Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-allylamino-17demethoxygeldanamycin

a.a.:

Amino acid

AGM:

Aorta–gonad–mesonephros

AHCYL1:

Adenosylhomocysteinase-like 1

Akt:

v-Akt murine thymoma viral oncogene homologue

AL:

Activation loop

ALL:

Acute lymphoblastic leukemias

ALSP:

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia

AML:

Acute myeloid leukemia

AP1:

Activator protein 1

ATP:

Adenosine triphosphate

BARF1:

Epstein–Barr virus lytic-cycle early protein 1

Bcl-2:

B-cell lymphoma 2

Bcl-X(L):

B-cell lymphoma-extra large

BMM:

Bone marrow-derived macrophages

bp:

Base pairs

C/EBPα:

CCAAT-enhancer-binding protein alpha

C1P:

Ceramide-1 phosphate

cAMP:

Cyclic adenosine monophosphate

Caspase:

Cysteine-dependent aspartate-directed protease

Cbl:

Casitas B-lineage lymphoma

CCL12:

Chemokine (C-C motif) ligand

CCR:

C-C chemokine receptor

CD:

Cluster of differentiation

cDC:

Lymphoid-tissue resident or classical DC

Cdc42:

Cell division control protein 42 homologue

c-Fms:

McDonough feline sarcoma virus oncogene (v-Fms) homologue

c-Fos:

Finkel–Biskis–Jinkins murine osteogenic sarcoma virus oncogene (v-fos) homologue

CFU-GM:

Colony-forming unit–granulocyte–macrophage

CFU-M:

Colony-forming unit–macrophage

c-Kit:

Hardy–Zuckerman 4 feline sarcoma viral oncogene (v-Kit) homologue

CLP:

Common lymphoid progenitor

CML:

Chronic myeloid leukemia

CMP:

Common myeloid progenitor cells

CMT:

Charcot–Marie–Tooth disease

c-Myc:

(v-Myc) myelocytomatosis viral oncogene homologue

CNS:

Central nervous system

CSF:

Colony-stimulating factor

CSF-1:

Colony-stimulating factor-1

CSF-1R:

Colony-stimulating factor-1 receptor

CT:

Cytoplasmic tail

CX3CR1:

CX3C chemokine receptor 1

DAP12:

DNAX-activating protein of 12 kDa

DC:

Dendritic cells

DNMT1:

DNA methyl transferase 1

Dok-1:

Docking protein 1

DUSP:

Dual-specificity phosphatase

DUSP5:

Dual-specificity phosphatase 5

EBV:

Epstein–Barr virus

ECD:

Extracellular domain

Egr2:

Early growth response 2

EM:

Electron microscopy

EMT:

Epithelial–mesenchymal transition

EPS8L3:

Epidermal growth factor receptor pathway substrate 8 like 3

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

ERα:

Estrogen receptor alpha

Ets:

E26 transformation specific

EWS:

Ewing sarcoma breakpoint region

FDMCs:

Follicular dendritic cell-induced monocytes

FIMP:

Fms-interacting protein

FIRE:

Fms-intronic regulatory element

FL:

FLT3 ligand

flk-2:

Fetal liver kinase 2

Flt3:

Fms-like tyrosine kinase 3

FUS/TLS:

Fused in sarcoma/translocated in sarcoma

Fyn:

Proto-oncogene tyrosine-protein kinase Fyn

Gab2:

Grb2-associated-binding protein 2

GCL:

Globoid cell leukodystrophy

GEF:

Guanine nucleotide exchange factor

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

GM:

Geldanamycin

GM-CSF:

Granulocyte–macrophage CSF

GMP:

Granulocyte–macrophage progenitor

GMP:

Granulocyte–macrophage progenitors

GnRH:

Gonadotropin-releasing hormone

Grb2:

Growth factor receptor-bound protein 2

GSKβ:

Glycogen synthase kinase 3 beta

HA:

Herbimycin A

Hck:

Tyrosine-protein kinase HCK

HDLS:

Hereditary diffuse leukoencephalopathy with axonal spheroids

HIV-1:

Human immunodeficiency virus type 1

HLA:

Human leukocyte antigen

HMGXB3:

HMG-box domain containing 3

HSC:

Hematopoietic stem cells

Ifi20:

Interferon-inducible P204 protein

IFNγ:

Interferon γ

Ig:

Immunoglobulin

IL-3:

Interleukin-3

IL-34:

Interleukin-34

IL-4:

Interleukin-4

IPC:

Type 1 interferon-producing cells

IRSp53:

Insulin receptor tyrosine kinase substrate p53

ISC:

Intestinal stem cells

ITD:

Internal tandem duplications

ITIM:

Immunoreceptor tyrosine-based inhibitory motifs

JAK:

Janus kinase

JDP2:

Jun dimerization protein 2

JM:

Juxtamembrane

JM-B:

JM-binding motif

JMD:

Juxtamembrane domain

JM-S:

JM switch motif

JM-Z:

Zipper segment

JNK:

c-Jun N-terminal kinase

JunB:

Transcription factor jun-B

KA:

Kainic acid

KC:

Keratinocyte chemoattractant

K d :

Dissociation constant

LC:

Langerhans cells

Ldlr  −/− :

Low-density lipoprotein receptor null

LEF:

Lymphoid enhancer-binding factor

LH:

Luteinizing hormone

LILRB:

Leukocyte Ig-like receptor B

LIMK:

LIM domain kinase

LMPP:

Lymphoid primed multipotent progenitors

Lnk:

Lnk adaptor protein

LPS:

Lipopolysaccharide

LSK:

lin-kit+sca-1+

LT-HSC:

Long-term hematopoietic stem cells

Lyn:

Tyrosine-protein kinase Lyn

MAP-kinase:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein 1

M-CSF:

Macrophage colony-stimulating factor

MDP:

Macrophage–DC progenitors

MDS:

Myelodysplastic syndrome

MEK:

Mitogen-activated protein kinase kinase

MEP:

Megakaryocyte/erythrocyte progenitors

MIP-2:

Macrophage inflammatory protein-2

miR:

Micro RNA

Mitf:

Microphthalmia-associated transcription factor

MKP:

MAP-kinase phosphatase

MKP-1:

Mitogen-activated protein kinase phosphatase-1 (also known as DUSP-1)

Mo:

Monocytes

Mona:

Monocytic adaptor

MPP:

Multipotent progenitor

mTOR:

Mammalian target of rapamycin

MΦ:

Macrophages

NBCn1:

Na/HCO3 co-transporter 1

N-CoR:

Nuclear receptor corepressor

NFAT:

Nuclear factor of activated T cells

NFkB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NPC:

Neural progenitor cells

OC:

Osteoclast

p38:

p38 Mitogen-activated protein kinase

PA:

Plasminogen activator

PAX5:

Paired box protein 5

PC:

Paneth cells

pDC:

Plasmacytoid DC

PDGF:

Platelet-derived growth factor

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

PI3K:

Phosphatidylinositol 3-kinase

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PIP3:

Phosphatidylinositol 3,4,5-trisphosphate

PIR-B:

Paired Ig-like receptor B

PKCζ:

Protein kinase Ca-dependent zeta

PLC:

Phospholipase C

PLC:

Phospholipase C

PLD2:

Phospholipase D

POLD:

Pigmented orthochromatic leukodystrophy

PP2A:

Serine–threonine phosphatase 2A

Pro-B:

Progenitors of B cells

Pro-NK:

Progenitors of natural killer cells

Pro-T:

Progenitors of T cells

PSTPIP2:

Proline–serine–threonine (PEST)–phosphatase-interacting protein 2

PTB:

Phosphotyrosine-binding domains

PTK:

Protein-tyrosine kinase

PTPN12:

Protein-tyrosine phosphatase nonreceptor type 12

PTPϕ:

Nonreceptor protein-tyrosine phosphatase phi

PU.1:

Transcription factor PU.1

Pyk2:

Protein-tyrosine kinase 2 beta

Rac:

Ras-related C3 botulinum toxin substrate

RANKL:

Receptor activator of nuclear factor κB

Ras:

Rat sarcoma small GTPase

RBM6:

RNA-binding motif 6

RCC:

Renal clear cell carcinoma

Rho:

Rho small GTPase

Rho U/Wrch:

Wnt-1-responsive Cdc42 homologue, Rho family GTPase

RIP:

Regulated intramembrane proteolysis

RPTP-ζ:

Receptor protein-tyrosine phosphatase-zeta

RSK2:

Ribosomal S6 kinase 2

RTK:

Receptor tyrosine kinase

RTK:

Receptor tyrosine kinase

Runx1:

Runt-related transcription factor 1

RV FV3:

Ranavirus frog virus 3

S100A4:

S100 family Ca2+-binding protein A4

SAXS:

Small-angle X-ray scattering

SCF:

Stem cell factor

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SFK:

Src family kinases

SH2:

Src homology 2 domain

SH3BP2:

SH3 domain-binding protein 2

Shc:

Src homology 2 domain containing

SHIP:

SH2-containing inositol phosphatase

Shp2:

SH2 domain protein-tyrosine phosphatase 2

SIRPα:

Signal regulatory protein alpha

SIV:

Simian immunodeficiency virus

SKAP55R:

Src kinase-associated phosphoprotein of 55 kDa (SKAP55)-related adaptor protein

SLAP:

Src-like adaptor protein

SLAP2:

Src-like adaptor protein 2

SLP-76:

SH2 domain-containing leukocyte protein-76

SM-FeSV:

Susan McDonough strain of feline sarcoma virus

Snord11B:

Small nucleolar RNA CD box 11B

Socs1:

Suppressor of cytokine signaling 1

Sos:

Son of sevenless

Sp1/3:

Transcription factors Sp1 and Sp3

Src:

Rous sarcoma virus oncogenic tyrosine kinase homologue

STAP-2:

Signal-transducing adaptor protein 2

STAT:

Signal transducer and activator of transcription

Syk:

Spleen tyrosine kinase

T reg:

T regulatory cells

TACE:

TNFα-converting enzyme (also known as ADAM-17)

TAMs:

Tumor-associated macrophages

Tbx3:

T-box transcription factor 3

TCF:

T-cell-specific, HMG-box transcription factor

Tcptp:

T-cell protein-tyrosine phosphatase

TGFβ1:

Transforming growth factor beta 1

TLR:

Toll-like receptor

TRAF6:

TNF receptor-associated factor 6

TRAP:

Tartrate-resistant acid phosphatase

TREM2:

Triggering receptor expressed on myeloid cells 2

Vac14:

Vac14 homologue

Vav:

Vav oncogene

VDR:

Vitamin D receptor

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2.

WASP:

Wiskott–Aldrich syndrome protein

WAVE2:

WASP-family verprolin-homologous protein-2

Zp3-Cre:

Zona pellucida 3 promoter-driven Cre recombinase

References

  1. Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell. 1985;41(3):665–76.

    CAS  PubMed  Google Scholar 

  2. Coussens L, Van Beveren C, Smith D, Chen E, Mitchell RL, Isacke CM, et al. Structural alteration of viral homologue of receptor proto-oncogene fms at carboxy-terminus. Nature. 1986;32(6059):277–80.

    Google Scholar 

  3. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Stanley ER, Heard PM. Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. J Biol Chem. 1977;252(12):4305–12.

    CAS  PubMed  Google Scholar 

  5. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 2008;320(5877):07–11.

    Google Scholar 

  6. Pandit J, Bohm A, Jancarik J, Halenbeck R, Koths K, Kim SH. Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. Science. 1992; 258(5086):1358–62.

    CAS  PubMed  Google Scholar 

  7. Ma X, Lin WY, Chen Y, Stawicki S, Mukhyala K, Wu Y, et al. Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure. 2012;20(4):676–87.

    CAS  PubMed  Google Scholar 

  8. Liu H, Leo C, Chen X, Wong BR, Williams LT, Lin H, et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochem Biophys Acta. 2012;1824(7):93–45.

    Google Scholar 

  9. Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, et al. Functional overlap, but differential expression of CSF-1 and IL-34, in their regulation of macrophages and osteoclasts via the CSF-1 receptor. J Leukoc Biol. 2010;88(3):495–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G, Lin H, et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol. 2012;367(2):100–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006;18(1):39–48.

    CAS  PubMed  Google Scholar 

  12. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13(8):753–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37(6):1050–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Chihara T, Suzu S, Hassan R, Chutiwitoonchai N, Hiyoshi M, Motoyoshi K, et al. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ. 2010;17(12):1917–27.

    CAS  PubMed  Google Scholar 

  15. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111–20.

    CAS  PubMed  Google Scholar 

  16. Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994;120(6):1357–72.

    CAS  PubMed  Google Scholar 

  17. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hume DA. Macrophages as APC and the dendritic cell myth. J Immunol. 2008;181(9):5829–35.

    CAS  PubMed  Google Scholar 

  19. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9(4):259–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Dai XM, Zong XH, Akhter MP, Stanley ER. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res. 2004;19(9):1441–51.

    CAS  PubMed  Google Scholar 

  22. Chitu V, Nacu V, Charles JF, Henne MW, McMahon HT, Nandi S, et al. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. Blood. 2012;120(15):3126–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Gu TL, Mercher T, Tyner JW, Goss VL, Walters DK, Cornejo MG, et al. A novel fusion of RBM6 to CSF1R in acute megakaryoblastic leukemia. Blood. 2007;110(1):323–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gisselbrecht S, Fichelson S, Sola B, Bordereaux D, Hampe A, Andre C, et al. Frequent c-fms activation by proviral insertion in mouse myeloblastic leukaemias. Nature. 1987;329(6136):259–61.

    CAS  PubMed  Google Scholar 

  25. Aikawa Y, Katsumoto T, Zhang P, Shima H, Shino M, Terui K, et al. PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med. 2010;16(5):580–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Paietta E, Racevskis J, Stanley ER, Andreeff M, Papenhausen P, Wiernik PH. Expression of the macrophage growth factor, CSF-1 and its receptor c-fms by a Hodgkin’s disease-derived cell line and its variants. Cancer Res. 1990;50(7):2049–55.

    CAS  PubMed  Google Scholar 

  27. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D, et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 2010;16(5):571–9. 1p following 9.

    CAS  PubMed  Google Scholar 

  28. Haran-Ghera N, Krautghamer R, Lapidot T, Peled A, Dominguez MG, Stanley ER. Increased circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia (AML) is associated with autocrine regulation of AML cells by CSF-1. Blood. 1997;89(7):2537–45.

    CAS  PubMed  Google Scholar 

  29. Huynh D, Dai XM, Nandi S, Lightowler S, Trivett M, Chan CK, et al. Colony stimulating factor-1 dependence of paneth cell development in the mouse small intestine. Gastroenterology. 2009;137(1):136–44. 44 e1–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Guleria I, Pollard JW. The trophoblast is a component of the innate immune system during pregnancy. Nat Med. 2000;6(5):589–93.

    CAS  PubMed  Google Scholar 

  31. Hoshino S, Kurotani R, Miyano Y, Sakahara S, Koike K, Maruyama M, et al. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland. Zoolog Sci. 2014;31(6):390–7.

    CAS  PubMed  Google Scholar 

  32. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med. 2013;210(1):157–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2011;44(2):200–5.

    PubMed Central  PubMed  Google Scholar 

  34. Nicholson AM, Baker MC, Finch NA, Rutherford NJ, Wider C, Graff-Radford NR, et al. CSF1R mutations link POLD and HDLS as a single disease entity. Neurology. 2013; 80(11):1033–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L, et al. MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell. 2009;138(2):300–13.

    CAS  PubMed  Google Scholar 

  36. Mossadegh-Keller N, Sarrazin S, Prashanth KK, Espinoza L, Stanley ER, Nutt SL, et al. M-CSF instructs myeloid lineage fate in single hematopoietic stem cells. Nature. 2013;497(7448):239–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Tushinski RJ, Oliver IT, Guilbert LJ, Tynan PW, Warner JR, Stanley ER. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell. 1982;28(1):71–81.

