuchi M, Johnson Jr EM, Roach PJ, Lawrence Jr JC. Phosphorylation of nerve growth factor receptor proteins in sympathetic neurons and PC12 cells. In vitro phosphorylation by the cAMP-independent protein kinase FA/GSK-3. J Biol Chem. 1986;261:13342–9.

    CAS  PubMed  Google Scholar 

  244. Higuchi H, Yamashita T, Yoshikawa H, Tohyama M. PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts. EMBO J. 2003;22:1790–800.

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Bronfman FC, Fainzilber M. Multi-tasking by the p75 neurotrophin receptor: sortilin things out? EMBO Rep. 2004;5:867–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Haase G, Pettmann B, Raoul C, Henderson CE. Signaling by death receptors in the nervous system. Curr Opin Neurobiol. 2008;18:284–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Blochl A, Blochl R. A cell-biological model of p75NTR signaling. J Neurochem. 2007;102:289–305.

    CAS  PubMed  Google Scholar 

  248. Blochl A, Blumenstein L, Ahmadian MR. Inactivation and activation of Ras by the neurotrophin receptor p75. Eur J Neurosci. 2004;20:2321–35.

    PubMed  Google Scholar 

  249. Coulson EJ, Reid K, Baca M, Shipham KA, Hulett SM, Kilpatrick TJ, Bartlett PF. Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J Biol Chem. 2000;275:30537–45.

    CAS  PubMed  Google Scholar 

  250. Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci. 2001;24:1–29.

    CAS  PubMed  Google Scholar 

  251. von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, Dechant G. Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci. 2001;4:977–8.

    Google Scholar 

  252. Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC. Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci. 2003;23:5425–36.

    CAS  PubMed  Google Scholar 

  253. Powell JC, Twomey C, Jain R, McCarthy JV. Association between Presenilin-1 and TRAF6 modulates regulated intramembrane proteolysis of the p75NTR neurotrophin receptor. J Neurochem. 2009;108:216–30.

    CAS  PubMed  Google Scholar 

  254. Bronfman FC. Metalloproteases and gamma-secretase: new membrane partners regulating p75 neurotrophin receptor signaling? J Neurochem. 2007;103 Suppl 1:91–100.

    CAS  PubMed  Google Scholar 

  255. He XL, Garcia KC. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science. 2004;304:870–5.

    CAS  PubMed  Google Scholar 

  256. Aurikko JP, Ruotolo BT, Grossmann JG, Moncrieffe MC, Stephens E, Leppanen VM, Robinson CV, Saarma M, Bradshaw RA, Blundell TL. Characterization of symmetric complexes of nerve growth factor and the ectodomain of the pan-neurotrophin receptor, p75NTR. J Biol Chem. 2005;280:33453–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Hamanoue M, Middleton G, Wyatt S, Jaffray E, Hay RT, Davies AM. p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol Cell Neurosci. 1999;14:28–40.

    CAS  PubMed  Google Scholar 

  258. Karin M, Gallagher E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev. 2009;228:225–40.

    CAS  PubMed  Google Scholar 

  259. Sato T, Irie S, Kitada S, Reed JC. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science. 1995;268:411–5.

    CAS  PubMed  Google Scholar 

  260. Nichols A, Martinou I, Maundrell K, Martinou JC. The p75 neurotrophin receptor: effects on neuron survival in vitro and interaction with death domain-containing adaptor proteins. Apoptosis. 1998;3:289–94.

    CAS  PubMed  Google Scholar 

  261. Wang X, Bauer JH, Li Y, Shao Z, Zetoune FS, Cattaneo E, Vincenz C. Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model. J Biol Chem. 2001;276:33812–20.

    CAS  PubMed  Google Scholar 

  262. Murray SS, Perez P, Lee R, Hempstead BL, Chao MV. A novel p75 neurotrophin receptor-related protein, NRH2, regulates nerve growth factor binding to the TrkA receptor. J Neurosci. 2004;24:2742–9.

    CAS  PubMed  Google Scholar 

  263. Nykjaer A, Willnow TE, Petersen CM. p75NTR–live or let die. Curr Opin Neurobiol. 2005;15:49–57.

    CAS  PubMed  Google Scholar 

  264. Casademunt E, Carter BD, Benzel I, Frade JM, Dechant G, Barde YA. The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death. EMBO J. 1999;18:6050–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Salehi AH, Xanthoudakis S, Barker PA. NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem. 2002;277:48043–50.

