Skip to main content
  • 1798 Accesses

Abstract

The proto-oncogene receptor tyrosine kinase ROS1 is an evolutionarily conserved receptor that functions in development and cancer. Using genetic models and biochemical approaches, ROS1 was shown to play distinctive roles in epithelial cell differentiation during the development of a variety of organs. Although substantial, these advances remain hampered by the absence of an identified ligand, making ROS1 one of the last two remaining orphan receptor tyrosine kinases. Recent global in-depth cancer genomic studies have unveiled a variety of different chromosomal rearrangements that leads to the oncogenic activation of ROS1. Studies on the resulting ROS1 fusion kinases have shed light on the molecular mechanisms underlying ROS1 transforming activities. ROS1 and its oncogenic fusion variants therefore constitute clinically relevant targets for cancer therapeutic intervention. This chapter highlights the various roles that this receptor plays in multiple system networks in normalcy and disease and points to future directions towards the elucidation of ROS1 function in the context of ligand identification, signaling pathways and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balduzzi PC, Notter MF, Morgan HR, Shibuya M. Some biological properties of two new avian sarcoma viruses. J Virol. 1981;40(1):268–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Shibuya M, Hanafusa H, Balduzzi PC. Cellular sequences related to three new onc genes of avian sarcoma virus (fps, yes, and ros) and their expression in normal and transformed cells. J Virol. 1982;42(1):143–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Wang LH, Hanafusa H, Notter MF, Balduzzi PC. Genetic structure and transforming sequence of avian sarcoma virus UR2. J Virol. 1982;41(3):833–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Feldman RA, Wang LH, Hanafusa H, Balduzzi PC. Avian sarcoma virus UR2 encodes a transforming protein which is associated with a unique protein kinase activity. J Virol. 1982;42(1):228–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Macara IG, Marinetti GV, Balduzzi PC. Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumorigenesis. Proc Natl Acad Sci USA. 1984;81(9):2728–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Neckameyer WS, Wang LH. Molecular cloning and characterization of avian sarcoma virus UR2 and comparison of its transforming sequence with those of other avian sarcoma viruses. J Virol. 1984;50(3):914–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Notter MF, Balduzzi PC. Cytoskeletal changes induced by two avian sarcoma viruses: UR2 and Rous sarcoma virus. Virology. 1984;136(1):56–68.

    CAS  PubMed  Google Scholar 

  8. Notter MF, Navon SE, Fung BK, Balduzzi PC. Infection of neuroretinal cells in vitro by avian sarcoma viruses UR1 and UR2: transformation, cell growth stimulation, and changes in transducin levels. Virology. 1987;160(2):489–93.

    CAS  PubMed  Google Scholar 

  9. Maytin EV, Balduzzi PC, Notter MF, Young DA. Changes in the synthesis and phosphorylation of cellular proteins in chick fibroblasts transformed by two avian sarcoma viruses. J Biol Chem. 1984;259(19):12135–43.

    CAS  PubMed  Google Scholar 

  10. Neckameyer WS, Wang LH. Nucleotide sequence of avian sarcoma virus UR2 and comparison of its transforming gene with other members of the tyrosine protein kinase oncogene family. J Virol. 1985;53(3):879–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Fasano O, Birnbaum D, Edlund L, Fogh J, Wigler M. New human transforming genes detected by a tumorigenicity assay. Mol Cell Biol. 1984;4(9):1695–705.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Birchmeier C, Birnbaum D, Waitches G, Fasano O, Wigler M. Characterization of an activated human ros gene. Mol Cell Biol. 1986;6(9):3109–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Shibuya M, Matsushime H, Yamazaki H, Wang LH, Fukui Y, Ueyama Y, et al. Analysis of structure and activation of some receptor-type tyrosine kinase oncogenes. Princess Takamatsu Symp. 1986;17:195–202.

    CAS  PubMed  Google Scholar 

  14. Matsushime H, Wang LH, Shibuya M. Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptor like molecule. Mol Cell Biol. 1986;6(8):3000–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Neckameyer WS, Shibuya M, Hsu MT, Wang LH. Proto-oncogene c-ros codes for a molecule with structural features common to those of growth factor receptors and displays tissue specific and developmentally regulated expression. Mol Cell Biol. 1986;6(5):1478–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Podell SB, Sefton BM. Chicken proto-oncogene c-ros cDNA clones: identification of a c-ros RNA transcript and deduction of the amino acid sequence of the carboxyl terminus of the c-ros product. Oncogene. 1987;2(1):9–14.

    CAS  PubMed  Google Scholar 

  17. Wang LH, Hanafusa H. Avian sarcoma viruses. Virus Res. 1988;9(2–3):159–203.

    CAS  PubMed  Google Scholar 

  18. Birchmeier C, O’Neill K, Riggs M, Wigler M. Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc Natl Acad Sci USA. 1990;87(12):4799–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Das KS, Christensen JR, Balduzzi PC. Transfection and recombination with molecularly cloned derivatives of avian sarcoma virus UR2. Virology. 1986;154(2):415–9.

    CAS  PubMed  Google Scholar 

  20. Jong SM, Wang LH. Role of gag sequence in the biochemical properties and transforming activity of the avian sarcoma virus UR2-encoded gag-ros fusion protein. J Virol. 1990;64(12):5997–6009.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Jong SM, Wang LH. Two point mutations in the transmembrane domain of P68gag-ros inactive its transforming activity and cause a delay in membrane association. J Virol. 1991;65(1):180–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Jong SM, Zong CS, Dorai T, Wang LH. Transforming properties and substrate specificities of the protein tyrosine kinase oncogenes ros and src and their recombinants. J Virol. 1992;66(8):4909–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Matsushime H, Shibuya M. Tissue-specific expression of rat c-ros-1 gene and partial structural similarity of its predicted products with sev protein of Drosophila melanogaster. J Virol. 1990;64(5):2117–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Chen JM, Heller D, Poon B, Kang L, Wang LH. The proto-oncogene c-ros codes for a transmembrane tyrosine protein kinase sharing sequence and structural homology with sevenless protein of Drosophila melanogaster. Oncogene. 1991;6(2):257–64.