    CAS  PubMed  Google Scholar 

  38. Bartelmez SH, Bradley TR, Bertoncello I, Mochizuki DY, Tushinski RJ, Stanley ER, et al. Interleukin 1 plus interleukin 3 plus colony-stimulating factor 1 are essential for clonal proliferation of primitive myeloid bone marrow cells. Exp Hematol. 1989;17(3):240–5.

    CAS  PubMed  Google Scholar 

  39. Sasmono RT, Ehrnsperger A, Cronau SL, Ravasi T, Kandane R, Hickey MJ, et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J Leukoc Biol. 2007;82(1):111–23.

    CAS  PubMed  Google Scholar 

  40. Arceci RJ, Pampfer S, Pollard JW. Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantation mouse development. Dev Biol. 1992;151(1):1–8.

    CAS  PubMed  Google Scholar 

  41. Arceci RJ, Pampfer S, Pollard JW. Role and expression of colony stimulating factor-1 and steel factor receptors and their ligands during pregnancy in the mouse. Reprod Fertil Dev. 1992;4(6):619–32.

    CAS  Google Scholar 

  42. Arceci RJ, Shanahan F, Stanley ER, Pollard JW. Temporal expression and location of colony-stimulating factor 1 (CSF-1) and its receptor in the female reproductive tract are consistent with CSF-1-regulated placental development. Proc Natl Acad Sci USA. 1989;86(22):8818–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Regenstreif LJ, Rossant J. Expression of the c-fms proto-oncogene and of the cytokine, CSF-1, during mouse embryogenesis. Dev Biol. 1989;133(1):284–94.

    CAS  PubMed  Google Scholar 

  44. Menke J, Rabacal WA, Bryne KT, Iwata Y, Schwartz MM, Stanley ER, et al. Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J Am Soc Nephrol. 2009;20(12):2581–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Huynh D, Akçora D, Malaterre J, Chan CK, Dai XM, Bertoncello I, et al. CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response. PLoS One. 2013;8(2):e56951.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang Y, Berezovska O, Fedoroff S. Expression of colony stimulating factor-1 receptor (CSF-1R) by CNS neurons in mice. J Neurosci Res. 1999;57(5):616–32.

    CAS  PubMed  Google Scholar 

  47. Marks Jr SC, Lane PW. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered. 1976;67(1):11–8.

    PubMed  Google Scholar 

  48. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345(6274):442–4.

    CAS  PubMed  Google Scholar 

  49. Wiktor-Jedrzejczak W, Bartocci A, Ferrante Jr AW, Ahmed-Ansari A, Sell KW, Pollard JW, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA. 1990;87(12):4828–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Wise GE. Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 2009;12(2):67–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Pollard JW, Stanley ER. Pleiotropic roles for CSF-1 in development defined by the mouse mutation osteopetrotic. Adv Dev Biochem. 1996;4:153–93.

    CAS  Google Scholar 

  52. Wiktor-Jedrzejczak W, Urbanowska E, Aukerman SL, Pollard JW, Stanley ER, Ralph P, et al. Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor. Exp Hematol. 1991;19(10):1049–54.

    CAS  PubMed  Google Scholar 

  53. Sundquist KT, Cecchini MG, Marks Jr SC. Colony-stimulating factor-1 injections improve but do not cure skeletal sclerosis in osteopetrotic (op) mice. Bone. 1995;16(1):39.

    CAS  PubMed  Google Scholar 

  54. Ryan GR, Dai XM, Dominguez MG, Tong W, Chuan F, Chisholm O, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood. 2001;98(1):74–84.

    CAS  PubMed  Google Scholar 

  55. Dai XM, Zong XH, Sylvestre V, Stanley ER. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood. 2004;103(3):1114–23.

    CAS  PubMed  Google Scholar 

  56. Nandi S, Akhter MP, Seifert MF, Dai XM, Stanley ER. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain. Blood. 2006;107(2):786–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Gow DJ, Sester DP, Hume DA. CSF-1, IGF-1, and the control of postnatal growth and development. J Leukoc Biol. 2010;88(3):475–81.

    CAS  PubMed  Google Scholar 

  58. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90.

    CAS  PubMed  Google Scholar 

  59. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med. 2012;209(6):1167–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Stanley E, Chen D, Lin H. Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature. 1978;274(5667):168–70.

    CAS  PubMed  Google Scholar 

  61. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16(3):273–80.

    CAS  PubMed  Google Scholar 

  62. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol. 2002;3(12):1135–41.

    CAS  PubMed  Google Scholar 

  64. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;18(4):792–804.

    Google Scholar 

  65. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82(2):380–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. MacDonald KPA, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, et al. An antibody against the colony-stimulating factor 1 receptor (CSF1R) depletes the resident subset of monocytes and tissue and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116(19):3955–63.

    CAS  PubMed  Google Scholar 

  67. Lenzo JC, Turner AL, Cook AD, Vlahos R, Anderson GP, Reynolds EC, et al. Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol. 2012;90(4):429–40.

    CAS  PubMed  Google Scholar 

  68. Roth P, Bartocci A, Stanley ER. Lipopolysaccharide induces synthesis of mouse colony-stimulating factor-1 in vivo. J Immunol. 1997;158:3874–80.

    CAS  PubMed  Google Scholar 

  69. Cheers C, Stanley ER. Macrophage production during murine listeriosis: colony- stimulating factor 1 (CSF-1) and CSF-1-binding cells in genetically resistant and susceptible mice. Infect Immun. 1988;56(11):2972–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Santangelo S, Gamelli RL, Shankar R. Myeloid commitment shifts toward monocytopoiesis after thermal injury and sepsis. Ann Surg. 2001;233(1):97–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Howell K, Posluszny J, He LK, Szilagyi A, Halerz J, Gamelli RL, et al. High MafB expression following burn augments monocyte commitment and inhibits DC differentiation in hemopoietic progenitors. J Leukoc Biol. 2012;91(1):69–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. François B, Trimoreau F, Vignon P, Fixe P, Praloran V, Gastinne H. Thrombocytopenia in the sepsis syndrome: role of hemophagocytosis and macrophage colony-stimulating factor. Am J Med. 1997;103(2):114–20.

    PubMed  Google Scholar 

  73. Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, et al. Pivotal Advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol. 2010;87(5):753–64.

    CAS  PubMed  Google Scholar 

  74. Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T. Hematopoietic cytokines can instruct lineage choice. Science. 2009;325(5937):217–8.

    CAS  PubMed  Google Scholar 

  75. Stanley ER, Bartocci A, Patinkin D, Rosendaal M, Bradley TR. Regulation of very primitive multipotent hematopoietic cells by hemopoietin-1. Cell. 1986;45(5):667–74.

    CAS  PubMed  Google Scholar 

  76. Williams N, Bertoncello I, Kavnoudias H, Zsebo K, McNiece I. Recombinant rat stem cell factor stimulates the amplification and differentiation of fractionated mouse stem cell populations. Blood. 1992;79(1):58–64.

    CAS  PubMed  Google Scholar 

  77. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, et al. CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest. 2012;122(12):4519–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Li G, Kim YJ, Broxmeyer HE. Macrophage colony-stimulating factor drives cord blood monocyte differentiation into IL-10(high)IL-12absent dendritic cells with tolerogenic potential. J Immunol. 2005;174(8):4706–7.

    CAS  PubMed  Google Scholar 

  82. Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, et al. IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. antagonistic effects of GM-CSF and IFNγ. PLoS One. 2013;8(2):e56045.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Puig-Kröger A, Sierra-Filardi E, Domínguez-Soto A, Samaniego R, Corcuera MT, Gómez-Aguado F, et al. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res. 2009;69(24):9395–403.

    PubMed  Google Scholar 

  84. Sierra-Filardi E, Vega MA, Sánchez-Mateos P, Corbí AL, Puig-Kröger A. Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immnobiology. 2010;215(9–10):788–95.

    CAS  Google Scholar 

  85. Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011;187(7):3671–82.

    CAS  PubMed  Google Scholar 

  86. Zhang W, Wang X, Xia X, Liu X, Suo S, Guo J, et al. Klf10 inhibits IL-12p40 production in macrophage colony-stimulating factor-induced mouse bone marrow-derived macrophages. Eur J Immunol. 2013;43(1):258–69.

    CAS  PubMed  Google Scholar 

  87. Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD. Granulocyte-macrophage colony stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol. 2007;178(8):5245–52.

    CAS  PubMed  Google Scholar 

  88. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72.

    CAS  PubMed  Google Scholar 

  89. Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD, et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest. 2009;119(8):2330–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kawahara Y, Nakase Y, Isomoto Y, Matsuda N, Amagase K, Kato S, et al. Role of macrophage colony-stimulating factor (M-CSF)-dependent macrophages in gastric ulcer healing in mice. J Physiol Pharmacol. 2011;62(4):441–8.

    CAS  PubMed  Google Scholar 

  91. Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood. 2011;117(19):5264–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Sarahrudi K, Mousavi M, Thomas A, Eipeldauer S, Vécsei V, Pietschmann P, et al. Elevated levels of macrophage colony-stimulating factor in human fracture healing. J Orthop Res. 2010;28(5):671–6.

    CAS  PubMed  Google Scholar 

  93. Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26(7):1517–32.

    CAS  PubMed  Google Scholar 

  94. Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC, Pollard JW, et al. CSF-1 deficiency in mice results in abnormal brain development. Development. 1996;122:2661–72.

    CAS  PubMed  Google Scholar 

  95. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011;6(10):e26317.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Cohen PE, Zhu L, Nishimura K, Pollard JW. Colony-stimulating factor 1 regulation of neuroendocrine pathways that control gonadal function in mice. Endocrinology. 2002;143(4):1413–22.

    CAS  PubMed  Google Scholar 

  97. Cohen PE, Hardy MP, Pollard JW. Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol Endocrinol. 1997;11(11): 1636–50.

    CAS  PubMed  Google Scholar 

  98. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.

    CAS  PubMed  Google Scholar 

  99. De I, Nikodemova M, Steffen MD, Sokn E, Maklakova VI, Watters JJ, et al. CSF1 overexpression has pleiotropic effects on microglia in vivo. Glia. 2014;62:1955–67.

    PubMed  Google Scholar 

  100. Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Curtis MA, et al. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J Neuroinflammation. 2013;10(1):85.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Fischer HG, Bielinsky AK, Nitzgen B, Daubener W, Hadding U. Functional dichotomy of mouse microglia developed in vitro: differential effects of macrophage and granulocyte/macrophage colony-stimulating factor on cytokine secretion and antitoxoplasmic activity. J Neuroimmunol. 1993;45(1–2):193–201.

    CAS  PubMed  Google Scholar 

  102. Taniike M, Mohri I, Eguchi N, Irikura D, Urade Y, Okada S, et al. An apoptotic depletion of oligodendrocytes in the twitcher, a murine model of globoid cell leukodystrophy. Exp Neurol. 1999;58(6):644–53.

    CAS  Google Scholar 

  103. Kondo Y, Adams JM, Vanier MT, Duncan ID. Macrophages counteract demyelination in a mouse model of globoid cell leukodystrophy. J Neurosci. 2011;31(10):3610–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Ijichi K, Brown GD, Moore CS, Lee JP, Winokur PN, Pagarigan R, et al. MMP-3 mediates psychosine-induced globoid cell formation: implications for leukodystrophy pathology. Glia. 2013;61(5):765–77.

    PubMed Central  PubMed  Google Scholar 

  105. Groh J, Weis J, Zieger H, Stanley ER, Heuer H, Martini R. Colony-stimulating factor-1 mediates macrophage-related neural damage in a model for Charcot-Marie-Tooth disease type 1X. Brain. 2012;135(Pt 1):88–104.

    PubMed Central  PubMed  Google Scholar 

  106. Akcora D, Huynh D, Lightowler S, Germann M, Robine S, de May JR, et al. The CSF-1 receptor fashions the intestinal stem cell niche. Stem Cell Res. 2013;10(2):203–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Porter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci. 2002;59(1):156–70.

    CAS  PubMed  Google Scholar 

  108. Pollard JW, Dominguez MG, Mocci S, Cohen PE, Stanley ER. Effect of the colony-stimulating factor-1 null mutation, osteopetrotic (csfmop), on the distribution of macrophages in the male mouse reproductive tract. Biol Reprod. 1997;56(5):1290–300.

    CAS  PubMed  Google Scholar 

  109. Cohen PE, Chisholm O, Arceci RJ, Stanley ER, Pollard JW. Absence of colony-stimulating factor-1 in osteopetrotic (csfmop/csfmop) mice results in male fertility defects. Biol Reprod. 1996;55(2):310–7.

    CAS  PubMed  Google Scholar 

  110. Cohen PE, Zhu L, Pollard JW. Absence of colony stimulating factor-1 in osteopetrotic (csfmop/csfmop) mice disrupts estrous cycles and ovulation. Biol Reprod. 1997;56(1):110–8.

    CAS  PubMed  Google Scholar 

  111. Takasaki A, Ohba T, Okamura Y, Honda R, Seki M, Tanaka N, et al. Clinical use of colony-stimulating factor-1 in ovulation induction for poor responders. Fertil Steril. 2008;90(6):2287–90.

    PubMed  Google Scholar 

  112. Salmassi A, Mettler L, Jonat W, Buck S, Koch K, Schmutzler AG. Circulating level of macrophage colony-stimulating factor can be predictive for human in vitro fertilization outcome. Fertil Steril. 2010;93(1):116–23.

    CAS  PubMed  Google Scholar 

  113. Bradley TR, Stanley ER, Sumner MA. Factors from mouse tissues stimulating colony growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1971;49(6):595–603.

    CAS  PubMed  Google Scholar 

  114. Bartocci A, Pollard JW, Stanley ER. Regulation of colony-stimulating factor 1 during pregnancy. J Exp Med. 1986;164(3):956–61.

    CAS  PubMed  Google Scholar 

  115. Pollard JW, Bartocci A, Arceci R, Orlofsky A, Ladner MB, Stanley ER. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature. 1987;330:484–6.

    CAS  PubMed  Google Scholar 

  116. Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol. 1991;148(1):273–83.

    CAS  PubMed  Google Scholar 

  117. Tagliani E, Shi C, Nancy P, Tay CS, Pamer EG, Erlebacher A. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med. 2011;208(9):1901–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Hayashi M, Hoshimoto K, Ohkura T, Inaba N. Increased levels of macrophage colony-stimulating factor in the placenta and blood in preeclampsia. Am J Reprod Immunol. 2002;47(1):19–24.

    PubMed  Google Scholar 

  119. Hayashi M, Numaguchi M, Watabe H, Yaoi Y. High blood levels of macrophage colony-stimulating factor in preeclampsia. Blood. 1996;88(12):4426–8.

    CAS  PubMed  Google Scholar 

  120. Schonkeren D, van der Hoorn ML, Khedoe P, Swings G, van Beelen E, Claas F, et al. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies. Am J Pathol. 2011;178(2):709–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P, et al. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha and interleukin-1beta in first trimester human decidual cells: implications for preeclampsia. Am J Pathol. 2006;168(2):445–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Huang SJ, Chen CP, Schatz F, Rahman M, Abrahams VM, Lockwood CJ. Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008;214(3):328–36.

    CAS  PubMed  Google Scholar 

  123. Guilbert L, Robertson SA, Wegmann TG. The trophoblast as an integral component of a macrophage-cytokine network. Immunol Cell Biol. 1993;71(Pt 1):49–57.

    CAS  PubMed  Google Scholar 

  124. Abrahams VM, Mor G. Toll-like receptors and their role in the trophoblast. Placenta. 2005;26(7):540–7.

    CAS  PubMed  Google Scholar 

  125. Abrahams VM. The role of the Nod-like receptor family in trophoblast innate immune responses. J Reprod Immunol. 2011;88(2):112–7.

    CAS  PubMed  Google Scholar 

  126. Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.