    CAS  PubMed  Google Scholar 

  266. Kimura MT, Irie S, Shoji-Hoshino S, Mukai J, Nadano D, Oshimura M, Sato TA. 14-3-3 is involved in p75 neurotrophin receptor-mediated signal transduction. J Biol Chem. 2001;276:17291–300.

    CAS  PubMed  Google Scholar 

  267. Mukai J, Hachiya T, Shoji-Hoshino S, Kimura MT, Nadano D, Suvanto P, Hanaoka T, Li Y, Irie S, Greene LA, Sato TA. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J Biol Chem. 2000;275:17566–70.

    CAS  PubMed  Google Scholar 

  268. Kim T, Hempstead BL. NRH2 is a trafficking switch to regulate sortilin localization and permit proneurotrophin-induced cell death. EMBO J. 2009;28:1612–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science. 1994;265:1596–9.

    CAS  PubMed  Google Scholar 

  270. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996;383:716–9.

    CAS  PubMed  Google Scholar 

  271. Chittka A, Chao MV. Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc Natl Acad Sci USA. 1999;96:10705–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Petersen CM, Nielsen MS, Nykjaer A, Jacobsen L, Tommerup N, Rasmussen HH, Roigaard H, Gliemann J, Madsen P, Moestrup SK. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem. 1997;272:3599–605.

    CAS  PubMed  Google Scholar 

  273. Mazella J, Chabry J, Kitabgi P, Vincent JP. Solubilization and characterization of active neurotensin receptors from mouse brain. J Biol Chem. 1988;263:144–9.

    CAS  PubMed  Google Scholar 

  274. Kandror K, Pilch PF. Identification and isolation of glycoproteins that translocate to the cell surface from GLUT4-enriched vesicles in an insulin-dependent fashion. J Biol Chem. 1994;269:138–42.

    CAS  PubMed  Google Scholar 

  275. Lin BZ, Pilch PF, Kandror KV. Sortilin is a major protein component of Glut4-containing vesicles. J Biol Chem. 1997;272:24145–7.

    CAS  PubMed  Google Scholar 

  276. Hampe W, Rezgaoui M, Hermans-Borgmeyer I, Schaller HC. The genes for the human VPS10 domain-containing receptors are large and contain many small exons. Hum Genet. 2001;108:529–36.

    CAS  PubMed  Google Scholar 

  277. Lewandrowski U, Moebius J, Walter U, Sickmann A. Elucidation of N-glycosylation sites on human platelet proteins: a glycoproteomic approach. Mol Cell Proteomics. 2006;5:226–33.

    CAS  PubMed  Google Scholar 

  278. Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M, Schiess R, Aebersold R, Watts JD. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27:378–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Munck Petersen C, Nielsen MS, Jacobsen C, Tauris J, Jacobsen L, Gliemann J, Moestrup SK, Madsen P. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding. EMBO J. 1999;18:595–604.

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Chabry J, Gaudriault G, Vincent JP, Mazella J. Implication of various forms of neurotensin receptors in the mechanism of internalization of neurotensin in cerebral neurons. J Biol Chem. 1993;268:17138–44.

    CAS  PubMed  Google Scholar 

  281. Nielsen MS, Gustafsen C, Madsen P, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A, Petersen CM. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol Cell Biol. 2007;27:6842–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  282. Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell. 1994;77:579–86.

    CAS  PubMed  Google Scholar 

  283. Westergaard UB, Sorensen ES, Hermey G, Nielsen MS, Nykjaer A, Kirkegaard K, Jacobsen C, Gliemann J, Madsen P, Petersen CM. Functional organization of the sortilin Vps10p domain. J Biol Chem. 2004;279:50221–9.

    CAS  PubMed  Google Scholar 

  284. Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science. 2001;292:1712–6.

    CAS  PubMed  Google Scholar 

  285. Zhu Z, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M, Büchler MW Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. .J Clin Oncol. 1999 Aug;17(8):2419-28.

    Google Scholar 

  286. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol. 1994 Jan;14(1):759-67.

    Google Scholar 

  287. Siniscalco D, Giordano C, Rossi F, Maione S, de Novellis V. Role of neurotrophins in neuropathic pain. Curr Neuropharmacol. 2011 Dec;9(4):523-9.

    Google Scholar 

  288. Fryer RH, Kaplan DR, Kromer LF. Truncated trkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro. Exp Neurol. 1997 Dec;148(2):616-27.