    CAS  PubMed  Google Scholar 

  25. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19(49):5548–57.

    CAS  PubMed  Google Scholar 

  26. Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003;1(1):E12.

    PubMed Central  PubMed  Google Scholar 

  27. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Page AP, Johnstone IL. The cuticle. WormBook. 2007;1–15.

    Google Scholar 

  29. Cox GN, Laufer JS, Kusch M, Edgar RS. Genetic and phenotypic characterization of roller mutants of Caenorhabditis elegans. Genetics. 1980;95(2):317–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Barbazuk WB, Johnsen RC, Baillie DL. The generation and genetic analysis of suppressors of lethal mutations in the Caenorhabditis elegans rol-3(V) gene. Genetics. 1994;136(1):129–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, et al. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol. 2007;5(9):e237.

    PubMed Central  PubMed  Google Scholar 

  32. Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis. 2013;51(8):545–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hafen E, Basler K, Edstroem JE, Rubin GM. Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science. 1987;236(4797):55–63.

    CAS  PubMed  Google Scholar 

  34. Price JV, Clifford RJ, Schupbach T. The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell. 1989;56(6):1085–92.

    CAS  PubMed  Google Scholar 

  35. Schejter ED, Shilo BZ. The Drosophila EGF receptor homolog (DER) gene is allelic to faint little ball, a locus essential for embryonic development. Cell. 1989;56(6):1093–104.

    CAS  PubMed  Google Scholar 

  36. Bergmann A, Agapite J, McCall K, Steller H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell. 1998;95(3):331–41.

    CAS  PubMed  Google Scholar 

  37. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. 1996;87(4):651–60.

    CAS  PubMed  Google Scholar 

  38. Kumar JP, Tio M, Hsiung F, Akopyan S, Gabay L, Seger R, et al. Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development. 1998;125(19):3875–85.

    CAS  PubMed  Google Scholar 

  39. Kurada P, White K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell. 1998;95(3):319–29.

    CAS  PubMed  Google Scholar 

  40. Spencer SA, Powell PA, Miller DT, Cagan RL. Regulation of EGF receptor signaling establishes pattern across the developing Drosophila retina. Development. 1998;125(23):4777–90.

    CAS  PubMed  Google Scholar 

  41. Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993;117(4):1223–37.

    CAS  PubMed  Google Scholar 

  42. Tomlinson A, Ready DF. Sevenless: a cell-specific homeotic mutation of the Drosophila eye. Science. 1986;231(4736):400–2.

    CAS  PubMed  Google Scholar 

  43. Raabe T. The sevenless signaling pathway: variations of a common theme. Biochim Biophys Acta. 2000;1496(2–3):151–63.

    CAS  PubMed  Google Scholar 

  44. Hart AC, Kramer H, Van Vactor Jr DL, Paidhungat M, Zipursky SL. Induction of cell fate in the Drosophila retina: the bride of sevenless protein is predicted to contain a large extracellular domain and seven transmembrane segments. Genes Dev. 1990;4(11):1835–47.

    CAS  PubMed  Google Scholar 

  45. Kramer H, Cagan RL, Zipursky SL. Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature. 1991;352(6332):207–12.

    CAS  PubMed  Google Scholar 

  46. Reinke R, Zipursky SL. Cell-cell interaction in the Drosophila retina: the bride of sevenless gene is required in photoreceptor cell R8 for R7 cell development. Cell. 1988;55(2):321–30.

    CAS  PubMed  Google Scholar 

  47. Chen J, Zong CS, Wang LH. Tissue and epithelial cell-specific expression of chicken proto-oncogene c-ros in several organs suggests that it may play roles in their development and mature functions. Oncogene. 1994;9(3):773–80.

    CAS  PubMed  Google Scholar 

  48. Sonnenberg E, Godecke A, Walter B, Bladt F, Birchmeier C. Transient and locally restricted expression of the ros1 protooncogene during mouse development. EMBO J. 1991;10(12):3693–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Tessarollo L, Nagarajan L, Parada LF. c-ros: the vertebrate homolog of the sevenless tyrosine kinase receptor is tightly regulated during organogenesis in mouse embryonic development. Development. 1992;115(1):11–20.

    CAS  PubMed  Google Scholar 

  50. Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta. 2009;1795(1):37–52.

    CAS  PubMed  Google Scholar 

  51. Eddy EM. Male germ cell gene expression. Recent Prog Horm Res. 2002;57:103–28.

    CAS  PubMed  Google Scholar 

  52. Kanwar YS, Liu ZZ, Kumar A, Wada J, Carone FA. Cloning of mouse c-ros renal cDNA, its role in development and relationship to extracellular matrix glycoproteins. Kidney Int. 1995;48(5):1646–59.

    CAS  PubMed  Google Scholar 

  53. Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  54. Liu ZZ, Wada J, Kumar A, Carone FA, Takahashi M, Kanwar YS. Comparative role of phosphotyrosine kinase domains of c-ros and c-ret protooncogenes in metanephric development with respect to growth factors and matrix morphogens. Dev Biol. 1996;178(1):133–48.

    CAS  PubMed  Google Scholar 

  55. Sonnenberg-Riethmacher E, Walter B, Riethmacher D, Godecke S, Birchmeier C. The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 1996;10(10):1184–93.

    CAS  PubMed  Google Scholar 

  56. Jun HJ, Roy J, Smith TB, Wood LB, Lane K, Woolfenden S, et al. ROS1 signaling regulates epithelial differentiation in the epididymis. Endocrinology. 2014;155(9):3661–73.

    PubMed  Google Scholar 

  57. Bedford JM. Maturation, transport and fate of spermatozoa in the epididymis. In: Hamilton DW, Greep RO, editors. Handbook of physiology. Washington DC: American Physiological Society; 1975. p. 303–17.

    Google Scholar 

  58. Hinton BT. What does the epididymis do and how does it do it? In: Hinton BT, Robaire B, Prryor JL, Trasler JM, editors. Handbook of andrology. Lawrence, KS: American Society of Andrology; 1995. p. 1–5.