    CAS  PubMed  Google Scholar 

  127. Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA. 1994;91(20):9312–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Van Nguyen A, Pollard JW. 1;247(1):11-25. DBJ. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol. 2002;247(1):11–25.

    PubMed  Google Scholar 

  129. Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D, Castellotti MC, Czernichow P, Pollard JW, et al. Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol. 2004;76(2):359–67.

    CAS  PubMed  Google Scholar 

  130. Saitoh BY, Yamasaki R, Hayashi S, Yoshimura S, Tateishi T, Ohyagi Y, et al. A case of hereditary diffuse leukoencephalopathy with axonal spheroids caused by a de novo mutation in CSF1R masquerading as primary progressive multiple sclerosis. Mult Scler. 2013;19(10):1367–70.

    PubMed  Google Scholar 

  131. Inui T, Kawarai T, Fujita K, Kawamura K, Mitsui T, Orlacchio A, et al. A new CSF1R mutation presenting with an extensive white matter lesion mimicking primary progressive multiple sclerosis. J Neurol Sci. 2013;334(1–2):192–5.

    CAS  PubMed  Google Scholar 

  132. Fujioka S, Broderick DF, Sundal C, Baker MC, Rademakers R, Wszolek ZK. An adult-onset leukoencephalopathy with axonal spheroids and pigmented glia accompanied by brain calcifications: a case report and a literature review of brain calcifications disorders. J Neurol. 2013;260(10):2665–8.

    PubMed  Google Scholar 

  133. Terasawa Y, Osaki Y, Kawarai T, Sugimoto T, Orlacchio A, Abe T, et al. Increasing and persistent DWI changes in a patient with hereditary diffuse leukoencephalopathy with spheroids. J Neurol Sci. 2013;335(1–2):213–5.

    PubMed  Google Scholar 

  134. Battisti C, Di Donato I, Bianchi S, Monti L, Formichi P, Rufa A, et al. Hereditary diffuse leukoencephalopathy with axonal spheroids: three patients with stroke-like presentation carrying new mutations in the CSF1R gene. J Neurol. 2014;261(4):768–72.

    CAS  PubMed  Google Scholar 

  135. La Piana R, Webber A, Guiot MC, Del Pilar Cortes M, Brais B. A novel mutation in the CSF1R gene causes a variable leukoencephalopathy with spheroids. Neurogenetics. 2014;15:289–94.

    PubMed  Google Scholar 

  136. Guerreiro R, Kara E, Le Ber I, Bras J, Rohrer JD, Taipa R, et al. Genetic analysis of inherited leukodystrophies: genotype-phenotype correlations in the CSF1R gene. JAMA Neurol. 2013;70(7):875–82.

    PubMed Central  PubMed  Google Scholar 

  137. Sundal C, Lash J, Aasly J, Oygarden S, Roeber S, Kretzschman H, et al. Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS): a misdiagnosed disease entity. J Neurol Sci. 2012;314(1–2):130–7.

    PubMed Central  PubMed  Google Scholar 

  138. Hoffmann S, Murrell J, Harms L, Miller K, Meisel A, Brosch T, et al. Enlarging the nosological spectrum of hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS). Brain Pathol. 2014;24:452–8.

    CAS  PubMed  Google Scholar 

  139. Karle KN, Biskup S, Schule R, Schweitzer KJ, Kruger R, Bauer P, et al. De novo mutations in hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS). Neurology. 2013;81(23):2039–44.

    CAS  PubMed  Google Scholar 

  140. Kinoshita M, Kondo Y, Yoshida K, Fukushima K, Hoshi K, Ishizawa K, et al. Corpus callosum atrophy in patients with hereditary diffuse leukoencephalopathy with neuroaxonal spheroids: an MRI-based study. Intern Med. 2014;53(1):21–7.

    PubMed  Google Scholar 

  141. Kleinfeld K, Mobley B, Hedera P, Wegner A, Sriram S, Pawate S. Adult-onset leukoencephalopathy with neuroaxonal spheroids and pigmented glia: report of five cases and a new mutation. J Neurol. 2013;260(2):558–71.

    PubMed  Google Scholar 

  142. Mitsui J, Matsukawa T, Ishiura H, Higasa K, Yoshimura J, Saito TL, et al. CSF1R mutations identified in three families with autosomal dominantly inherited leukoencephalopathy. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(8):951–7.

    PubMed  Google Scholar 

  143. Ahmed R, Guerreiro R, Rohrer JD, Guven G, Rossor MN, Hardy J, et al. A novel A781V mutation in the CSF1R gene causes hereditary diffuse leucoencephalopathy with axonal spheroids. J Neurol Sci. 2013;332(1–2):141–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Sundal C, Baker M, Karrenbauer V, Gustavsen M, Bedri S, Glaser A, et al. Hereditary diffuse leukoencephalopathy with spheroids with phenotype of primary progressive multiple sclerosis. Eur J Neurol. 2014;22:329–33.

    Google Scholar 

  145. Konno T, Tada M, Tada M, Koyama A, Nozaki H, Harigaya Y, et al. Haploinsufficiency of CSF-1R and clinicopathologic characterization in patients with HDLS. Neurology. 2014;82(2):139–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Hiyoshi M, Hashimoto M, Yukihara M, Bhuyan F, Suzu S. M-CSF receptor mutations in hereditary diffuse leukoencephalopathy with spheroids impair not only kinase activity but also surface expression. Biochem Biophys Res Commun. 2013;440(4):589–93.

    CAS  PubMed  Google Scholar 

  147. Pridans C, Sauter KA, Baer K, Kissel H, Hume DA. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function. Sci Rep. 2013;3:3013.

    PubMed Central  PubMed  Google Scholar 

  148. Wider C, Van Gerpen JA, DeArmond S, Shuster EA, Dickson DW, Wszolek ZK. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD): a single entity? Neurology. 2009;72(22):1953–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Brunk UT. On the origin of lipofuscin; the iron content of residual bodies, and the relation of these organelles to the lysosomal vacuome. A study on cultured human glial cells. Adv Exp Med Biol. 1989;266:313–20.

    CAS  PubMed  Google Scholar 

  150. Streit WJ, Xue QS. The brain’s aging immune system. Aging Dis. 2010;1(3):254–61.

    PubMed Central  PubMed  Google Scholar 

  151. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia. 2007;55(4):412–24.

    PubMed  Google Scholar 

  152. Jacquel A, Obba S, Boyer L, Dufies M, Robert G, Gounon P, et al. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood. 2012;119(19):4527–31.

    CAS  PubMed  Google Scholar 

  153. Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201(4):647–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Neumann H, Takahashi K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol. 2007;184(1–2):92–6.

    CAS  PubMed  Google Scholar 

  155. Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet. 2000;25(3):357–61.

    CAS  PubMed  Google Scholar 

  156. Otero K, Turnbull IR, Poliani PL, Vermi W, Cerutti E, Aoshi T, et al. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol. 2009;10(7):734–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Chitu V, Gokhan S, Gulinello M, Branch CA, Patil M, Basu R, et al. Phenotypic characterization of a Csf1r haploinsufficient mouse model of adult-onset leukodystrophy with axonal spheroids and pigmented glia (ALSP). Neurobiol Dis. 2015;74:219–28.

    CAS  PubMed  Google Scholar 

  158. Kacinski BM. CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol Reprod Dev. 1997;46(1):71–4.

    CAS  PubMed  Google Scholar 

  159. Chambers SK, Kacinski BM, Ivins CM, Carcangiu ML. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res. 1997;3(6):999–1007.

    CAS  PubMed  Google Scholar 

  160. Kluger HM, Dolled-Filhart M, Rodov S, Kacinski BM, Camp RL, Rimm DL. Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clin Cancer Res. 2004;10(11):173–7.

    CAS  PubMed  Google Scholar 

  161. Smith HO, Anderson PS, Kuo DY, Goldberg GL, DeVictoria CL, Boocock CA, et al. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin Cancer Res. 1995;1(3):313–25.

    CAS  PubMed  Google Scholar 

  162. Janowska-Wieczorek A, Belch AR, Jacobs A, Bowen D, Padua RA, Paietta E, et al. Increased circulating colony-stimulating factor-1 in patients with preleukemia, leukemia, and lymphoid malignancies. Blood. 1991;77(8):1796–803.

    CAS  PubMed  Google Scholar 

  163. Hung JY, Horn D, Woodruff K, Prihoda T, LeSaux C, Peters J, et al. Colony-stimulating factor 1 potentiates lung cancer bone metastasis. Lab Invest. 2014;94(4):371–81.

    CAS  PubMed  Google Scholar 

  164. Aharinejad S, Salama M, Paulus P, Zins K, Berger A, Singer CF. Elevated CSF-1 serum concentration predicts poor overall survival in women with early breast cancer. Endocr Relat Cancer. 2013;20:777–83.

    CAS  PubMed  Google Scholar 

  165. Qin L, Wu YL, Toneff MJ, Li D, Liao L, Gao X, et al. NCOA1 directly targets M-CSF1 expression to promote breast cancer metastasis. Cancer Res. 2014;74(13):3477–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Aharinejad S, Abraham D, Paulus P, Abri H, Hofmann M, Grossschmidt K, et al. Colony stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res. 2002;62(18):5317–24.

    CAS  PubMed  Google Scholar 

  167. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004;64(15):5378–84.

    CAS  PubMed  Google Scholar 

  168. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66(23):11238–46.

    CAS  PubMed  Google Scholar 

  169. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.

    CAS  PubMed  Google Scholar 

  170. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65(12):5278–83.

    CAS  PubMed  Google Scholar 

  171. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med. 2012;18(1):519–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 2009;69(24):9498–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Patsialou A, Wang Y, Pignatelli J, Chen X, Entenberg D, Oktay M, et al. Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFbeta in claudin-low breast tumor cells. Oncogene. 2014. doi:10.1038/onc.2014.226.

    PubMed Central  Google Scholar 

  174. Cioce M, Canino C, Goparaju C, Yang H, Carbone M, Pass HI. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation. Cell Death Dis. 2014;5:e1167.

    CAS  PubMed  Google Scholar 

  175. Barbetti V, Morandi A, Tusa I, Digiacomo G, Riverso M, Marzi I, et al. Chromatin-associated CSF-1R binds to the promoter of proliferation-related genes in breast cancer cells. Oncogene. 2014;33(34):4359–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Azzam G, Wang X, Bell D, Murphy ME. CSF1 is a novel p53 target gene whose protein product functions in a feed-forward manner to suppress apoptosis and enhance p53-mediated growth arrest. PLoS One. 2013;8(9):e74297.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Specchia G, Liso V, Capalbo S, Fazioli F, Bettoni S, Bassan R, et al. Constitutive expression of IL-1 beta, M-CSF and c-fms during the myeloid blastic phase of chronic myelogenous leukaemia. Br J Haematol. 1992;80(3):310–6.

    CAS  PubMed  Google Scholar 

  178. Gilbert HS, Praloran V, Stanley ER. Increased circulating CSF-1 (M-CSF) in myeloproliferative disease: association with myeloid metaplasia and peripheral bone marrow extension. Blood. 1989;74(4):1231–4.

    CAS  PubMed  Google Scholar 

  179. Dubreuil P, Torres H, Courcoul M-A, Birg F, Mannoni P. c-fms expression is a molecular marker of human acute myeloid leukemias. Blood. 1988;72(3):1081–5.

    CAS  PubMed  Google Scholar 

  180. Ashmun RA, Look AT, Roberts WM, Roussel MF, Seremetis S, Ohtsuka M, et al. Monoclonal antibodies to the human CSF-1 receptor (c-fms proto-oncogene product) detect epitopes on normal mononuclear phagocytes and on human myeloid leukemic blast cells. Blood. 1989;73(3):827–37.

    CAS  PubMed  Google Scholar 

  181. Rambaldi A, Wakamiya N, Vellenga E, Horiguchi J, Warren MK, Kufe D, et al. Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblastic leukemia cells. J Clin Invest. 1988;81(4):1030–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Sapi E, Flick MB, Rodov S, Carter D, Kacinski BM. Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells. J Soc Gynecol. 1998;5(2):94–101.

    CAS  Google Scholar 

  183. Kacinski BM, Scata KA, Carter D, Yee LD, Sapi E, King BL, et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene. 1991;6(6):941–52.

    CAS  PubMed  Google Scholar 

  184. Morandi A, Barbetti V, Riverso M, Dello Sbarba P, Rovida E. The colony-stimulating factor-1 (CSF-1) receptor sustains ERK1/2 activation and proliferation in breast cancer cell lines. PLoS One. 2011;6(11):e27450.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS. Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. J Cell Biol. 2004;165(2):263–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Menke J, Kriegsmann J, Schimanski CC, Schwartz MM, Schwarting A, Kelley VR. Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res. 2012;72(1):187–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Lilljebjorn H, Agerstam H, Orsmark-Pietras C, Rissler M, Ehrencrona H, Nilsson L, et al. RNA-seq identifies clinically relevant fusion genes in leukemia including a novel MEF2D/CSF1R fusion responsive to imatinib. Leukemia. 2014;28(4):977–9.

    CAS  PubMed  Google Scholar 

  188. Browning PJ, Bunn HF, Cline A, Shuman M, Nienhuis AW. “Replacement” of COOH-terminal truncation of v-fms with c-fms sequences markedly reduces transformation potential. Proc Natl Acad Sci USA. 1986;83(20):7800–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Woolford J, McAuliffe A, Rohrschneider LR. Activation of the feline c-fms proto-oncogene: multiple alterations are required to generate a fully transformed phenotype. Cell. 1988;55(6):965–77.

    CAS  PubMed  Google Scholar 

  190. Roussel MF, Dull TJ, Rettenmier CW, Ralph P, Ullrich A, Sherr CJ. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature. 1987;325(6104):549–52.

    CAS  PubMed  Google Scholar 

  191. McGlynn H, Baker AH, Padua RA. Biological consequences of a point mutation at codon 969 of the FMS gene. Leuk Res. 1998;22(4):365–72.

    CAS  PubMed  Google Scholar 

  192. Ridge SA, Worwood M, Oscier D, Jacobs A, Padua RA. FMS mutations in myelodyplastic, leukemic, and normal subjects. Proc Natl Acad Sci USA. 1990;87(4):1377–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res. 2011;1399:96–115.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Haine V, Fischer-Smith T, Rappaport J. Macrophage colony-stimulating factor in the pathogenesis of HIV infection: potential target for therapeutic intervention. J Neuroimmune Pharmacol. 2006;1(1):32–40.

    PubMed  Google Scholar 

  195. Lentz MR, Degaonkar M, Mohamed MA, Kim H, Conant K, Halpern EF, et al. Exploring the relationship of macrophage colony-stimulating factor levels on neuroaxonal metabolism and cognition during chronic human immunodeficiency virus infection. J Neurovirol. 2010;16(5):368–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Gerngross L, Fischer T. Evidence for cFMS signaling in HIV production by brain macrophages and microglia. J Neurovirol. 2015;21(3):249–56.

    Google Scholar 

  197. Akashi N, Matsumoto I, Tanaka Y, Inoue A, Yamamoto K, Umeda N, et al. Comparative suppressive effects of tyrosine kinase inhibitors imatinib and nilotinib in models of autoimmune arthritis. Mod Rheumatol. 2010;21(3):267–75.

    PubMed  Google Scholar 

  198. Lenda DM, Kikawada E, Stanley ER, Kelley VR. Reduced macrophage recruitment, proliferation, and activation in colony-stimulating factor-1-deficient mice results in decreased tubular apoptosis during renal inflammation. J Immunol. 2003;170(6):3254–62.

    CAS  PubMed  Google Scholar 

  199. Denardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1(1):54–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W, et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis. 2003;20(8):757–66.

    CAS  PubMed  Google Scholar 

  201. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73(3):1128–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Fratto ME, Imperatori M, Vincenzi B, Tomao F, Santini D, Tonini G. New perspectives: role of sunitinib in breast cancer. Clin Ter. 2010;161(5):475–82.