    Google Scholar 

  289. Bothwell M. Evolution of the neurotrophin signaling system in invertebrates. Brain Behav Evol. 2006;68(3):124-32.

    Google Scholar 

  290. Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake AJ, Barr PJ, Thomas G. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol. 1990 Dec;111(6 Pt 2):2851-9.

    Google Scholar 

  291. Seidah NG, Benjannet S, Pareek S, Savaria D, Hamelin J, Goulet B, Laliberte J, Lazure C, Chrétien M, Murphy RA. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J. 1996 Mar 15;314 ( Pt 3):951-60.

    Google Scholar 

  292. Pérez P, Coll PM, Hempstead BL, Martín-Zanca D, Chao MV. NGF binding to the trk tyrosine kinase receptor requires the extracellular immunoglobulin-like domains. Mol Cell Neurosci. 1995 Apr;6(2):97-105.

    Google Scholar 

  293. Urfer R, Tsoulfas P, O’Connell L, Shelton DL, Parada LF, Presta LG. An immunoglobulin-like domain determines the specificity of neurotrophin receptors. EMBO J. 1995 Jun 15;14(12):2795-805.

    Google Scholar 

  294. Zhang W, Zeng YS, Wang JM, Ding Y, Li Y, Wu W. Neurotrophin-3 improves retinoic acid-induced neural differentiation of skin-derived precursors through a p75NTR-dependent signaling pathway. Neurosci Res. 2009 Jun;64(2):170-6. doi: 10.1016/j.neures.2009.02.010.

    Google Scholar 

  295. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007 Sep;10(9):1089-93.

    Google Scholar 

  296. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, Herrera DG, Toth M, Yang C, McEwen BS, Hempstead BL, Lee FS. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006 Oct 6;314(5796):140-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph A. Bradshaw .

Editor information

Editors and Affiliations

Receptor at a glance: TrkA—NTRK1

Receptor at a glance: TrkA—NTRK1

Chromosome location

1q21q22

Gene size (bp)

66,211

Exon numbers

17

mRNA size (5′, ORF, 3′) (bp)

2,663

Amino acid number

Depending on isoform (See Table 17.2)

Molecular mass (kDa)

~140

Posttranslational modifications

Glycosylation, phosphorylation, ubiquitination

Domains

Extracellular, transmembrane, tyrosine kinase

Ligands

NGF, NTF3

Known dimerizing partners

P75NTR, TrkB, TrkC

Pathways activated

MAP kinases, PLCγ, Src, PI3K

Tissues expressed

Broad spectrum of normal/pathological neural and nonneural tissues

Human diseases

Neurodegenerative diseases, cancer

Knockout mouse phenotype

CNS deficit with lack of both nociceptive and superior cervical ganglion neurons

Receptor at a glance: TrkB—NTRK2

Chromosome location

9q22.1

Gene Size (bp)

355,040

Exon numbers

24

mRNA size (5′, ORF, 3′)(bp)

2,663

Amino acid number

Depending on isoform (see Table 17.3)

Molecular mass (kDa)

~140

Posttranslational modifications

Glycosylation, phosphorylation, ubiquitination

Domains

Intracellular tyrosine kinase

Ligands

BDNF, NTF4/5

Known dimerizing partners

P75NTR, TrkA, TrkC

Pathways activated

MAP kinases, PLCγ, Src, PI3K

Tissues expressed

Broad spectrum of normal/pathological neural and nonneural tissues

Human diseases

Neurodegenerative diseases, cancer

Knockout mouse phenotype

CNS deficit with lack of nodose, vestibular, and cochlear neurons; mice display CNS deficits

Receptor at a glance: TrkC—NTRK3

Chromosome location

15q25

Gene size (bp)

397,018

Exon numbers

20

mRNA size (5′, ORF, 3′) (bp)

2,818

Amino acid number

Depending on isoform (See Table 17.4)

Molecular mass (kDa)

~140

Post‐translational modifications

Glycosylation, phosphorylation

Domains

Intracellular tyrosine kinase

Ligands

NTF3

Known dimerizing partners

P75NTR, TrkA, TrkB

Pathways activated

MAP kinases, PLCγ, Src, PI3K

Tissues expressed

CNS, liver, prostate, and breast cancer

Human diseases

Neurodegenerative disease, cancer

Knockout mouse phenotype

CNS deficits with lack of proprioceptive and cochlear neurons; reduction in vestibular neurons

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hondermarck, H., Demont, Y., Bradshaw, R.A. (2015). The TrK Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_17

Download citation

Publish with us

Policies and ethics