    Google Scholar 

  59. Orgebin-Crist M-C, Danzo BJ, Davies J. Endocrine control of the development and maintenance of sperm fertilizing ability in the epididymis. In: Hamilton DW, Greep RO, editors. Handbook of physiology. Washington DC: American Physiological Society; 1975. p. 319–38.

    Google Scholar 

  60. Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15(2):213–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Robaire B, Syntin P, Jervis K. The coming of age of the epididymis. In: Jegou B, editor. Testis, epididymis and technologies in the year 2000. New York: Springer; 2000. p. 229–62.

    Google Scholar 

  62. Da Silva N, Silberstein C, Beaulieu V, Pietrement C, Van Hoek AN, Brown D, et al. Postnatal expression of aquaporins in epithelial cells of the rat epididymis. Biol Reprod. 2006;74(2):427–38.

    PubMed  Google Scholar 

  63. Hermo L, Barin K, Robaire B. Structural differentiation of the epithelial cells of the testicular excurrent duct system of rats during postnatal development. Anat Rec. 1992;233(2):205–28.

    CAS  PubMed  Google Scholar 

  64. Rodriguez CM, Kirby JL, Hinton BT. The development of the epididymis. In: Robaire B, Hinton BT, editors. The epididymis: from molecules to clinical practice. New York: Kluwer Academic/Plenum; 2002. p. 251–67.

    Google Scholar 

  65. Shum WW, Hill E, Brown D, Breton S. Plasticity of basal cells during postnatal development in the rat epididymis. Reproduction. 2013;146(5):455–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Sun EL, Flickinger CJ. Development of cell types and of regional differences in the postnatal rat epididymis. Am J Anat. 1979;154(1):27–55.

    CAS  PubMed  Google Scholar 

  67. Kirchhoff C. Gene expression in the epididymis. Int Rev Cytol. 1999;188:133–202.

    CAS  PubMed  Google Scholar 

  68. Krutskikh A, De Gendt K, Sharp V, Verhoeven G, Poutanen M, Huhtaniemi I. Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology. 2011;152(2):689–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Bjorkgren I, Saastamoinen L, Krutskikh A, Huhtaniemi I, Poutanen M, Sipila P. Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One. 2012;7(6):e38457.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, Yamamura K. LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod. 2007;76(2):303–13.

    CAS  PubMed  Google Scholar 

  71. McPhaul MJ. Androgen receptor mutations and androgen insensitivity. Mol Cell Endocrinol. 2002;198(1–2):61–7.

    CAS  PubMed  Google Scholar 

  72. Mendive F, Laurent P, Van Schoore G, Skarnes W, Pochet R, Vassart G. Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Dev Biol. 2006;290(2):421–34.

    CAS  PubMed  Google Scholar 

  73. Murashima A, Miyagawa S, Ogino Y, Nishida-Fukuda H, Araki K, Matsumoto T, et al. Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology. 2011;152(4):1640–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. O’Hara L, Welsh M, Saunders PT, Smith LB. Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology. 2011;152(2):718–29.

    PubMed  Google Scholar 

  75. Sipila P, Cooper TG, Yeung CH, Mustonen M, Penttinen J, Drevet J, et al. Epididymal dysfunction initiated by the expression of simian virus 40 T-antigen leads to angulated sperm flagella and infertility in transgenic mice. Mol Endocrinol. 2002;16(11):2603–17.

    CAS  PubMed  Google Scholar 

  76. Shum WW, Ruan YC, Da Silva N, Breton S. Establishment of cell-cell cross talk in the epididymis: control of luminal acidification. J Androl. 2011;32(6):576–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Britan A, Lareyre JJ, Lefrancois-Martinez AM, Manin M, Schwaab V, Greiffeuille V, et al. Spontaneously immortalized epithelial cells from mouse caput epididymidis. Mol Cell Endocrinol. 2004;224(1–2):41–53.

    CAS  PubMed  Google Scholar 

  78. Cooper TG. Sperm maturation in the epididymis: a new look at an old problem. Asian J Androl. 2007;9(4):533–9.

    CAS  PubMed  Google Scholar 

  79. Cooper TG, Wagenfeld A, Cornwall GA, Hsia N, Chu ST, Orgebin-Crist MC, et al. Gene and protein expression in the epididymis of infertile c-ros receptor tyrosine kinase-deficient mice. Biol Reprod. 2003;69(5):1750–62.

    CAS  PubMed  Google Scholar 

  80. Cooper TG, Yeung CH, Wagenfeld A, Nieschlag E, Poutanen M, Huhtaniemi I, et al. Mouse models of infertility due to swollen spermatozoa. Mol Cell Endocrinol. 2004;216(1–2):55–63.

    CAS  PubMed  Google Scholar 

  81. Yeung CH, Anapolski M, Setiawan I, Lang F, Cooper TG. Effects of putative epididymal osmolytes on sperm volume regulation of fertile and infertile c-ros transgenic mice. J Androl. 2004;25(2):216–23.

    CAS  PubMed  Google Scholar 

  82. Yeung CH, Breton S, Setiawan I, Xu Y, Lang F, Cooper TG. Increased luminal pH in the epididymis of infertile c-ros knockout mice and the expression of sodium-hydrogen exchangers and vacuolar proton pump H+-ATPase. Mol Reprod Dev. 2004;68(2):159–68.

    CAS  PubMed  Google Scholar 

  83. Yeung CH, Cooper TG. Developmental changes in signalling transduction factors in maturing sperm during epididymal transit. Cell Mol Biol (Noisy-le-grand). 2003;49(3):341–9.

    CAS  Google Scholar 

  84. Legare C, Sullivan R. Expression and localization of c-ros oncogene along the human excurrent duct. Mol Hum Reprod. 2004;10(9):697–703.

    CAS  PubMed  Google Scholar 

  85. Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, et al. A DNA microarray survey of gene expression in normal human tissues. Genome Biol. 2005;6(3):R22.

    PubMed Central  PubMed  Google Scholar 

  86. Sholl LM, Sun H, Butaney M, Zhang C, Lee C, Janne PA, et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol. 2013;37(9):1441–9.

    PubMed  Google Scholar 

  87. Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci USA. 1987;84(24):9270–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Mapstone T, McMichael M, Goldthwait D. Expression of platelet-derived growth factors, transforming growth factors, and the ros gene in a variety of primary human brain tumors. Neurosurgery. 1991;28(2):216–22.