    CAS  PubMed  Google Scholar 

  203. Blay JY, von Mehren M. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin Oncol. 2011;38 Suppl 1:S3–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Manley PW, Drueckes P, Fendrich G, Furet P, Liebetanz J, Martiny-Baron G, et al. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim Biophys Acta. 2010;104(3):445–53.

    Google Scholar 

  205. Irvine KM, Burns CJ, Wilks AF, Su S, Hume DA, Sweet MJ. A CSF-1 receptor kinase inhibitor targets effector functions and inhibits pro-inflammatory cytokine production from murine macrophage populations. FASEB J. 2006;20(11):1921–3.

    CAS  PubMed  Google Scholar 

  206. Guo J, Marcotte PA, McCall JO, Dai Y, Pease LJ, Michaelides MR, et al. Inhibition of phosphorylation of the colony-stimulating factor-1 receptor (c-Fms) tyrosine kinase in transfected cells by ABT-869 and other tyrosine kinase inhibitors. Mol Cancer Ther. 2006;5(4):1007–13.

    CAS  PubMed  Google Scholar 

  207. Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther. 2003;2(5):471–8.

    CAS  PubMed  Google Scholar 

  208. O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003;101(9):3597–605.

    PubMed  Google Scholar 

  209. Burton E, Wong B, Zhang J, West B, Bollag G, Habets G, et al. The novel inhibitor PLX3397 effectively inhibits FLT3-mutant AML. Blood. 2011;118(21):3632.

    Google Scholar 

  210. Manthey CL, Johnson DL, Illig CR, Tuman RW, Zhou Z, Baker JF, et al. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther. 2009;8(11):3151–61.

    CAS  PubMed  Google Scholar 

  211. Ryder M, Gild M, Hohl TM, Pamer E, Knauf J, Ghossein R, et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS One. 2013;1:e54302.

    Google Scholar 

  212. Wei S, Lightwood D, Ladyman H, Cross S, Neale H, Griffiths M, et al. Modulation of CSF-1-regulated post-natal development with anti-CSF-1 antibody. Immunobiology. 2005;210(2–4):109–19.

    CAS  PubMed  Google Scholar 

  213. Sauter KA, Pridans C, Sehgal A, Tsai YT, Bradford BM, Raza S, et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014;96:265–74.

    PubMed Central  PubMed  Google Scholar 

  214. Swierczak A, Cook AD, Lenzo JC, Restall CM, Doherty JP, Anderson RL, et al. The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunol Res. 2014;2:765–76.

    CAS  PubMed  Google Scholar 

  215. Guilbert LJ, Stanley ER. Specific interaction of murine colony-stimulating factor with mononuclear phagocytic cells. J Cell Biol. 1980;85(1):153–9.

    CAS  PubMed  Google Scholar 

  216. Byrne PV, Guilbert LJ, Stanley ER. Distribution of cells bearing receptors for a colony-stimulating factor (CSF) in murine tissues. J Cell Biol. 1981;91:848–53.

    CAS  PubMed  Google Scholar 

  217. Guilbert LJ, Stanley ER. The interaction of 125I-colony stimulating factor-1 with bone marrow-derived macrophages. J Biol Chem. 1986;261:4024–32.

    CAS  PubMed  Google Scholar 

  218. Yeung Y-G, Jubinsky PT, Sengupta A, Yeung DC-Y, Stanley ER. Purification of the colony-stimulating factor 1 receptor and demonstration of its tyrosine kinase activity. Proc Natl Acad Sci USA. 1987;84(5):1268–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Donner L, Fedele LA, Garon CF, Anderson SJ, Sherr CJ. McDonough feline sarcoma virus: characterization of the molecularly cloned provirus and its feline oncogene (v-fms). J Virol. 1982;41(2):489–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. McDonough SK, Larsen S, Brodey RS, Stock ND, Hardy Jr WD. A transmissible feline fibrosarcoma of viral origin. Cancer Res. 1971;31(7):353–6.

    Google Scholar 

  221. Anderson SJ, Gonda MA, Rettenmier CW, Sherr CJ. Subcellular localization of glycoproteins encoded by the viral oncogene v-fms. J Virol. 1984;51(3):730–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Roussel MF, Rettenmier CW, Look AT, Sherr CJ. Cell surface expression of v-fms-coded glycoproteins is required for transformation. Mol Cell Biol. 1984;4(10):1999–2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Roussel MF, Sherr CJ, Barker PE, Ruddle FH. Molecular cloning of the c-fms locus and its assignment to human chromosome 5. J Virol. 1983;48(3):770–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Rettenmier CW, Chen JH, Roussel MF, Sherr CJ. The product of the c-fms proto-oncogene: a glycoprotein with associated tyrosine kinase activity. Science. 1985;228(4697):320–2.

    CAS  PubMed  Google Scholar 

  225. Le Beau MM, Westbrook CA, Diaz MO, Larson RA, Rowley JD, Gasson JC, et al. Evidence for the involvement of GM-CSF and FMS in the deletion (5q) in myeloid disorders. Science. 1986;231(4741):984–7.

    PubMed  Google Scholar 

  226. Bonifer C, Hume DA. The transcriptional regulation of the colony-stimulating factor 1 receptor (csf1r) gene during hematopoiesis. Front Biosci. 2008;13:549–60.

    CAS  PubMed  Google Scholar 

  227. Hoggan MD, Halden NF, Buckler CE, Kozak CA. Genetic mapping of the mouse c-fms proto-oncogene to chromosome 18. J Virol. 1988;62(3):1055–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood. 2003;101(3):1155–63.

    CAS  PubMed  Google Scholar 

  229. Li J, Chen K, Zhu L, Pollard JW. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis. 2006;44(7):328–35.

    CAS  PubMed  Google Scholar 

  230. Sasmono RT, Williams E. Generation and characterization of MacGreen mice, the Cfs1r-EGFP transgenic mice. Methods Mol Biol. 2012;844:157–76.

    CAS  PubMed  Google Scholar 

  231. Balic A, Garcia-Morales C, Vervelde L, Gilhooley H, Sherman A, Garceau V, et al. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development. 2014;141(16):3255–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Parichy DM, Ransom DG, Paw B, Zon LI, Johnson SL. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development. 2000;127(14):3031–44.

    CAS  PubMed  Google Scholar 

  233. Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001;238(2):274–88.

    CAS  PubMed  Google Scholar 

  234. Chatani M, Takano Y, Kudo A. Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol. 2011;360(1):96–109.

    CAS  PubMed  Google Scholar 

  235. Sauter KA, Bouhlel MA, O’Neal J, Sester DP, Tagoh H, Ingram RM, et al. The function of the conserved regulatory element within the second intron of the mammalian Csf1r locus. PLoS One. 2013;8(1):e54935.

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Himes SR, Tagoh H, Goonetilleke N, Sasmono T, Oceandy D, Clark R, et al. A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression. J Leukoc Biol. 2001;70(5):812–20.

    CAS  PubMed  Google Scholar 

  237. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 2006;126(4):755–66.

    CAS  PubMed  Google Scholar 

  238. Visvader J, Verma IM. Differential transcription of exon 1 of the human c-fms gene in placental trophoblasts and monocytes. Mol Cell Biol. 1989;9(3):1336–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Roberts WM, Shapiro LH, Ashmun RA, Look AT. Transcription of the human colony-stimulating factor-1 receptor gene is regulated by separate tissue-specific promoters. Blood. 1992;79(3):586–93.

    CAS  PubMed  Google Scholar 

  240. Ovchinnikov DA, DeBats CE, Sester DP, Sweet MJ, Hume DA. A conserved distal segment of the mouse CSF-1 receptor promoter is required for maximal expression of a reporter gene in macrophages and osteoclasts of transgenic mice. J Leukoc Biol. 2010;87(5):815–22.

    CAS  PubMed  Google Scholar 

  241. Pang M, Martinez AF, Fernandez I, Balkan W, Troen BR. AP-1 stimulated the cathepsin K promoter in RAW264.7 cells. Gene. 2007;403(1–2):151–8.

    CAS  PubMed  Google Scholar 

  242. Zhang DE, Hetherington CJ, Chen H-M, Tenen DG. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol. 1994;14(1):373–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Tagoh H, Ingram R, Wilson N, Salvagiotto G, Warren AJ, Clarke D, et al. The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO J. 2006;25(5):1070–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Hume DA, Sasmono T, Himes SR, Sharma SM, Bronisz A, Constantin M, et al. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene. J Immunol. 2008;180(10):6733–42.

    CAS  PubMed  Google Scholar 

  245. Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P, et al. A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol. 2007;27(3):878–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Ross IL, Yue X, Ostrowski MC, Hume DA. Interaction between PU.1 and another Ets family transcription factor promotes macrophage-specific basal transcription initiation. J Biol Chem. 1998;273(12):6662–9.

    CAS  PubMed  Google Scholar 

  247. Li X, Vradii D, Gutierrez S, Lian JB, van Wijnen AJ, Stein JL, et al. Subnuclear targeting of Runx1 is required for synergistic activation of the myeloid specific M-CSF receptor promoter by PU.1. J Cell Biochem. 2005;96(4):795–809.

    CAS  PubMed  Google Scholar 

  248. Tagoh H, Himes R, Clarke D, Leenen PJ, Riggs AD, Hume D, et al. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev. 2002;16(13):1721–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Tagoh H, Schebesta A, Lefevre P, Wilson N, Hume D, Busslinger M, et al. Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO J. 2004;23(21):4275–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF, et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity. 2002;17(5):665–76.

    CAS  PubMed  Google Scholar 

  251. Steidl U, Rosenbauer F, Verhaak RG, Gu X, Ebralidze A, Otu HH, et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet. 2006;38(11):1269–77.

    CAS  PubMed  Google Scholar 

  252. Lee PS, Wang Y, Dominguez MG, Yeung YG, Murphy MA, Bowtell DD, et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 1999;18(13):3616–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Xiong Y, Song D, Cai Y, Yu W, Yeung YG, Stanley ER. A CSF-1 receptor phosphotyrosine 559 signaling pathway regulates receptor ubiquitination and tyrosine phosphorylation. J Biol Chem. 2011;286(2):952–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Rieger AM, Hanington PC, Belosevic M, Barreda DR. Control of CSF-1 induced inflammation in teleost fish by a soluble form of the CSF-1 receptor. Fish Shellfish Immunol. 2014;41:45–51.

    CAS  PubMed  Google Scholar 

  255. Besmer P, Lader E, George PC, Bergold PJ, Qiu FH, Zuckerman EE, et al. A new acute transforming feline retrovirus with fms homology specifies a C-terminally truncated version of the c-fms protein that is different from SM-feline sarcoma virus v-fms protein. J Virol. 1986;60(1):194–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Tamura T, Hadwiger-Fangmeier A, Simon E, Smola U, Geschwill H, Schutz B, et al. Transforming mechanism of the feline sarcoma virus encoded v-fms oncogene product. Behring Inst Mitt. 1991;89:93–9.

    CAS  PubMed  Google Scholar 

  257. Elegheert J, Desfosses A, Shkumatov AV, Wu X, Bracke N, Verstraete K, et al. Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles. Structure. 2011;19(12):1762–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  258. de Parseval N, Bordereaux D, Varlet P, Gisselbrecht S, Sola B. Isolation of new oncogenic forms of the murine c-fms gene. J Virol. 1995;69(6):3597–604.

    PubMed Central  PubMed  Google Scholar 

  259. Stanley ER. Colony-stimulating factor (CSF) radioimmunoassay: detection of a CSF subclass stimulating macrophage production. Proc Natl Acad Sci USA. 1979;76(6):2969–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Stanley ER. Colony stimulating factor-1 (Macrophage colony stimulating factor). In: Thomson AW, editor. The cytokine handbook. San Diego: Academic; 1994. p. 387–418.

    Google Scholar 

  261. Cohen PE, Nishimura K, Zhu L, Pollard JW. Macrophages: important accessory cells for reproductive function. J Leuk Biol. 1999;66(5):765–72.

    CAS  Google Scholar 

  262. Stanley ER. CSF-1. In: Oppenheim JJ, Feldmann M, editors. Cytokine reference: a compendium of cytokines and other mediators of host defense. London, UK: Academic; 2000. p. 911–34.

    Google Scholar 

  263. Cebon J, Layton J. Measurement and clinical significance of circulating hematopoietic growth factor levels. Curr Opin Hematol. 1994;1(3):228–34.

    CAS  PubMed  Google Scholar 

  264. Cheers C, Haigh AM, Kelso A, Metcalf D, Stanley ER, Young AM. Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect Immun. 1988;56(1):247–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Cebon J, Layton JE, Maher D, Morstyn G. Endogenous haemopoietic growth factors in neutropenia and infection. Br J Haematol. 1994;86(2):265–74.

    CAS  PubMed  Google Scholar 

  266. Oren H, Duman N, Abacioglu H, Ozkan H, Irken G. Association between serum macrophage colony-stimulating factor levels and monocyte and thrombocyte counts in healthy, hypoxic, and septic term neonates. Pediatrics. 2001;108(2):329–32.

    CAS  PubMed  Google Scholar 

  267. Das Roy L, Pathangey LB, Tinder TL, Schettini JL, Gruber HE, Mukherjee P. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res. 2009;11(4):R56.

    PubMed Central  PubMed  Google Scholar 

  268. Morishita E, Sekiya A, Hayashi T, Kadohira Y, Maekawa M, Yamazaki M, et al. Increased macrophage colony-stimulating factor levels in patients with Graves’ disease. Int J Hematol. 2008;88(3):272–7.

    CAS  PubMed  Google Scholar 

  269. Mroczko B, Groblewska M, Wereszczyńska-Siemiatkowska U, Okulczyk B, Kedra B, Łaszewicz W, Dabrowski A, Szmitkowski M. Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin Chim Acta. 2007;380(1–2):208–12.

    CAS  PubMed  Google Scholar 

  270. Scholl SM, Bascou CH, Mosseri V, Olivares R, Magdelenat H, Dorval T, et al. Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer. Br J Cancer. 1994;69(2):342–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Suzu S, Yanai N, Sato-Somoto Y, Yamada M, Kawashima T, Hanamura T, et al. Characterization of macrophage colony-stimulating factor in body fluids by immunoblot analysis. Blood. 1991;77(10):2160–5.

    CAS  PubMed  Google Scholar 

  272. Stanley ER, Berg KL, Einstein DB, Lee PSW, Pixley FJ, Wang Y, et al. Biology and action of CSF-1. Mol Reprod Dev. 1997;46(1):4–10.

    CAS  PubMed  Google Scholar 

  273. Roth P, Stanley ER. The biology of CSF-1 and its receptor. Curr Top Microbiol Immunol. 1992;181:141–67.

    CAS  PubMed  Google Scholar 

  274. Bartocci A, Mastrogiannis DS, Migliorati G, Stockert RJ, Wolkoff AW, Stanley ER. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci USA. 1987;84(17):6179–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Cole DJ, Sanda MG, Yang JC, Schwartzentruber DJ, Weber J, Ettinghausen SE, et al. Phase I trial of recombinant human macrophage colony-stimulating factor administered by continuous intravenous infusion in patients with metastatic cancer. J Natl Cancer Inst. 1994;86(1):39–45.

    CAS  PubMed  Google Scholar 

  276. Garnick MB, Stoudemire JB. Preclinical and clinical evaluation of recombinant human macrophage colony-stimulating factor (rhM-CsF). Int J Cell Cloning. 1990;8 Suppl 1:356–73.

    PubMed  Google Scholar 

  277. Morris SW, Valentine MB, Shapiro DN, Sublett JE, Deaven LL, Foust JT, et al. Reassignment of the human CSF1 gene to chromosome 1p13-p21. Blood. 1991;78(8):2013–20.

    CAS  PubMed  Google Scholar 

  278. Saltman DL, Dolganov GM, Hinton LM, Lovett M. Reassignment of the human macrophage colony stimulating factor gene to chromosome 1p13-21. Biochem Biophys Res Commun. 1992;182(3):1139–43.