    CAS  PubMed  Google Scholar 

  89. Watkins D, Dion F, Poisson M, Delattre JY, Rouleau GA. Analysis of oncogene expression in primary human gliomas: evidence for increased expression of the ros oncogene. Cancer Genet Cytogenet. 1994;72(2):130–6.

    CAS  PubMed  Google Scholar 

  90. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Zhao JF, Sharma S. Expression of the ROS1 oncogene for tyrosine receptor kinase in adult human meningiomas. Cancer Genet Cytogenet. 1995;83(2):148–54.

    CAS  PubMed  Google Scholar 

  92. Girish V, Sachdeva N, Minz RW, Radotra B, Mathuria SN, Arora SK. Bcl2 and ROS1 expression in human meningiomas: an analysis with respect to histological subtype. Indian J Pathol Microbiol. 2005;48(3):325–30.

    CAS  PubMed  Google Scholar 

  93. Jun HJ, Woolfenden S, Coven S, Lane K, Bronson R, Housman D, et al. Epigenetic regulation of c-ROS receptor tyrosine kinase expression in malignant gliomas. Cancer Res. 2009;69(6):2180–4.

    CAS  PubMed  Google Scholar 

  94. Bonner AE, Lemon WJ, Devereux TR, Lubet RA, You M. Molecular profiling of mouse lung tumors: association with tumor progression, lung development, and human lung adenocarcinomas. Oncogene. 2004;23(5):1166–76.

    CAS  PubMed  Google Scholar 

  95. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C, et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet. 2005;37(1):48–55.

    CAS  PubMed  Google Scholar 

  96. Sweet-Cordero A, Tseng GC, You H, Douglass M, Huey B, Albertson D, et al. Comparison of gene expression and DNA copy number changes in a murine model of lung cancer. Genes Chromosomes Cancer. 2006;45(4):338–48.

    CAS  PubMed  Google Scholar 

  97. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001;98(24):13790–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7.

    CAS  PubMed  Google Scholar 

  99. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 2001;98(24):13784–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Lee HJ, Seol HS, Kim JY, Chun SM, Suh YA, Park YS, et al. ROS1 receptor tyrosine kinase, a druggable target, is frequently overexpressed in non-small cell lung carcinomas via genetic and epigenetic mechanisms. Ann Surg Oncol. 2012;20(1):200–8.

    PubMed  Google Scholar 

  101. Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet. 2012;44(12):1330–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Cilloni D, Carturan S, Bracco E, Campia V, Rosso V, Torti D, et al. Aberrant activation of ROS1 represents a new molecular defect in chronic myelomonocytic leukemia. Leuk Res. 2013;37(5):520–30.

    CAS  PubMed  Google Scholar 

  103. Eom M, Han A, Yi SY, Shin JJ, Cui Y, Park KH. RHEB expression in fibroadenomas of the breast. Pathol Int. 2008;58(4):226–32.

    CAS  PubMed  Google Scholar 

  104. Eom M, Lkhagvadorj S, Oh SS, Han A, Park KH. ROS1 expression in invasive ductal carcinoma of the breast related to proliferation activity. Yonsei Med J. 2013;54(3):650–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Yamashita S, Nomoto T, Abe M, Tatematsu M, Sugimura T, Ushijima T. Persistence of gene expression changes in stomach mucosae induced by short-term N-methyl-N′-nitro-N-nitrosoguanidine treatment and their presence in stomach cancers. Mutat Res. 2004;549(1–2):185–93.

    CAS  PubMed  Google Scholar 

  106. Yovchev MI, Grozdanov PN, Joseph B, Gupta S, Dabeva MD. Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology. 2007;45(1):139–49.

    CAS  PubMed  Google Scholar 

  107. Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C, Dabeva MD. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology. 2008;47(2):636–47.

    CAS  PubMed  Google Scholar 

  108. Ruhe JE, Streit S, Hart S, Wong CH, Specht K, Knyazev P, et al. Genetic alterations in the tyrosine kinase transcriptome of human cancer cell lines. Cancer Res. 2007;67(23):11368–76.

    CAS  PubMed  Google Scholar 

  109. Nagarajan L, Louie E, Tsujimoto Y, Balduzzi PC, Huebner K, Croce CM. The human c-ros gene (ROS) is located at chromosome region 6q16–6q22. Proc Natl Acad Sci USA. 1986;83(17):6568–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Rabin M, Birnbaum D, Young D, Birchmeier C, Wigler M, Ruddle FH. Human ros1 and mas1 oncogenes located in regions of chromosome 6 associated with tumor-specific rearrangements. Oncogene Res. 1987;1(2):169–78.

    CAS  PubMed  Google Scholar 

  111. Satoh H, Yoshida MC, Matsushime H, Shibuya M, Sasaki M. Regional localization of the human c-ros-1 on 6q22 and flt on 13q12. Jpn J Cancer Res. 1987;78(8):772–5.

    CAS  PubMed  Google Scholar 

  112. Shiffman D, Ellis SG, Rowland CM, Malloy MJ, Luke MM, Iakoubova OA, et al. Identification of four gene variants associated with myocardial infarction. Am J Hum Genet. 2005;77(4):596–605.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Zee RY, Michaud SE, Hegener HH, Diehl KA, Ridker PM. A prospective replication study of five gene variants previously associated with risk of myocardial infarction. J Thromb Haemost. 2006;4(9):2093–5.

    CAS  PubMed  Google Scholar 

  114. Horne BD, Carlquist JF, Muhlestein JB, Nicholas ZP, Anderson JL. Associations with myocardial infarction of six polymorphisms selected from a three-stage genome-wide association study. Am Heart J. 2007;154(5):969–75.

    CAS  PubMed  Google Scholar 

  115. Oguri M, Kato K, Hibino T, Yokoi K, Segawa T, Matsuo H, et al. Genetic risk for restenosis after coronary stenting. Atherosclerosis. 2007;194(2):e172–8.

    CAS  PubMed  Google Scholar 

  116. Yamada Y, Kato K, Yoshida T, Yokoi K, Matsuo H, Watanabe S, et al. Association of polymorphisms of ABCA1 and ROS1 with hypertension in Japanese individuals. Int J Mol Med. 2008;21(1):83–9.

    CAS  PubMed  Google Scholar 

  117. Charest A, Lane K, McMahon K, Park J, Preisinger E, Conroy H, et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer. 2003;37(1):58–71.

    CAS  PubMed  Google Scholar 

  118. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413.

    CAS  PubMed  Google Scholar 

  119. Bork P, Downing AK, Kieffer B, Campbell ID. Structure and distribution of modules in extracellular proteins. Q Rev Biophys. 1996;29(2):119–67.

    CAS  PubMed  Google Scholar 

  120. Springer TA. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J Mol Biol. 1998;283(4):837–62.

    CAS  PubMed  Google Scholar 

  121. McKern NM, Lawrence MC, Streltsov VA, Lou MZ, Adams TE, Lovrecz GO, et al. Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature. 2006;443(7108):218–21.

    CAS  PubMed  Google Scholar 

  122. Ward C, Lawrence M, Streltsov V, Garrett T, McKern N, Lou MZ, et al. Structural insights into ligand-induced activation of the insulin receptor. Acta Physiol (Oxf). 2008;192(1):3–9.

    CAS  Google Scholar 

  123. Carvalho RF, Beutler M, Marler KJ, Knoll B, Becker-Barroso E, Heintzmann R, et al. Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci. 2006;9(3):322–30.

    CAS  PubMed  Google Scholar 

  124. Riethmacher D, Langholz O, Godecke S, Sachs M, Birchmeier C. Biochemical and functional characterization of the murine ros protooncogene. Oncogene. 1994;9(12):3617–26.

    CAS  PubMed  Google Scholar 

  125. Ellis L, Morgan DO, Jong SM, Wang LH, Roth RA, Rutter WJ. Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells. Proc Natl Acad Sci USA. 1987;84(15):5101–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Xiong Q, Chan JL, Zong CS, Wang LH. Two chimeric receptors of epidermal growth factor receptor and c-Ros that differ in their transmembrane domains have opposite effects on cell growth. Mol Cell Biol. 1996;16(4):1509–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Sachs M, Weidner KM, Brinkmann V, Walther I, Obermeier A, Ullrich A, et al. Motogenic and morphogenic activity of epithelial receptor tyrosine kinases. J Cell Biol. 1996;133(5):1095–107.

    CAS  PubMed  Google Scholar 

  128. Awad MM, Engelman JA, Shaw AT. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 2013;369(12):1173.

    CAS  PubMed  Google Scholar 

  129. Garber EA, Hanafusa T, Hanafusa H. Membrane association of the transforming protein of avian sarcoma virus UR2 and mutants temperature sensitive for cellular transformation and protein kinase activity. J Virol. 1985;56(3):790–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Chan JL, Lai M, Wang LH. Effect of dimerization on signal transduction and biological function of oncogenic Ros, insulin, and insulin-like growth factor I receptors. J Biol Chem. 1997;272(1):146–53.

    CAS  PubMed  Google Scholar 

  131. Zong CS, Wang LH. Modulatory effect of the transmembrane domain of the protein-tyrosine kinase encoded by oncogene ros: biological function and substrate interaction. Proc Natl Acad Sci USA. 1994;91(23):10982–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Zong CS, Poon B, Chen J, Wang LH. Molecular and biochemical bases for activation of the transforming potential of the proto-oncogene c-ros. J Virol. 1993;67(11):6453–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Charest A, Lane K, McMahon K, Housman DE. Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem. 2001;276(31):29456–65.

    CAS  PubMed  Google Scholar 

  134. Charest A, Kheifets V, Park J, Lane K, McMahon K, Nutt CL, et al. Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma. Proc Natl Acad Sci USA. 2003;100(3):916–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Charest A, Wilker EW, McLaughlin ME, Lane K, Gowda R, Coven S, et al. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res. 2006;66(15):7473–81.

    CAS  PubMed  Google Scholar 

  136. Gu TL, Deng X, Huang F, Tucker M, Crosby K, Rimkunas V, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One. 2011;6(1):e15640.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Suehara Y, Arcila M, Wang L, Hasanovic A, Ang D, Ito T, et al. Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res. 2012;18(24):6599–608.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Cooper WA, Lam DC, O’Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis. 2013;5 Suppl 5:S479–S90.

    PubMed Central  PubMed  Google Scholar 

  139. Shames DS, Wistuba II. The evolving genomic classification of lung cancer. J Pathol. 2014;232(2):121–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Sequist LV. ROS1-targeted therapy in non-small cell lung cancer. Clin Adv Hematol Oncol. 2012;10(12):827–8.

    PubMed  Google Scholar 

  141. Stumpfova M, Janne PA. Zeroing in on ROS1 rearrangements in non-small cell lung cancer. Clin Cancer Res. 2012;18(16):4222–4.

    CAS  PubMed  Google Scholar 

  142. Rimkunas VM, Crosby KE, Li D, Hu Y, Kelly ME, Gu TL, et al. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res. 2012;18(16):4449–57.

    CAS  PubMed  Google Scholar 

  143. Birch AH, Arcand SL, Oros KK, Rahimi K, Watters AK, Provencher D, et al. Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours. PLoS One. 2011;6(12):e28250.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203.

    CAS  PubMed  Google Scholar 

  146. Rimkunas V, Crosby K, Silver M, Hincman K, Kelly M, Li D, et al. Frequencies of ALK and ROS in NSCLC FFPE tumor samples utilizing a highly specific and sensitive immunohistochemistry-based assay and FISH analysis. J Clin Oncol. 2010;28(15):10536.

    Google Scholar 

  147. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22(11):2109–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–81.

    CAS  PubMed  Google Scholar 

  149. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;27.

    Google Scholar 

  150. Lee J, Lee SE, Kang SY, Do IG, Lee S, Ha SY, et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer. 2013;119(9):1627–35.

    CAS  PubMed  Google Scholar 

  151. Aisner DL, Nguyen TT, Paskulin DD, Le AT, Haney J, Schulte N, et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res. 2013;12(1):111–8.