    CAS  PubMed  Google Scholar 

  279. Gisselbrecht S, Sola B, Fichelson S, Bordereaux D, Tambourin P, Mattei MG, et al. The murine M-CSF gene is localized on chromosome 3. Blood. 1989;73(6):1742–5.

    CAS  PubMed  Google Scholar 

  280. Buchberg AM, Jenkins NA, Copeland NG. Localization of the murine macrophage colony-stimulating factor gene to chromosome 3 using interspecific backcross analysis. Genomics. 1989;5(2):363–7.

    CAS  PubMed  Google Scholar 

  281. Kawasaki ES, Ladner MB. Molecular biology of macrophage colony-stimulating factor. In: Dexter TM, Garland JM, Testa NG, editors. Colony-stimulating factors molecular and cellular biology. New York and Basel: Marcel Dekker; 1990. p. 155–76.

    Google Scholar 

  282. Ladner MB, Martin GA, Noble JA, Nikoloff DM, Tal R, Kawasaki ES, et al. Human CSF-1: gene structure and alternative splicing of mRNA precursors. EMBO J. 1987;6(9):2693–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Kawasaki ES, Ladner MB, Wang AM, Van Arsdell J, Warren MK, Coyne MY, et al. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science. 1985;230(4723):291–6.

    CAS  PubMed  Google Scholar 

  284. Wong GG, Temple PA, Leary AC, Witek-Giannotti JS, Yang YC, Ciarletta AB, et al. Human CSF-1: molecular cloning and expression of 4-kb cDNA encoding the human urinary protein. Science. 1987;235(4795):1504–8.

    CAS  PubMed  Google Scholar 

  285. Ladner MB, Martin GA, Noble JA, Wittman VP, Warren MK, McGrogan M, et al. cDNA cloning and expression of murine macrophage colony-stimulating factor from L929 cells. Proc Natl Acad Sci USA. 1988;85(18):6706–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Price LKH, Choi HU, Rosenberg L, Stanley ER. The predominant form of secreted colony stimulating factor-1 is a proteoglycan. J Biol Chem. 1992;267(4):2190–9.

    CAS  PubMed  Google Scholar 

  287. Suzu S, Ohtsuki T, Yanai N, Takatsu Z, Kawashima T, Takaku F, et al. Identification of a high molecular weight macrophage colony-stimulating factor as a glycosaminoglycan-containing species. J Biol Chem. 1992;267:4345–8.

    CAS  PubMed  Google Scholar 

  288. Stein J, Borzillo GV, Rettenmier CW. Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood. 1990;76(7):1308–14.

    CAS  PubMed  Google Scholar 

  289. Horiuchi K, Miyamoto T, Takaishi H, Hakozaki A, Kosaki N, Miyauchi Y, et al. Cell surface colony-stimulating factor 1 can be cleaved by TNF-alpha converting enzyme or endocytosed in a clathrin-dependent manner. J Immunol. 2007;179(10):6715–24.

    CAS  PubMed  Google Scholar 

  290. Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, et al. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol. 2008;8(10):1354–76.

    CAS  PubMed  Google Scholar 

  291. Van Wesenbeeck L, Odgren PR, MacKay CA, D'Angelo M, Safadi FF, Popoff SN, et al. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: Evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci USA. 2002;99(22):14303–8.

    PubMed Central  PubMed  Google Scholar 

  292. Harris SE, MacDougall M, Horn D, Woodruff K, Zimmer SN, Rebel VI, et al. Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects. Bone. 2012;50(1):42–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  293. Menke J, Iwata Y, Rabacal WA, Basu R, Stanley ER, Kelley VR. Distinct roles of CSF-1 isoforms in lupus nephritis. J Am Soc Nephrol. 2011;22(10):1821–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Hiroyasu S, Chinnasamy P, Hou R, Hotchkiss K, Casimiro I, Dai XM, et al. Donor and recipient cell surface colony stimulating factor-1 promote neointimal formation in transplant-associated arteriosclerosis. Arterioscler Thromb Vasc Biol. 2013;33(1):87–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Gow DJ, Garceau V, Pridans C, Gow AG, Simpson KE, Gunn-Moore D, et al. Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). Cytokine. 2013;61(2):630–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  296. Gow DJ, Garceau V, Kapetanovic R, Sester DP, Fici GJ, Shelly JA, et al. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34. Cytokine. 2012;60(3):793–805.

    CAS  PubMed Central  PubMed  Google Scholar 

  297. Koths K. Structure-function studies on human macrophage colony-stimulating factor (M-CSF). Mol Reprod Dev. 1997;46(1):31–7.

    CAS  PubMed  Google Scholar 

  298. Strockbine LD, Cohen JI, Farrah T, Lyman SD, Wagener F, DuBose RF, et al. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony- stimulating factor-1 receptor. J Virol. 1998;72(5):4015–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Cohen JI, Lekstrom K. Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol. 1999;73(9):7627–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  300. Warren MK, Ralph P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J Immunol. 1986;137:2281–5.

    CAS  PubMed  Google Scholar 

  301. Lin JC, Zhang ZX, Chou TC, Sim I, Pagano JS. Synergistic inhibition of Epstein-Barr virus: transformation of B lymphocytes by alpha and gamma interferon and by 3′-azido-3′-deoxythymidine. J Infect Dis. 1989;159(2):248–54.

    CAS  PubMed  Google Scholar 

  302. Shim AH, Chang RA, Chen X, Longnecker R, He X. Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1. Proc Natl Acad Sci USA. 2012;109(32):12962–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Elegheert J, Bracke N, Pouliot P, Gutsche I, Shkumatov AV, Tarbouriech N, et al. Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat Struct Mol Biol. 2012;19(9):938–47.

    CAS  PubMed  Google Scholar 

  304. Tian Y, Shen H, Xia L, Lu J. Elevated serum and synovial fluid levels of interleukin-34 in rheumatoid arthritis: possible association with disease progression via interleukin-17 production. J Interferon Cytokine Res. 2013;33(7):398–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  305. Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, et al. Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther. 2012;14(1):R14.

    CAS  PubMed Central  PubMed  Google Scholar 

  306. Chang EJ, Lee SK, Song YS, Jang YJ, Park HS, Hong JP, et al. IL-34 is associated with obesity, chronic inflammation, and insulin resistance. J Clin Endocrinol Metab. 2014;99:1263–71.

    Google Scholar 

  307. Nakamichi Y, Mizoguchi T, Arai A, Kobayashi Y, Sato M, Penninger JM, et al. Spleen serves as a reservoir of osteoclast precursors through vitamin D-induced IL-34 expression in osteopetrotic op/op mice. Proc Natl Acad Sci USA. 2012;109(25):10006–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  308. Yu Y, Yang D, Qiu L, Okamura H, Guo J, Haneji T. Tumor necrosis factor-alpha induces interleukin-34 expression through nuclear factorkappaB activation in MC3T3-E1 osteoblastic cells. Mol Med Rep. 2014;10:1371–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  309. Bostrom EA, Lundberg P. The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation. PLoS One. 2013;8(12):e81665.

    PubMed Central  PubMed  Google Scholar 

  310. Hong S, Li R, Xu Q, Secombes CJ, Wang T. Two types of TNF-alpha exist in teleost fish: phylogeny, expression, and bioactivity analysis of type-II TNF-alpha3 in rainbow trout Oncorhynchus mykiss. J Immunol. 2013;191(12):5959–72.

    CAS  PubMed  Google Scholar 

  311. Kuzmac S, Grcevic D, Sucur A, Ivcevic S, Katavic V. Acute hematopoietic stress in mice is followed by enhanced osteoclast maturation in the bone marrow microenvironment. Exp Hematol. 2014;42:966–75.

    CAS  PubMed  Google Scholar 

  312. Wang T, Kono T, Monte MM, Kuse H, Costa MM, Korenaga H, et al. Identification of IL-34 in teleost fish: differential expression of rainbow trout IL-34, MCSF1 and MCSF2, ligands of the MCSF receptor. Mol Immunol. 2013;53(4):39–409.

    CAS  Google Scholar 

  313. Grayfer L, Robert J. Divergent antiviral roles of amphibian (Xenopus laevis) macrophages elicited by colony-stimulating factor-1 and interleukin-34. J Leukoc Biol. 2014;96:1143–53.

    CAS  PubMed  Google Scholar 

  314. Yamane F, Nishikawa Y, Matsui K, Asakura M, Iwasaki E, Watanabe K, et al. CSF-1 receptor-mediated differentiation of a new type of monocytic cell with B cell-stimulating activity: its selective dependence on IL-34. J Leukoc Biol. 2014;95(1):19–31.

    PubMed Central  PubMed  Google Scholar 

  315. Felix J, Elegheert J, Gutsche I, Shkumatov AV, Wen Y, Bracke N, et al. Human IL-34 and CSF-1 establish structurally similar extracellular assemblies with their common hematopoietic receptor. Structure. 2013;21(4):52–39.

    Google Scholar 

  316. Rozwarski DA, Gronenborn AM, Clore GM, Bazan JF, Bohm A, Wlodawer A, et al. Structural comparisons among the short-chain helical cytokines. Structure. 1994;2(3):159–73.

    CAS  PubMed  Google Scholar 

  317. Nandi S, Cioce M, Yeung YG, Nieves E, Tesfa L, Lin H, et al. Receptor-type protein tyrosine phosphatase zeta is a functional receptor for interleukin-34. J Biol Chem. 2013;288(30):21972–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  318. Majeti R, Bilwes AM, Noel JP, Hunter T, Weiss A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science. 1998; 279(5347):88–91.

    CAS  PubMed  Google Scholar 

  319. Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, et al. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA. 2000;97(6):2603–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  320. Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell. 2009;136(2):352–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Shock LP, Bare DJ, Klinz SG, Maness PF. Protein tyrosine phosphatases expressed in developing brain and retinal Müller glia. Brain Res Mol Brain Res. 1995;28(1):110–6.

    CAS  PubMed  Google Scholar 

  322. Ranjan M, Hudson LD. Regulation of tyrosine phosphorylation and protein tyrosine phosphatases during oligodendrocyte differentiation. Mol Cell Neurosci. 1996;7(5):404–18.

    CAS  PubMed  Google Scholar 

  323. Shintani T, Watanabe E, Maeda N, Noda M. Neurons as well as astrocytes express proteoglycan-type protein tyrosine phosphatase zeta RPTPb: analysis of mice in which the PTPzeta/RPTPb gene was replaced with the LacZ gene. Neurosci Lett. 1998;247(2–3):135–8.

    CAS  PubMed  Google Scholar 

  324. Harroch S, Palmeri M, Rosenbluth J, Custer A, Okigaki M, Shrager P, et al. No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta. Mol Cell Biol. 2000;20(20):7706–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Kuboyama K, Fujikawa A, Masumura M, Suzuki R, Matsumoto M, Noda M. Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination. PLoS One. 2012;7(11):e48797.

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Levy JB, Canoll PD, Silvennoinen O, Barnea G, Morse B, Honegger AM, et al. The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. J Biol Chem. 1993;268(14):10573–81.

    CAS  PubMed  Google Scholar 

  327. Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M, et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2012;2(4):964–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  328. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007;130(2):323–34.

    CAS  PubMed  Google Scholar 

  329. Yang Y, Yuzawa S, Schlessinger J. Contacts between membrane proximal regions of the PDGF receptor ectodomain are required for receptor activation but not for receptor dimerization. Proc Natl Acad Sci USA. 2008;105(22):7681–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  330. Roussel MF, Rettenmier CW, Sherr CJ. Introduction of a human colony stimulating factor-1 gene into a mouse macrophage cell line induces CSF-1 independence but not tumorigenicity. Blood. 1988;71(5):1218–25.

    CAS  PubMed  Google Scholar 

  331. Lemmon MA, Pinchasi D, Zhou M, Lax I, Schlessinger J. Kit receptor dimerization is driven by bivalent binding of stem cell factor. J Biol Chem. 1997;272(10):6311–7.

    CAS  PubMed  Google Scholar 

  332. Graddis TJ, Brasel K, Friend D, Srinivasan S, Wee S, Lyman SD, et al. Structure-function analysis of FLT3 ligand-FLT3 receptor interactions using a rapid functional screen. J Biol Chem. 1998;273(28):17626–33.

    CAS  PubMed  Google Scholar 

  333. Walter M, Lucet IS, Patel O, Broughton SE, Bamert R, Williams NK, et al. The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. J Mol Biol. 2007;367(3):839–47.

    CAS  PubMed  Google Scholar 

  334. Schubert C, Schalk-Hihi C, Struble GT, Ma HC, Petrounia IP, Brandt B, et al. Crystal structure of the tyrosine kinase domain of colony-stimulating factor-1 receptor (cFMS) in complex with two inhibitors. J Biol Chem. 2007;282(6):4094–101.

    CAS  PubMed  Google Scholar 

  335. Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem. 2012;287(17):13694–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  336. DiNitto JP, Deshmukh GD, Zhang Y, Jacques SL, Coli R, Worrall JW, et al. Function of activation loop tyrosine phosphorylation in the mechanism of c-Kit auto-activation and its implication in sunitinib resistance. J Biochem. 2010;147(4):601–9.

    CAS  PubMed  Google Scholar 

  337. Yu W, Chen J, Xiong Y, Pixley F, Dai X, Yeung Y, et al. CSF-1 receptor structure/function in MacCsf1r −/− macrophages: regulation of proliferation, differentiation, and morphology. J Leukoc Biol. 2008;84(3):852–63.

    Google Scholar 

  338. Rohde CM, Schrum J, Lee AW. A juxtamembrane tyrosine in the colony stimulating factor-1 receptor regulates ligand-induced Src association, receptor kinase function, and down-regulation. J Biol Chem. 2004;279(42):43448–61.

    CAS  PubMed  Google Scholar 

  339. Takeshita S, Faccio R, Chappel J, Zheng L, Feng X, Weber JD, et al. c-Fms tyrosine 559 is a major mediator of M-CSF-induced proliferation of primary macrophages. J Biol Chem. 2007;282(26):18980–90.

    CAS  PubMed  Google Scholar 

  340. Bourette RP, Myles GM, Carlberg K, Chen AR, Rohrschneider LR. Uncoupling of the proliferation and differentiation signals mediated by the murine macrophage colony-stimulating factor receptor expressed in myeloid FDC-P1 cells. Cell Growth Differ. 1995;6(6):631–45.

    CAS  PubMed  Google Scholar 

  341. Csar XF, Wilson NJ, McMahon KA, Marks DC, Beecroft TL, Ward AC, et al. Proteomic analysis of macrophage differentiation. p46/52(Shc) Tyrosine phosphorylation is required for CSF-1-mediated macrophage differentiation. J Biol Chem. 2001;276(28):26211–7.

    CAS  PubMed  Google Scholar 

  342. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6(6):a021857.

    PubMed  Google Scholar 

  343. Yeung YG, Stanley ER. Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transduction. Mol Cell Proteomics. 2003;2(11):1143–55.

    CAS  PubMed  Google Scholar 

  344. Boocock CA, Jones GE, Stanley ER, Pollard JW. Colony-stimulating factor-1 induces rapid behavioural responses in the mouse macrophage cell line, BAC1.2 F5. J Cell Sci. 1989;93(Pt 3):447–56.

    CAS  PubMed  Google Scholar 

  345. Pixley FJ, Lee PS, Condeelis JS, Stanley ER. Protein tyrosine phosphatase phi regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor 1-induced morphological changes in macrophages. Mol Cell Biol. 2001;21(5):1795–809.

    CAS  PubMed Central  PubMed  Google Scholar 

  346. Chitu V, Pixley FJ, Macaluso F, Larson DR, Condeelis J, Yeung YG, et al. The PCH family member MAYP/PSTPIP2 directly regulates F-actin bundling and enhances filopodia formation and motility in macrophages. Mol Biol Cell. 2005;16(6):2947–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  347. Pixley FJ. Macrophage migration and its regulation by CSF-1. Int J Cell Biol. 2012;2012:501962.