    PubMed Central  PubMed  Google Scholar 

  152. Wiesner T, He J, Yelensky R, Esteve-Puig R, Botton T, Yeh I, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun. 2014;5:3116.

    PubMed Central  PubMed  Google Scholar 

  153. Giacomini CP, Sun S, Varma S, Shain AH, Giacomini MM, Balagtas J, et al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet. 2013;9(4):e1003464.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4(8):889–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Lovly CM, Lipson D, Otto G, Brennan T, Sankar S, Stephens PJ, et al. Potentially actionable kinase fusions in inflammatory myofibroblastic tumors. ASCO Meeting Abstracts. 2013;31(15):10513.

    Google Scholar 

  157. Murer H, Forster I, Biber J. The sodium phosphate cotransporter family SLC34. Pflugers Arch. 2004;447(5):763–7.

    CAS  PubMed  Google Scholar 

  158. Lambert G, Traebert M, Hernando N, Biber J, Murer H. Studies on the topology of the renal type II NaPi-cotransporter. Pflugers Arch. 1999;437(6):972–8.

    CAS  PubMed  Google Scholar 

  159. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA. 1998;95(24):14564–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Feild JA, Zhang L, Brun KA, Brooks DP, Edwards RM. Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem Biophys Res Commun. 1999;258(3):578–82.

    CAS  PubMed  Google Scholar 

  161. Xu H, Collins JF, Bai L, Kiela PR, Ghishan FK. Regulation of the human sodium-phosphate cotransporter NaP(i)-IIb gene promoter by epidermal growth factor. Am J Physiol Cell Physiol. 2001;280(3):C628–36.

    CAS  PubMed  Google Scholar 

  162. Traebert M, Hattenhauer O, Murer H, Kaissling B, Biber J. Expression of type II Na-P(i) cotransporter in alveolar type II cells. Am J Physiol. 1999;277(5 Pt 1):L868–73.

    CAS  PubMed  Google Scholar 

  163. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, et al. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197(11):1467–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Badve S, Deshpande C, Hua Z, Logdberg L. Expression of invariant chain (CD 74) and major histocompatibility complex (MHC) class II antigens in the human fetus. J Histochem Cytochem. 2002;50(4):473–82.

    CAS  PubMed  Google Scholar 

  165. Lazova R, Moynes R, May D, Scott G. LN-2 (CD74). A marker to distinguish atypical fibroxanthoma from malignant fibrous histiocytoma. Cancer. 1997;79(11):2115–24.

    CAS  PubMed  Google Scholar 

  166. Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ. Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology. 1999;98(2):296–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Datta MW, Shahsafaei A, Nadler LM, Freeman GJ, Dorfman DM. Expression of MHC class II-associated invariant chain (Ii;CD74) in thymic epithelial neoplasms. Appl Immunohistochem Mol Morphol. 2000;8(3):210–5.

    CAS  PubMed  Google Scholar 

  168. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Iwashige H, Aridome K, et al. Invariant chain expression in gastric cancer. Cancer Lett. 2001;168(1):87–91.

    CAS  PubMed  Google Scholar 

  169. Young AN, Amin MB, Moreno CS, Lim SD, Cohen C, Petros JA, et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol. 2001;158(5):1639–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM, et al. CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res. 2004;10(19):6606–11.

    CAS  PubMed  Google Scholar 

  171. Hustinx SR, Cao D, Maitra A, Sato N, Martin ST, Sudhir D, et al. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression. Cancer Biol Ther. 2004;3(12):1254–61.

    CAS  PubMed  Google Scholar 

  172. Rangel LB, Agarwal R, Sherman-Baust CA, Mello-Coelho V, Pizer ES, Ji H, et al. Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancers. Cancer Biol Ther. 2004;3(10):1021–7.

    CAS  PubMed  Google Scholar 

  173. Lees JG, Bach CT, O’Neill GM. Interior decoration: tropomyosin in actin dynamics and cell migration. Cell Adh Migr. 2011;5(2):181–6.

    PubMed Central  PubMed  Google Scholar 

  174. Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer. 1999;80(6):842–7.

    CAS  PubMed  Google Scholar 

  175. Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93(9):3088–95.

    CAS  PubMed  Google Scholar 

  176. Rosati R, La Starza R, Luciano L, Gorello P, Matteucci C, Pierini V, et al. TPM3/PDGFRB fusion transcript and its reciprocal in chronic eosinophilic leukemia. Leukemia. 2006;20(9):1623–4.

    CAS  PubMed  Google Scholar 

  177. Multhaupt HA, Yoneda A, Whiteford JR, Oh ES, Lee W, Couchman JR. Syndecan signaling: when, where and why? J Physiol Pharmacol. 2009;60 Suppl 4:31–8.

    PubMed  Google Scholar 

  178. Simons M, Horowitz A. Syndecan-4-mediated signalling. Cell Signal. 2001;13(12):855–62.

    CAS  PubMed  Google Scholar 

  179. Guo D, Holmlund C, Henriksson R, Hedman H. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics. 2004;84(1):157–65.

    CAS  PubMed  Google Scholar 

  180. Neisch AL, Fehon RG. Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Curr Opin Cell Biol. 2011;23(4):377–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Bartkova J, Rajpert-De Meyts E, Skakkebaek NE, Lukas J, Bartek J. DNA damage response in human testes and testicular germ cell tumours: biology and implications for therapy. Int J Androl. 2007;30(4):282–91. Discussion 91.

    CAS  PubMed  Google Scholar 

  182. Celetti A, Cerrato A, Merolla F, Vitagliano D, Vecchio G, Grieco M. H4(D10S170), a gene frequently rearranged with RET in papillary thyroid carcinomas: functional characterization. Oncogene. 2004;23(1):109–21.

    CAS  PubMed  Google Scholar 

  183. Merolla F, Pentimalli F, Pacelli R, Vecchio G, Fusco A, Grieco M, et al. Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage. Oncogene. 2007;26(42):6167–75.

    CAS  PubMed  Google Scholar 

  184. Merolla F, Luise C, Muller MT, Pacelli R, Fusco A, Celetti A. Loss of CCDC6, the first identified RET partner gene, affects pH2AX S139 levels and accelerates mitotic entry upon DNA damage. PLoS One. 2012;7(5):e36177.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60(4):557–63.