    PubMed Central  PubMed  Google Scholar 

  348. Sherr CJ. Mitogenic response to colony-stimulating factor 1. TIG. 1991;7:398–402.

    CAS  PubMed  Google Scholar 

  349. Li W, Stanley ER. Role of dimerization and modification of the CSF-1 receptor in its activation and internalization during the CSF-1 response. EMBO J. 1991;10(2):277–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  350. Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004;14(11):628–38.

    CAS  PubMed  Google Scholar 

  351. Li W, Yeung YG, Stanley ER. Tyrosine phosphorylation of a common 57-kDa protein in growth factor- stimulated and -transformed cells. J Biol Chem. 1991;266(11):6808–14.

    CAS  PubMed  Google Scholar 

  352. Baccarini M, Li W, Dello Sbarba P, Stanley ER. Increased phosphorylation of the colony stimulating factor-1 receptor following transmembrane signaling. Receptor. 1991;1(4):243–59.

    CAS  PubMed  Google Scholar 

  353. Wang Y, Yeung YG, Langdon WY, Stanley ER. c-Cbl is transiently tyrosine-phosphorylated, ubiquitinated, and membrane-targeted following CSF-1 stimulation of macrophages. J Biol Chem. 1996;271(1):17–20.

    CAS  PubMed  Google Scholar 

  354. Wang Y, Yeung YG, Stanley ER. CSF-1 stimulated multiubiquitination of the CSF-1 receptor and of Cbl follows their tyrosine phosphorylation and association with other signaling proteins. J Cell Biochem. 1999;72(1):119–34.

    CAS  PubMed  Google Scholar 

  355. Kanagasundaram V, Jaworowski A, Hamilton JA. Association between phosphatidylinositol-3 kinase, Cbl and other tyrosine phosphorylated proteins in colony-stimulating factor-1-stimulated macrophages. Biochem J. 1996;320(Pt 1):69–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  356. Husson H, Mograbi B, Schmid-Antomarchi H, Fischer S, Rossi B. CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2. Oncogene. 1997;14(19):2331–8.

    CAS  PubMed  Google Scholar 

  357. Huynh J, Kwa MQ, Cook AD, Hamilton JA, Scholz GM. CSF-1 receptor signalling from endosomes mediates the sustained activation of Erk1/2 and Akt in macrophages. Cell Signal. 2012;24(9):1753–61.

    CAS  PubMed  Google Scholar 

  358. Bourette RP, Rohrschneider LR. Early events in M-CSF receptor signaling. Growth Factors. 2000;17(3):155–66.

    CAS  PubMed  Google Scholar 

  359. Hamilton JA. CSF-1 signal transduction. J Leukoc Biol. 1997;62(2):145–55.

    CAS  PubMed  Google Scholar 

  360. Marks DC, Csar XF, Wilson NJ, Novak U, Ward AC, Kanagasundaram V, et al. Expression of a Y559F mutant of the CSF-1 receptor in M1 myeloid cells: a role for the Src kinases in CSF-1 receptor mediated differentiation. Mol Cell Biol Res Commun. 1999;1(2):144–52.

    CAS  PubMed  Google Scholar 

  361. Mouchemore KA, Pixley FJ. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci. 2012;49(2):49–61.

    CAS  PubMed  Google Scholar 

  362. Joos H, Trouliaris S, Helftenbein G, Niemann H, Tamura T. Tyrosine phosphorylation of the juxtamembrane domain of the v-Fms oncogene product is required for its association with a 55-kDa protein. J Biol Chem. 1996;271(40):24476–81.

    CAS  PubMed  Google Scholar 

  363. Mancini A, Niedenthal R, Joos H, Koch A, Trouliaris S, Niemann H, et al. Identification of a second Grb2 binding site in the v-Fms tyrosine kinase. Oncogene. 1997;15(13):1565–72.

    CAS  PubMed  Google Scholar 

  364. Faccio R, Takeshita S, Zallone A, Ross FP, Teitelbaum SL. c-Fms and the alphavbeta3 integrin collaborate during osteoclast differentiation. J Clin Invest. 2003;111(5):749–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  365. Alonso G, Koegl M, Mazurenko N, Courtneidge SA. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. J Biol Chem. 1995;270(17):9840–8.

    CAS  PubMed  Google Scholar 

  366. Pakuts B, Debonneville C, Liontos LM, Loreto MP, McGlade CJ. The Src-like adaptor protein 2 regulates colony-stimulating factor-1 receptor signaling and down-regulation. J Biol Chem. 2007;282(25):17953–63.

    CAS  PubMed  Google Scholar 

  367. Wilhelmsen K, Burkhalter S, van der Geer P. C-Cbl binds the CSF-1 receptor at tyrosine 973, a novel phosphorylation site in the receptor's carboxy-terminus. Oncogene. 2002;21(7):1079–89.

    CAS  PubMed  Google Scholar 

  368. Sampaio N, Yu W, Cox D, Wyckoff J, Condeelis J, Stanley ER, et al. Phosphorylation of Y721 of the CSF-1R mediates PI3K association to regulate macrophage motility and enhancement of tumor cell invasion. J Cell Sci. 2011;124(Pt 12):2021–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  369. Rohrschneider LR, Bourette RP, Lioubin MN, Algate PA, Myles GM, Carlberg K. Growth and differentiation signals regulated by the M-CSF receptor. Mol Reprod Dev. 1997;46(1):96–103.

    CAS  PubMed  Google Scholar 

  370. Bourette RP, Myles GM, Choi JL, Rohrschneider LR. Sequential activation of phosphatidylinositol 3-kinase and phospholipase C-g2 by the M-CSF receptor is necessary for differentiation signaling. EMBO J. 1997;16(19):5880–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  371. Junttila I, Bourette RP, Rohrschneider LR, Silvennoinen O. M-CSF induced differentiation of myeloid precursor cells involves activation of PKC-delta and expression of Pkare. J Leukoc Biol. 2003;73(2):281–8.

    CAS  PubMed  Google Scholar 

  372. Barbosa CM, Bincoletto C, Barros CC, Ferreira AT, Paredes-Gamero EJ. PLCgamma2 and PKC are important to myeloid lineage commitment triggered by M-SCF and G-CSF. J Cell Biochem. 2014;115(1):42–51.

    CAS  PubMed  Google Scholar 

  373. Wilson NJ, Cross M, Nguyen T, Hamilton JA. cAMP inhibits CSF-1-stimulated tyrosine phosphorylation but augments CSF-1R-mediated macrophage differentiation and ERK activation. FEBS J. 2005;272(16):4141–52.

    CAS  PubMed  Google Scholar 

  374. Gobert Gosse S, Bourgin C, Liu WQ, Garbay C, Mouchiroud G. M-CSF stimulated differentiation requires persistent MEK activity and MAPK phosphorylation independent of Grb2-Sos association and phosphatidylinositol 3-kinase activity. Cell Signal. 2005;17(11):1352–62.

    CAS  PubMed  Google Scholar 

  375. Bourette RP, Arnaud S, Myles GM, Blanchet JP, Rohrschneider LR, Mouchiroud G. Mona, a novel hematopoietic-specific adaptor interacting with the macrophage colony-stimulating factor receptor, is implicated in monocyte/macrophage development. EMBO J. 1998;17(24):7273–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  376. Bourgin C, Bourette R, Mouchiroud G, Arnaud S. Expression of Mona (monocytic adapter) in myeloid progenitor cells results in increased and prolonged MAP kinase activation upon macrophage colony-stimulating factor stimulation. FEBS Lett. 2000;480(2–3):113–7.

    CAS  PubMed  Google Scholar 

  377. Bourgin C, Bourette RP, Arnaud S, Liu Y, Rohrschneider LR, Mouchiroud G. Induced expression and association of the Mona/Gads adapter and Gab3 scaffolding protein during monocyte/macrophage differentiation. Mol Cell Biol. 2002;22(11):3744–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  378. Lee AW, Mao Y, Penninger JM, Yu S. Gab2 promotes colony-stimulating factor 1-regulated macrophage expansion via alternate effectors at different stages of development. Mol Cell Biol. 2011;31(22):4563–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  379. Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, et al. Gab3, a new DOS/Gab family member, facilitates macrophage differentiation. Mol Cell Biol. 2002;22(1):231–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  380. Seiffert M, Custodio JM, Wolf I, Harkey M, Liu Y, Blattman JN, et al. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol Cell Biol. 2003;23(7):2415–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  381. Simoncic PD, Bourdeau A, Lee-Loy A, Rohrschneider LR, Tremblay ML, Stanley ER, et al. T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Mol Cell Biol. 2006;26(11):4149–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  382. McMahon KA, Wilson NJ, Marks DC, Beecroft TL, Whitty GA, Hamilton JA, et al. Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity. Biochem J. 2001;358(Pt 2):431–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  383. Raabe T, Rapp UR. Ras signaling: PP2A puts Ksr and Raf in the right place. Curr Biol. 2003;13(16):R635–7.

    CAS  PubMed  Google Scholar 

  384. Grasset MF, Gobert-Gosse S, Mouchiroud G, Bourette RP. Macrophage differentiation of myeloid progenitor cells in response to M-CSF is regulated by the dual-specificity phosphatase DUSP5. J Leukoc Biol. 2010;87(1):127–35.

    CAS  PubMed  Google Scholar 

  385. Jacquel A, Benikhlef N, Paggetti J, Lalaoui N, Guery L, Dufour EK, et al. Colony-stimulating factor-1-induced oscillations in phosphatidylinositol-3 kinase/AKT are required for caspase activation in monocytes undergoing differentiation into macrophages. Blood. 2009;114(17):3633–41.

    CAS  PubMed  Google Scholar 

  386. Guery L, Benikhlef N, Gautier T, Paul C, Jego G, Dufour E, et al. Fine-tuning nucleophosmin in macrophage differentiation and activation. Blood. 2011;118(17):4694–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  387. Lagrange B, Martin RZ, Droin N, Aucagne R, Paggetti J, Largeot A, et al. A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages. Biochim Biophys Acta. 2013;1833(8):1936–46.

    CAS  PubMed  Google Scholar 

  388. Riepsaame J, van Oudenaren A, den Broeder BJ, van Ijcken WF, Pothof J, Leenen PJ. MicroRNA-mediated down-regulation of M-CSF receptor contributes to maturation of mouse monocyte-derived dendritic cells. Front Immunol. 2013;4:353.

    PubMed Central  PubMed  Google Scholar 

  389. Tushinski RJ, Stanley ER. The regulation of macrophage protein turnover by a colony stimulating factor (CSF-1). J Cell Physiol. 1983;116(1):67–75.

    CAS  PubMed  Google Scholar 

  390. Tushinski RJ, Stanley ER. The regulation of mononuclear phagocyte entry into S phase by the colony stimulating factor CSF-1. J Cell Physiol. 1985;122(2):221–8.

    CAS  PubMed  Google Scholar 

  391. Lee A, States D. Colony-stimulating factor-1 requires PI3-kinase-mediated metabolism for proliferation and survival in myeloid cells. Cell Death Differ. 2006;13(11):1900–14.

    CAS  PubMed  Google Scholar 

  392. Lee AW. The role of atypical protein kinase C in CSF-1-dependent Erk activation and proliferation in myeloid progenitors and macrophages. PLoS One. 2011;6(10):e25580.

    CAS  PubMed Central  PubMed  Google Scholar 

  393. Rovida E, Baccarini M, Olivotto M, Sbarba PD. Opposite effects of different doses of MCSF on ERK phosphorylation and cell proliferation in macrophages. Oncogene. 2002;21(23):3670–6.

    CAS  PubMed  Google Scholar 

  394. Xu XX, Tessner TG, Rock CO, Jackowski S. Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1. Mol Cell Biol. 1993;13(3):1522–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  395. Gangoiti P, Granado MH, Wang SW, Kong JY, Steinbrecher UP, Gómez-Muñoz A. Ceramide 1-phosphate stimulates macrophage proliferation through activation of the PI3-kinase/PKB, JNK and ERK1/2 pathways. Cell Signal. 2008;20(4):726–36.

    CAS  PubMed  Google Scholar 

  396. Rovida E, Spinelli E, Sdelci S, Barbetti V, Morandi A, Giuntoli S, et al. ERK5/BMK1 is indispensable for optimal colony-stimulating factor 1 (CSF-1)-induced proliferation in macrophages in a Src-dependent fashion. J Immunol. 2008;180(6):4166–72.

    CAS  PubMed  Google Scholar 

  397. Valledor AF, Xaus J, Marques L, Celada A. Macrophage colony-stimulating factor induces the expression of mitogen- activated protein kinase phosphatase-1 through a protein kinase C- dependent pathway. J Immunol. 1999;163(5):2452–62.

    CAS  PubMed  Google Scholar 

  398. Nataf S, Anginot A, Vuaillat C, Malaval L, Fodil N, Chereul E, et al. Brain and bone damage in KARAP/DAP12 loss-of-function mice correlate with alterations in microglia and osteoclast lineages. Am J Pathol. 2005;166(1):275–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  399. Gueller S, Goodridge HS, Niebuhr B, Xing H, Koren-Michowitz M, Serve H, et al. Adaptor protein Lnk inhibits c-Fms-mediated macrophage function. J Leukoc Biol. 2010;88(4):699–706.

    CAS  PubMed Central  PubMed  Google Scholar 

  400. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, Bernstein A, et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med. 2002;195(12):1599–611.

    CAS  PubMed Central  PubMed  Google Scholar 

  401. Chitu V, Ferguson P, de Bruijn R, Schlueter A, Ochoa L, Waldschmidt T, et al. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-defcient cmo mice. Blood. 2009;114(12):2497–24505.

    CAS  PubMed Central  PubMed  Google Scholar 

  402. Bourette RP, De Sepulveda P, Arnaud S, Dubreuil P, Rottapel R, Mouchiroud G. Suppressor of cytokine signaling 1 interacts with the macrophage colony-stimulating factor receptor and negatively regulates its proliferation signal. J Biol Chem. 2001;276(25):22133–9.

    CAS  PubMed  Google Scholar 

  403. Bourette RP, Mouchiroud G. The biological role of interferon-inducible P204 protein in the development of the mononuclear phagocyte system. Front Biosci. 2008;13:879–86.

    CAS  PubMed  Google Scholar 

  404. Chitu V, Stanley ER. PSTPIP1 and PSTPIP2. In: Aspenström P, editor. Pombe Cdc15 homology proteins. Landes Bioscience: Austin, TX; 2008. p. 49–61.

    Google Scholar 

  405. Grosse J, Chitu V, Marquardt A, Hanke P, Schmittwolf C, Zeitlmann L, et al. Mutation of mouse MAYP/PSTPIP2 causes a macrophage autoinflammatory disease. Blood. 2006;107(8):3350–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  406. Wu Y, Dowbenko D, Lasky LA. PSTPIP 2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase. J Biol Chem. 1988;273(46):30487–96.

    Google Scholar 

  407. Yang H, Reinherz E. CD2BP1 modulates CD2-dependent T cell activation via linkage to protein tyrosine phosphatase (PTP)-PEST. J Immunol. 2006;176(10):5898–907.

    CAS  PubMed  Google Scholar 

  408. De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R. Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J. 1999;18(4):904–15.

    PubMed Central  PubMed  Google Scholar 

  409. Dauffy J, Mouchiroud G, Bourette RP. The interferon-inducible gene, Ifi204, is transcriptionally activated in response to M-CSF, and its expression favors macrophage differentiation in myeloid progenitor cells. J Leukoc Biol. 2006;79(1):173–83.

    CAS  PubMed  Google Scholar 

  410. Bourette RP, Therier J, Mouchiroud G. Macrophage colony-stimulating factor receptor induces tyrosine phosphorylation of SKAP55R adaptor and its association with actin. Cell Signal. 2005;17(8):941–9.