    CAS  PubMed  Google Scholar 

  186. Schwaller J, Anastasiadou E, Cain D, Kutok J, Wojiski S, Williams IR, et al. H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood. 2001;97(12):3910–8.

    CAS  PubMed  Google Scholar 

  187. Kulkarni S, Heath C, Parker S, Chase A, Iqbal S, Pocock CF, et al. Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR-ABL-negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res. 2000;60(13):3592–8.

    CAS  PubMed  Google Scholar 

  188. Puxeddu E, Knauf JA, Sartor MA, Mitsutake N, Smith EP, Medvedovic M, et al. RET/PTC-induced gene expression in thyroid PCCL3 cells reveals early activation of genes involved in regulation of the immune response. Endocr Relat Cancer. 2005;12(2):319–34.

    CAS  PubMed  Google Scholar 

  189. Scanlan MJ, Gout I, Gordon CM, Williamson B, Stockert E, Gure AO, et al. Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun. 2001;1:4.

    CAS  PubMed  Google Scholar 

  190. Chmielecki J, Peifer M, Viale A, Hutchinson K, Giltnane J, Socci ND, et al. Systematic screen for tyrosine kinase rearrangements identifies a novel C6orf204-PDGFRB fusion in a patient with recurrent T-ALL and an associated myeloproliferative neoplasm. Genes Chromosomes Cancer. 2012;51(1):54–65.

    CAS  PubMed  Google Scholar 

  191. Berg D, Holzmann C, Riess O. 14-3-3 proteins in the nervous system. Nat Rev Neurosci. 2003;4(9):752–62.

    CAS  PubMed  Google Scholar 

  192. Witte K, Schuh AL, Hegermann J, Sarkeshik A, Mayers JR, Schwarze K, et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13(5):550–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Clucas J, Valderrama F. ERM proteins in cancer progression. J Cell Sci. 2014;127(Pt 2): 267–75.

    CAS  PubMed  Google Scholar 

  194. Maul RS, Song Y, Amann KJ, Gerbin SC, Pollard TD, Chang DD. EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol. 2003;160(3):399–407.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Norrmen C, Vandevelde W, Ny A, Saharinen P, Gentile M, Haraldsen G, et al. Liprin (beta)1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity. Blood. 2010;115(4):906–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Takeuchi K, Soda M, Togashi Y, Sugawara E, Hatano S, Asaka R, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res. 2011;17(10):3341–8.

    CAS  PubMed  Google Scholar 

  197. Nakata T, Kitamura Y, Shimizu K, Tanaka S, Fujimori M, Yokoyama S, et al. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer. 1999;25(2):97–103.

    CAS  PubMed  Google Scholar 

  198. Gorello P, La Starza R, Brandimarte L, Trisolini SM, Pierini V, Crescenzi B, et al. A PDGFRB-positive acute myeloid malignancy with a new t(5;12)(q33;p13.3) involving the ERC1 gene. Leukemia. 2008;22(1):216–8.

    CAS  PubMed  Google Scholar 

  199. Galjart N. CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol. 2005;6(6):487–98.

    CAS  PubMed  Google Scholar 

  200. Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19(3):235–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Gustafson MP, Welcker M, Hwang HC, Clurman BE. Zcchc8 is a glycogen synthase kinase-3 substrate that interacts with RNA-binding proteins. Biochem Biophys Res Commun. 2005;338(3):1359–67.

    CAS  PubMed  Google Scholar 

  202. Jun HJ, Johnson H, Bronson RT, de Feraudy S, White F, Charest A. The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res. 2012;72(15):3764–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, et al. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol. 2000;20(24):9212–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Zong CS, Chan JL, Yang SK, Wang LH. Mutations of Ros differentially effecting signal transduction pathways leading to cell growth versus transformation. J Biol Chem. 1997;272(3):1500–6.

    CAS  PubMed  Google Scholar 

  205. Keilhack H, Muller M, Bohmer SA, Frank C, Weidner KM, Birchmeier W, et al. Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. J Cell Biol. 2001;152(2):325–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Bignon JS, Siminovitch KA. Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol. 1994;73(2):168–79.

    CAS  PubMed  Google Scholar 

  207. Kozlowski M, Mlinaric-Rascan I, Feng GS, Shen R, Pawson T, Siminovitch KA. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med. 1993;178(6):2157–63.

    CAS  PubMed  Google Scholar 

  208. Neel BG, Gu H, Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28(6):284–93.

    CAS  PubMed  Google Scholar 

  209. Wang N, Li Z, Ding R, Frank GD, Senbonmatsu T, Landon EJ, et al. Antagonism or synergism. Role of tyrosine phosphatases SHP-1 and SHP-2 in growth factor signaling. J Biol Chem. 2006;281(31):21878–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Choong K, Freedman MH, Chitayat D, Kelly EN, Taylor G, Zipursky A. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol. 1999;21(6):523–7.

    CAS  PubMed  Google Scholar 

  211. Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet. 2005;6:45–68.

    CAS  PubMed  Google Scholar 

  212. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103(6):2325–31.

    CAS  PubMed  Google Scholar 

  213. Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M, et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood. 2004;104(2):307–13.

    CAS  PubMed  Google Scholar 

  214. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34(2):148–50.

    CAS  PubMed  Google Scholar 

  215. Tartaglia M, Niemeyer CM, Shannon KM, Loh ML. SHP-2 and myeloid malignancies. Curr Opin Hematol. 2004;11(1):44–50.

    CAS  PubMed  Google Scholar 

  216. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004;64(24):8816–20.

    CAS  PubMed  Google Scholar 

  217. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell. 2005;7(2):179–91.

    CAS  PubMed  Google Scholar 

  218. Bennett AM, Hausdorff SF, O’Reilly AM, Freeman RM, Neel BG. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Mol Cell Biol. 1996;16(3):1189–202.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol. 1994;14(10):6674–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Saxton TM, Ciruna BG, Holmyard D, Kulkarni S, Harpal K, Rossant J, et al. The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Nat Genet. 2000;24(4):420–3.