    CAS  PubMed  Google Scholar 

  411. Webb SE, Pollard JW, Jones GE. Direct observation and quantification of macrophage chemoattraction to the growth factor CSF-1. J Cell Sci. 1996;110(Pt 4):707–20.

    Google Scholar 

  412. Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys. 2011;510(2):101–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  413. Ishihara D, Dovas A, Park H, Isaac BM, Cox D. The chemotactic defect in wiskott-Aldrich syndrome macrophages is due to the reduced persistence of directional protrusions. PLoS One. 2012;7(1):e30033.

    CAS  PubMed Central  PubMed  Google Scholar 

  414. Papakonstanti EA, Zwaenepoel O, Bilancio A, Burns E, Nock GE, Houseman B, et al. Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages. J Cell Sci. 2008;121(Pt24):4124–33.

    CAS  PubMed  Google Scholar 

  415. Mouchemore KA, Sampaio NG, Murrey MW, Stanley ER, Lannutti BJ, Pixley FJ. Specific inhibition of PI3K p110delta inhibits CSF-1-induced macrophage spreading and invasive capacity. FEBS J. 2013;280:5228–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  416. Munugalavadla V, Borneo J, Ingram DA, Kapur R. p85alpha subunit of class IA PI-3 kinase is crucial for macrophage growth and migration. Blood. 2005;106(1):103–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  417. Zhang B, Ma Y, Guo H, Sun B, Niu R, Ying G, et al. Akt2 is required for macrophage chemotaxis. Eur J Immunol. 2009;39(3):894–901.

    CAS  PubMed  Google Scholar 

  418. Ikeda O, Sekine Y, Kakisaka M, Tsuji S, Muromoto R, Ohbayashi N, et al. STAP-2 regulates c-Fms/M-CSF receptor signaling in murine macrophage Raw 264.7 cells. Biochem Biophys Res Commun. 2007;358(3):931–7.

    CAS  PubMed  Google Scholar 

  419. Ridley AJ. Regulation of macrophage adhesion and migration by Rho GTP-binding proteins. J Microsc. 2008;231(3):518–23.

    CAS  PubMed  Google Scholar 

  420. Kheir WA, Gevrey JC, Yamaguchi H, Isaac B, Cox D. A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages. J Cell Sci. 2005;118(Pt22):5369–79.

    CAS  PubMed  Google Scholar 

  421. Cammer M, Gevrey JC, Lorenz M, Dovas A, Condeelis J, Cox D. The mechanism of CSF-1-induced Wiskott-Aldrich syndrome protein activation in vivo: a role for phosphatidylinositol 3-kinase and Cdc42. J Biol Chem. 2009;284(35):23302–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  422. Dovas A, Gevrey JC, Grossi A, Park H, Abou-Kheir W, Cox D. Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. J Cell Sci. 2009;122(Pt21):3872–82.

    Google Scholar 

  423. Vedham V, Phee H, Coggeshall KM. Vav activation and function as a rac guanine nucleotide exchange factor in macrophage colony-stimulating factor-induced macrophage chemotaxis. Mol Cell Biol. 2005;25(10):4211–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  424. Wells CM, Bhavsar PJ, Evans IR, Vigorito E, Turner M, Tybulewicz V, et al. Vav1 and Vav2 play different roles in macrophage migration and cytoskeletal organization. Exp Cell Res. 2005;310(2):303–10.

    CAS  PubMed  Google Scholar 

  425. Bhavsar PJ, Vigorito E, Turner M, Ridley AJ. Vav GEFs regulate macrophage morphology and adhesion-induced Rac and Rho activation. Exp Cell Res. 2009;315(19):3345–58.

    CAS  PubMed  Google Scholar 

  426. Wheeler AP, Wells CM, Smith SD, Vega FM, Henderson RB, Tybulewicz VL, et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci. 2006;119(Pt 13):2749–57.

    CAS  PubMed  Google Scholar 

  427. Wells CM, Walmsley M, Ooi S, Tybulewicz V, Ridley AJ. Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. J Cell Sci. 2004;117(Pt 7):1259–68.

    CAS  PubMed  Google Scholar 

  428. Allen WE, Zicha D, Ridley AJ, Jones GE. A role for Cdc42 in macrophage chemotaxis. J Cell Biol. 1998;141(5):1147–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  429. Abou-Kheir W, Isaac B, Yamaguchi H, Cox D. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. J Cell Sci. 2008;121(Pt3):379–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  430. Mahankali M, Peng HJ, Cox D, Gomez-Cambronero J. The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association. Cell Signal. 2011;23(8):1291–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  431. Mahankali M, Peng HJ, Henkels KM, Dinauer MC, Gomez-Cambronero J. Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2. Proc Natl Acad Sci USA. 2011;108(49):19617–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  432. Peng HJ, Henkels KM, Mahankali M, Marchal C, Bubulya P, Dinauer MC, et al. The dual effect of Rac2 on phospholipase D2 regulation that explains both the onset and termination of chemotaxis. Mol Cell Biol. 2011;31(11):2227–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  433. Li ZH, Spektor A, Varlamova O, Bresnick AR. Mts1 regulates the assembly of nonmuscle myosin-IIA. Biochemistry. 2003;42(48):14258–66.

    CAS  PubMed  Google Scholar 

  434. Li ZH, Dulyaninova NG, House RP, Almo SC, Bresnick AR. S100A4 regulates macrophage chemotaxis. Mol Biol Cell. 2010;21(15):2598–610.

    CAS  PubMed Central  PubMed  Google Scholar 

  435. Hanley PJ, Xu Y, Kronlage M, Grobe K, Schon P, Song J, et al. Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility. Proc Natl Acad Sci USA. 2010;107(27):12145–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  436. Jones GE, Allen WE, Ridley AJ. The Rho GTPases in macrophage motility and chemotaxis. Cell Adhes Commun. 1998;6(2–3):237–45.

    CAS  PubMed  Google Scholar 

  437. Papakonstanti EA, Ridley AJ, Vanhaesebroeck B. The p110delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J. 2007;26(13):3050–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  438. Gómez-Muñoz A, Kong JY, Salh B, Steinbrecher UP. Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res. 2004;45(1):99–105.

    PubMed  Google Scholar 

  439. Gómez-Muñoz A, Gangoiti P, Granado MH, Arana L, Ouro A. Ceramide-1-phosphate in cell survival and inflammatory signaling. Adv Exp Med Biol. 2010;688:118–30.

    PubMed  Google Scholar 

  440. Gómez-Muñoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, González M, et al. Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett. 2005;579(17):3744–50.

    PubMed  Google Scholar 

  441. Kelley TW, Graham MM, Doseff AI, Pomerantz RW, Lau SM, Ostrowski MC, et al. Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B. J Biol Chem. 1999;274(37):26393–8.

    CAS  PubMed  Google Scholar 

  442. Chang M, Hamilton JA, Scholz GM, Masendycz P, Macaulay SL, Elsegood CL. Phosphatidylinostitol-3 kinase and phospholipase C enhance CSF-1-dependent macrophage survival by controlling glucose uptake. Cell Signal. 2009;21(9):1361–9.

    CAS  PubMed  Google Scholar 

  443. Golden LH, Insogna KL. The expanding role of PI3-kinase in bone. Bone. 2004;34(1):3–12.

    CAS  PubMed  Google Scholar 

  444. Murray JT, Craggs G, Wilson L, Kellie S. Mechanism of phosphatidylinositol 3-kinase-dependent increases in BAC1.2 F5 macrophage-like cell density in response to M-CSF: phosphatidylinositol 3-kinase inhibitors increase the rate of apoptosis rather than inhibit DNA synthesis. Inflamm Res. 2000;49(11):610–8.

    CAS  PubMed  Google Scholar 

  445. Jaworowski A, Wilson NJ, Christy E, Byrne R, Hamilton JA. Roles of the mitogen-activated protein kinase family in macrophage responses to colony stimulating factor-1 addition and withdrawal. J Biol Chem. 1999;274(21):15127–33.

    CAS  PubMed  Google Scholar 

  446. Lee AW, States DJ. Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. Mol Cell Biol. 2000;20(18):6779–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  447. Baran CP, Tridandapani S, Helgason CD, Humphries RK, Krystal G, Marsh CB. The inositol 5′-phosphatase SHIP-1 and the Src kinase Lyn negatively regulate macrophage colony-stimulating factor-induced Akt activity. J Biol Chem. 2003;278(40):38628–36.

    CAS  PubMed  Google Scholar 

  448. Smith JL, Schaffner AE, Hofmeister JK, Hartman M, Wei G, Forsthoefel D, et al. Ets-2 is a target for an akt (protein kinase B)/Jun N-terminal kinase signaling pathway in macrophages of motheaten-viable mutant mice. Mol Cell Biol. 2000;20(21):8026–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  449. Sevilla L, Aperlo C, Dulic V, Chambard JC, Boutonnet C, Pasquier O, et al. The Ets2 transcription factor inhibits apoptosis induced by colony- stimulating factor 1 deprivation of macrophages through a Bcl-xL- dependent mechanism. Mol Cell Biol. 1999;19(4):2624–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  450. Sevilla L, Zaldumbide A, Carlotti F, Dayem MA, Pognonec P, Boulukos KE. Bcl-XL expression correlates with primary macrophage differentiation, activation of functional competence, and survival and results from synergistic transcriptional activation by Ets2 and PU.1. J Biol Chem. 2001;276(21):17800–7.

    CAS  PubMed  Google Scholar 

  451. Mancini A, Koch A, Whetton AD, Tamura T. The M-CSF receptor substrate and interacting protein FMIP is governed in its subcellular localization by protein kinase C-mediated phosphorylation, and thereby potentiates M-CSF-mediated differentiation. Oncogene. 2004;23(39):6581–9.

    CAS  PubMed  Google Scholar 

  452. Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM, et al. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol. 2009;182(12):7974–81.

    CAS  PubMed  Google Scholar 

  453. Elsegood CL, Chang M, Jessup W, Scholz GM, Hamilton JA. Glucose metabolism is required for oxidized LDL-induced macrophage survival: role of PI3K and Bcl-2 family proteins. Arterioscler Thromb Vasc Biol. 2009;29(9):1283–9.

    CAS  PubMed  Google Scholar 

  454. Norgard M, Marks Jr SC, Reinholt FP, Andersson G. The effects of colony-stimulating factor-1 (CSF-1) on the development of osteoclasts and their expression of tartrate-resistant acid phosphatase (TRAP) in toothless (tl-osteopetrotic) rats. Crit Rev Eukaryot Gene Expr. 2003;13(2–4):117–32.

    CAS  PubMed  Google Scholar 

  455. Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253(2):395–400.

    CAS  PubMed  Google Scholar 

  456. Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med. 1993;178(5):1733–44.

    CAS  PubMed  Google Scholar 

  457. Bouyer P, Sakai H, Itokawa T, Kawano T, Fulton CM, Boron WF, et al. Colony-stimulating factor-1 increases osteoclast intracellular pH and promotes survival via the electroneutral Na/HCO3 cotransporter NBCn1. Endocrinology. 2007;148(2):831–40.

    CAS  PubMed  Google Scholar 

  458. Sakai H, Chen Y, Itokawa T, Yu KP, Zhu ML, Insogna K. Activated c-Fms recruits Vav and Rac during CSF-1-induced cytoskeletal remodeling and spreading in osteoclasts. Bone. 2006;39(6):1290–301.

    CAS  PubMed  Google Scholar 

  459. Palacio S, Felix R. The role of phosphoinositide 3-kinase in spreading osteoclasts induced by colony-stimulating factor-1. Eur J Endocrinol. 2001;144(4):431–40.

    CAS  PubMed  Google Scholar 

  460. Owens J, Chambers TJ. Macrophage colony-stimulating factor (M-CSF) induces migration in osteoclasts in vitro. Biochem Biophys Res Commun. 1993;195(3):1401–7.

    CAS  PubMed  Google Scholar 

  461. Hodge JM, Kirkland MA, Nicholson GC. Multiple roles of M-CSF in human osteoclastogenesis. J Cell Biochem. 2007;102(13):759–68.

    CAS  PubMed  Google Scholar 

  462. Hodge JM, Kirkland MA, Nicholson GC. GM-CSF cannot substitute for M-CSF in human osteoclastogenesis. Biochem Biophys Res Commun. 2004;321(1):7–12.

    CAS  PubMed  Google Scholar 

  463. Perkins SL, Kling SJ. Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation. Am J Physiol. 1995;269(6):E1024–30.

    CAS  PubMed  Google Scholar 

  464. Biskobing DM, Fan X, Rubin J. Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture. J Bone Miner Res. 1995;10(7):1025–32.

    CAS  PubMed  Google Scholar 

  465. Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2):251–64.

    CAS  PubMed  Google Scholar 

  466. Chen W, Zhu G, Hao L, Wu M, Ci H, Li YP. C/EBPα regulates osteoclast lineage commitment. Proc Natl Acad Sci USA. 2013;110(18):7294–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  467. Murphy HM. The osteopetrotic syndrome in the microphthalmic mutant mouse. Calcif Tissue Res. 1973;13(1):19–26.

    CAS  PubMed  Google Scholar 

  468. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999;190(12):1741–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  469. Arai A, Mizoguchi T, Harada S, Kobayashi Y, Nakamichi Y, Yasuda H, et al. Fos plays an essential role in the upregulation of RANK expression in osteoclast precursors within the bone microenvironment. J Cell Sci. 2012;125(Pt 12):2910–7.

    CAS  PubMed  Google Scholar 

  470. Ji JD, Park-Min KH, Shen Z, Fajardo RJ, Goldring SR, McHugh KP, et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors. J Immunol. 2009;183(11):7223–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  471. Mansky KC, Sankar U, Han J, Ostrowski MC. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem. 2002;277(13):11077–83.

    CAS  PubMed  Google Scholar 

  472. Weilbaecher KN, Motyckova G, Huber WE, Takemoto CM, Hemesath TJ, Xu Y, et al. Linkage of M-CSF signaling to Mitf, TFE3, and the osteoclast defect in Mitf(mi/mi) mice. Mol Cell. 2001;8(4):749–58.

    CAS  PubMed  Google Scholar 

  473. Yao C, Yao GQ, Sun BH, Zhang C, Tommasini SM, Insogna K. The transcription factor T-box3 regulates colony stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis. J Biol Chem. 2014;289:6775–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  474. Kawaida R, Ohtsuka T, Okutsu J, Takahashi T, Kadono Y, Oda H, et al. Jun dimerization protein 2 (JDP2), a member of the AP-1 family of transcription factor, mediates osteoclast differentiation induced by RANKL. J Exp Med. 2003;197(8):1029–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  475. Ito Y, Teitelbaum SL, Zou W, Zheng Y, Johnson JF, Chappel J, et al. Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J Clin Invest. 2010;120(6):1981–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  476. Brazier H, Stephens S, Ory S, Fort P, Morrison N, Blangy A. Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res. 2006;21(9):1387–98.

    CAS  PubMed  Google Scholar 

  477. Brazier H, Pawlak G, Vives V, Blangy A. The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol. 2009;41(6):1391–40.

    CAS  PubMed  Google Scholar 

  478. Kim HJ, Zhang K, Zhang L, Ross FP, Teitelbaum SL, Faccio R. The Src family kinase, Lyn, suppresses osteoclastogenesis in vitro and in vivo. Proc Natl Acad Sci USA. 2009;106(7):2325–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  479. Kim HJ, Warren JT, Kim SY, Chappel JC, DeSelm CJ, Ross FP, et al. Fyn promotes proliferation, differentiation, survival and function of osteoclast lineage cells. J Cell Biochem. 2010;111(5):1107–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  480. Vérollet C, Gallois A, Dacquin R, Lastrucci C, Pandruvada SN, Ortega N, et al. Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB J. 2013;27:3608–18.