    CAS  PubMed  Google Scholar 

  221. Shi ZQ, Yu DH, Park M, Marshall M, Feng GS. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol. 2000;20(5):1526–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Yamauchi K, Milarski KL, Saltiel AR, Pessin JE. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. Proc Natl Acad Sci USA. 1995;92(3):664–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Zhan Y, O’Rourke DM. SHP-2-dependent mitogen-activated protein kinase activation regulates EGFRvIII but not wild-type epidermal growth factor receptor phosphorylation and glioblastoma cell survival. Cancer Res. 2004;64(22):8292–8.

    CAS  PubMed  Google Scholar 

  224. Barford D, Neel BG. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure. 1998;6(3):249–54.

    CAS  PubMed  Google Scholar 

  225. Neel BG, Tonks NK. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol. 1997;9(2):193–204.

    CAS  PubMed  Google Scholar 

  226. Jarvis LA, Toering SJ, Simon MA, Krasnow MA, Smith-Bolton RK. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development. 2006;133(6):1133–42.

    CAS  PubMed  Google Scholar 

  227. Nguyen KT, Zong CS, Uttamsingh S, Sachdev P, Bhanot M, Le MT, et al. The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in Ros-induced cell transformation. J Biol Chem. 2002;277(13):11107–15.

    CAS  PubMed  Google Scholar 

  228. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    CAS  PubMed  Google Scholar 

  229. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    CAS  PubMed  Google Scholar 

  230. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.

    PubMed  Google Scholar 

  231. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9(6):667–76.

    CAS  PubMed  Google Scholar 

  232. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64.

    CAS  PubMed  Google Scholar 

  233. Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005;24(50):7435–42.

    CAS  PubMed  Google Scholar 

  234. Ruggero D, Sonenberg N. The Akt of translational control. Oncogene. 2005;24(50):7426–34.

    CAS  PubMed  Google Scholar 

  235. Testa JR, Tsichlis PN. AKT signaling in normal and malignant cells. Oncogene. 2005;24(50):7391–3.

    CAS  PubMed  Google Scholar 

  236. Uttamsingh S, Zong CS, Wang LH. Matrix-independent activation of phosphatidylinositol 3-kinase, Stat3, and cyclin A-associated Cdk2 Is essential for anchorage-independent growth of v-Ros-transformed chicken embryo fibroblasts. J Biol Chem. 2003;278(21):18798–810.

    CAS  PubMed  Google Scholar 

  237. Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005;65(7):2755–60.

    CAS  PubMed  Google Scholar 

  238. Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D. Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol. 1998;8(21):1195–8.

    CAS  PubMed  Google Scholar 

  239. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25(1):55–7.

    CAS  PubMed  Google Scholar 

  240. Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia. 2005;7(4):356–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8(4):945–54.

    CAS  PubMed  Google Scholar 

  242. Klampfer L. Signal transducers and activators of transcription (STATs): novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets. 2006;6(2):107–21.

    CAS  PubMed  Google Scholar 

  243. Frank DA. StAT signaling in cancer: insights into pathogenesis and treatment strategies. Cancer Treat Res. 2003;115:267–91.

    CAS  PubMed  Google Scholar 

  244. Frank DA. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 2007;251(2):199–210.

    CAS  PubMed  Google Scholar 

  245. Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL. Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol. 2006;65(12):1181–8.

    CAS  PubMed  Google Scholar 

  246. Zong CS, Zeng L, Jiang Y, Sadowski HB, Wang LH. Stat3 plays an important role in oncogenic Ros- and insulin-like growth factor I receptor-induced anchorage-independent growth. J Biol Chem. 1998;273(43):28065–72.

    CAS  PubMed  Google Scholar 

  247. Bao R, Friedrich M. Fast co-evolution of sevenless and bride of sevenless in endopterygote insects. Dev Genes Evol. 2008;218(3–4):215–20.

    PubMed  Google Scholar 

  248. Robbins MJ, Michalovich D, Hill J, Calver AR, Medhurst AD, Gloger I, et al. Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C). Genomics. 2000;67(1):8–18.

    CAS  PubMed  Google Scholar 

  249. Brauner-Osborne H, Krogsgaard-Larsen P. Sequence and expression pattern of a novel human orphan G-protein-coupled receptor, GPRC5B, a family C receptor with a short amino-terminal domain. Genomics. 2000;65(2):121–8.

    CAS  PubMed  Google Scholar 

  250. Robbins MJ, Charles KJ, Harrison DC, Pangalos MN. Localisation of the GPRC5B receptor in the rat brain and spinal cord. Brain Res Mol Brain Res. 2002;106(1–2):136–44.

    CAS  PubMed  Google Scholar 

  251. Imanishi S, Sugimoto M, Morita M, Kume S, Manabe N. Changes in expression and localization of GPRC5B and RARalpha in the placenta and yolk sac during middle to late gestation in mice. J Reprod Dev. 2007;53(5):1131–6.

    CAS  PubMed  Google Scholar 

  252. Avram C, Yeung CH, Nieschlag E, Cooper TG. Regulation of the initial segment of the murine epididymis by dihydrotestosterone and testicular exocrine secretions studied by expression of specific proteins and gene expression. Cell Tissue Res. 2004;317(1):13–22.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Charest M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Receptor at a glance: ROSss1

Receptor at a glance: ROSss1

Chromosome location

6q22

Gene size (bp)

137,489 bp

Intron/exon numbers

44 exons

mRNA size (5′, ORF, 3′)

7,375 nt

Amino acid number

2,347 amino acids

kDa

~260 kD

Posttranslational modifications

30 potential N-linked (GlcNAc), Phosphorylation

Domains

9 FN-III, 3 YWTD modules, extracellular, transmembrane domain, kinase domain

Ligands

Unknown

Known dimerizing partners

N/A

Pathways activated

RAS/MEK/ERK, STAT3, PI3K-AKT-mTOR, VAV3, SHP-1/2

Tissues expressed

Mostly in lungs

Human diseases

Cancer, heart

Knockout mouse phenotype

Male sterility, lack of epididymal function

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charest, A. (2015). The ROS1 Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_14

Download citation

Publish with us

Policies and ethics