    PubMed Central  PubMed  Google Scholar 

  481. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P. Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA. 1993;90(10):4485–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  482. Ueki Y, Lin CY, Senoo M, Ebihara T, Agata N, Onji M, et al. Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice. Cell. 2007;12(1):71–83.

    Google Scholar 

  483. Kim HJ, Zou W, Ito Y, Kim SY, Chappel J, Ross FP, et al. Src-like adaptor protein regulates osteoclast generation and survival. J Cell Biochem. 2010;110(1):201–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  484. Humphrey MB, Ogasawara K, Yao W, Spusta SC, Daws MR, Lane NE, et al. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J Bone Miner Res. 2004;19(2):224–34.

    CAS  PubMed  Google Scholar 

  485. Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest. 2003;111(3):323–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  486. Zou W, Reeve JL, Liu Y, Teitelbaum SL, Ross FP. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell. 2008;31(3):422–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  487. Despars G, Pandruvada SN, Anginot A, Domenget C, Jurdic P, Mazzorana M. DAP12 overexpression induces osteopenia and impaired early hematopoiesis. PLoS One. 2013;8(6):e65297.

    CAS  PubMed Central  PubMed  Google Scholar 

  488. Humphrey MB, Daws MR, Spusta SC, Niemi EC, Torchia JA, Lanier LL, et al. TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res. 2006;21(2):237–45.

    CAS  PubMed  Google Scholar 

  489. Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med. 2003;198(4):669–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  490. Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med. 2003;198(4):645–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  491. Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, et al. TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol. 2012;188(6):2612–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  492. Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med. 2002;8(9):943–9.

    CAS  PubMed  Google Scholar 

  493. Zhou P, Kitaura H, Teitelbaum SL, Krystal G, Ross FP, Takeshita S. SHIP1 negatively regulates proliferation of osteoclast precursors via Akt-dependent alterations in D-type cyclins and p27. J Immunol. 2006;177(12):8777–84.

    CAS  PubMed  Google Scholar 

  494. Umeda S, Beamer WG, Takagi K, Naito M, Hayashi S, Yonemitsu H, et al. Deficiency of SHP-1 protein-tyrosine phosphatase activity results in heightened osteoclast function and decreased bone density. Am J Pathol. 1999;155(1):223–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  495. Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler MJ, et al. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol Cell Biol. 1998;18(7):3838–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  496. Mori Y, Tsuji S, Inui M, Sakamoto Y, Endo S, Ito Y, et al. Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J Immunol. 2008;181(7):4742–51.

    CAS  PubMed  Google Scholar 

  497. Berg KL, Carlberg K, Rohrschneider LR, Siminovitch KA, Stanley ER. The major SHP-1-binding, tyrosine-phosphorylated protein in macrophages is a member of the KIR/LIR family and an SHP-1 substrate. Oncogene. 1998;17(19):2535–41.

    CAS  PubMed  Google Scholar 

  498. van Beek EM, de Vries TJ, Mulder L, Schoenmaker T, Hoeben KA, Matozaki T, et al. Inhibitory regulation of osteoclast bone resorption by signal regulatory protein alpha. FASEB J. 2009;23(12):4081–90.

    PubMed  Google Scholar 

  499. Berg KL, Siminovitch KA, Stanley ER. SHP-1 regulation of p62(DOK) tyrosine phosphorylation in macrophages. J Biol Chem. 1999;274(50):35855–65.

    CAS  PubMed  Google Scholar 

  500. Kawamata A, Inoue A, Miyajima D, Hemmi H, Mashima R, Hayata T, et al. Dok-1 and Dok-2 deficiency induces osteopenia via activation of osteoclasts. J Cell Physiol. 2011;226(12):3087–93.

    CAS  PubMed  Google Scholar 

  501. Ross F, Teitelbaum S. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev. 2005;208:88–105.

    CAS  PubMed  Google Scholar 

  502. Hodge JM, Collier FM, Pavlos NJ, Kirkland MA, Nicholson GC. M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS One. 2011;6(6):e21462.

    CAS  PubMed Central  PubMed  Google Scholar 

  503. Insogna KL, Sahni M, Grey AB, Tanaka S, Horne WC, Neff L, et al. Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J Clin Invest. 1997;100(10):2476–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  504. Lakkakorpi PT, Vaananen HK. Cytoskeletal changes in osteoclasts during the resorption cycle. Microsc Res Tech. 1996;33(2):171–81.

    CAS  PubMed  Google Scholar 

  505. Nakamura I, Pilkington MF, Lakkakorpi PT, Lipfert L, Sims SM, Dixon SJ, et al. Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci. 1999;112(Pt22):3985–93.

    CAS  PubMed  Google Scholar 

  506. Teti A, Taranta A, Migliaccio S, Degiorgi A, Santandrea E, Villanova I, et al. Colony stimulating factor-1-induced osteoclast spreading depends on substrate and requires the vitronectin receptor and the c-src proto-oncogene. J Bone Miner Res. 1998;13(1):50–8.

    CAS  PubMed  Google Scholar 

  507. Pilkington MF, Sims SM, Dixon SJ. Wortmannin inhibits spreading and chemotaxis of rat osteoclasts in vitro. J Bone Miner Res. 1998;13(4):688–94.

    CAS  PubMed  Google Scholar 

  508. Faccio R, Takeshita S, Colaianni G, Chappel J, Zallone A, Teitelbaum SL, et al. M-CSF regulates the cytoskeleton via recruitment of a multimeric signaling complex to c-Fms Tyr-559/697/721. J Biol Chem. 2007;282(26):18991–9.

    CAS  PubMed  Google Scholar 

  509. Shinohara M, Nakamura M, Masuda H, Hirose J, Kadono Y, Iwasawa M, et al. Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B-mediated vesicle transport. J Bone Miner Res. 2012;27(12):2464–75.

    CAS  PubMed  Google Scholar 

  510. Grey A, Chen Y, Paliwal I, Carlberg K, Insogna K. Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology. 2000;141(6):2129–38.

    CAS  PubMed  Google Scholar 

  511. Alan JK, Berzat AC, Dewar BJ, Graves LM, Cox AD. Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol Cell Biol. 2010;30(17):4324–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  512. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, et al. Vav3 regulates osteoclast function and bone mass. Nat Med. 2005;11(3):284–90.

    CAS  PubMed  Google Scholar 

  513. Itokowa T, Zhu ML, Troiano N, Bian J, Kawano T, Insogna K. Osteoclasts lacking Rac2 have defective chemotaxis and resorptive activity. Calcif Tissue Int. 2011;88(1):75–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  514. Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res. 2008;23(2):260–70.

    CAS  PubMed  Google Scholar 

  515. Reeve JL, Zou W, Liu Y, Maltzman JS, Ross FP, Teitelbaum SL. SLP-76 couples Syk to the osteoclast cytoskeleton. J Immunol. 2009;183(3):1804–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  516. Zou W, Reeve JL, Zhao H, Ross FP, Teitelbaum SL. Syk tyrosine 317 negatively regulates osteoclast function via the ubiquitin-protein isopeptide ligase activity of Cbl. J Biol Chem. 2009;284(28):18833–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  517. Mócsai A, Humphrey MB, Van Ziffle JA, Hu Y, Burghardt A, Spusta SC, et al. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA. 2004;101(16):6158–63.

    PubMed Central  PubMed  Google Scholar 

  518. Akiyama T, Bouillet P, Miyazaki T, Kadono Y, Chikuda H, Chung UI, et al. Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J. 2003;22(24):6653–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  519. Woo KM, Kim HM, Ko JS. Macrophage colony-stimulating factor promotes the survival of osteoclast precursors by up-regulating Bcl-X(L). Exp Mol Med. 2002;34(5):340–6.

    CAS  PubMed  Google Scholar 

  520. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10(10):1165–77.

    CAS  PubMed  Google Scholar 

  521. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109(6):707–18.

    CAS  PubMed  Google Scholar 

  522. Barve RA, Zack MD, Weiss D, Song RH, Beidler D, Head RD. Transcriptional profiling and pathway analysis of CSF-1 and IL-34 effects on human monocyte differentiation. Cytokine. 2013;63(1):10–7.

    CAS  PubMed  Google Scholar 

  523. Proudfoot AEI. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. 2002;2:106–15.

    CAS  PubMed  Google Scholar 

  524. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71–82.

    CAS  PubMed  Google Scholar 

  525. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  526. Cheng M, Wang D, Roussel MF. Expression of c-Myc in response to colony-stimulating factor-1 requires mitogen-activated protein kinase kinase-1. J Biol Chem. 1999;274(10):6553–8.

    CAS  PubMed  Google Scholar 

  527. Aziz N, Cherwinski H, McMahon M. Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol. 1999;19(2):1101–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  528. Roussel MF. Regulation of cell cycle entry and G1 progression by CSF-1. Mol Reprod Dev. 1997;46(1):11–8.

    CAS  PubMed  Google Scholar 

  529. Roussel MF, Cleveland JL, Shurtleff SA, Sherr CJ. Myc rescue of a mutant CSF-1 receptor impaired in mitogenic signalling. Nature. 1991;353(6342):361–3.

    CAS  PubMed  Google Scholar 

  530. Irvine KM, Andrews MR, Fernandez-Rojo MA, Schroder K, Burns CJ, Su S, et al. Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. J Leukoc Biol. 2009;85(2):278–88.

    CAS  PubMed  Google Scholar 

  531. Sweet MJ, Campbell CC, Sester DP, Xu D, McDonald RC, Stacey KJ, et al. Colony-stimulating factor-1 suppresses responses to CpG DNA and expression of toll-like receptor 9 but enhances responses to lipopolysaccharide in murine macrophages. J Immunol. 2002;168(1):392–9.

    CAS  PubMed  Google Scholar 

  532. Chen BD, Lin HS, Hsu S. Tumor-promoting phorbol esters inhibit the binding of colony-stimulating factor (CSF-1) to murine peritoneal exudate macrophages. J Cell Physiol. 1983;116(2):207–12.

    CAS  PubMed  Google Scholar 

  533. Guilbert LJ, Stanley ER. Modulation of receptors for the colony-stimulating factor, CSF-1, by bacterial lipopolysaccharide and CSF-1. J Immunol Methods. 1984;73(1):17–28.

    CAS  PubMed  Google Scholar 

  534. Downing JR, Roussel MF, Sherr CJ. Ligand and protein kinase C downmodulate the colony-stimulating factor 1 receptor by independent mechanisms. Mol Cell Biol. 1989;9(7):2890–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  535. Baccarini M, Dello Sbarba P, Buscher D, Bartocci A, Stanley ER. IFN-gamma/lipopolysaccharide activation of macrophages is associated with protein kinase C-dependent down-modulation of the colony-stimulating factor-1 receptor. J Immunol. 1992;149(8):2656–61.

    CAS  PubMed  Google Scholar 

  536. Walker F, Nicola NA, Metcalf D, Burgess AW. Hierarchical down-modulation of hemopoietic growth factor receptors. Cell. 1985;43(1):269–76.

    CAS  PubMed  Google Scholar 

  537. Dello Sbarba P, Nencioni L, Labardi D, Rovida E, Caciagli B, Cipolleschi MG. Interleukin 2 down-modulates the macrophage colony-stimulating factor receptor in murine macrophages. Cytokine. 1996;8(6):488–94.

    CAS  PubMed  Google Scholar 

  538. Dello Sbarba P, Rovida E, Caciagli B, Nencioni L, Labardi D, Paccagnini A, et al. Interleukin-4 rapidly down-modulates the macrophage colony-stimulating factor receptor in murine macrophages. J Leukoc Biol. 1996;60(5):644–50.

    CAS  PubMed  Google Scholar 

  539. Rovida E, Paccagnini A, Del Rosso M, Peschon J, Dello SP. TNF-alpha-converting enzyme cleaves the macrophage colony-stimulating factor receptor in macrophages undergoing activation. J Immunol. 2001;166(3):1583–9.

    CAS  PubMed  Google Scholar 

  540. Vahidi A, Glenn G, van der Geer P. Identification and mutagenesis of the TACE and gamma-secretase cleavage sites in the colony-stimulating factor 1 receptor. Biochem Biophys Res Commun. 2014;450(1):782–7.

    CAS  PubMed  Google Scholar 

  541. Wilhelmsen K, van der Geer P. Phorbol 12-myristate 13-acetate-induced release of the colony-stimulating factor 1 receptor cytoplasmic domain into the cytosol involves two separate cleavage events. Mol Cell Biol. 2004;24(1):454–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  542. Glenn G, van der Geer P. CSF-1 and TPA stimulate independent pathways leading to lysosomal degradation or regulated intramembrane proteolysis of the CSF-1 receptor. FEBS Lett. 2007;581(28):5377–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  543. Glenn G, van der Geer P. Toll-like receptors stimulate regulated intramembrane proteolysis of the CSF-1 receptor through Erk activation. FEBS Lett. 2008;582(6):911–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  544. Kondo Y, Duncan ID. Selective reduction in microglia density and function in the white matter of colony-stimulating factor-1-deficient mice. J Neurosci Res. 2009;87(12):2686–95.

    CAS  PubMed  Google Scholar 

  545. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol. 2006;7(3):265–73.

    CAS  PubMed  Google Scholar 

  546. Begg SK, Radley JM, Pollard JW, Chisholm OT, Stanley ER, Bertoncello I. Delayed hematopoietic development in osteopetrotic (op/op) mice. J Exp Med. 1993;177(1):237–42.

    CAS  PubMed  Google Scholar 

  547. Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR. A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 1991;65(7):1143–52.

    CAS  PubMed  Google Scholar 

  548. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR, et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell. 1993;17(756):1157–67.

    Google Scholar 

  549. Maroc N, Rottapel R, Rosnet O, Marchetto S, Lavezzi C, Mannoni P, Birnbaum D, Dubreuil P. Biochemical characterization and analysis of the transforming potential of the FLT3/FLK2 receptor tyrosine kinase. Oncogene. 1993;8(4):909–18.

    CAS  PubMed  Google Scholar 

  550. de Lapeyrière O, Naguet P, Planche J, Marchetto S, Rottapel R, Gambarelli D, Rosnet O, Birnbaum D. Expression of Flt3 tyrosine kinase receptor gene in mouse hematopoietic and nervous tissues. Differentiation. 1995;58(5):351–9.

    Google Scholar 

  551. Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D. Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene. 1991;6(9):1641–50.

    CAS  PubMed  Google Scholar 

  552. Brasel K, Escobar S, Anderberg R, de Vries P, Gruss HJ, Lyman SD. Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia. 1995;9(7):1212–8.

    CAS  PubMed  Google Scholar 

  553. Rasko JE, Metcalf D, Rossner MT, Begley CG, Nicola NA. The flt3/flk-2 ligand: receptor distribution and action on murine haemopoietic cell survival and proliferation. Leukemia. 1995;9(12):2058–66.

    CAS  PubMed  Google Scholar 

  554. Turner AM, Lin N, Issarachai S, Lyman SD, Broudy VC. FLT3 receptor expression on the surface of normal and malignant human hematopoietic cells. Blood. 1996;88(9):3383–90.

    CAS  PubMed  Google Scholar 

  555. Lyman SD, Jacobsen SE. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91(4):1101–34.

    CAS  PubMed  Google Scholar 

  556. Stirewalt DL, Radich J. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650–65.

    CAS  PubMed  Google Scholar 

  557. Schmidt-Arras D, Schwable J, Böhmer FD, Serve H. Flt3 receptor tyrosine kinase as a drug target in leukemia. Curr Pharm Des. 2004;10(16):1867–83.

    CAS  PubMed  Google Scholar 

  558. Choudhary C, Müller-Tidow C, Berdel WE, Serve H. Signal transduction of oncogenic Flt3. Int J Hematol. 2005;82(2):93–9.

    CAS  PubMed  Google Scholar 

  559. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19(5):624–31.

    CAS  PubMed  Google Scholar 

  560. Gilliland DG, Griffin J. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532–42.

    CAS  PubMed  Google Scholar 

  561. Rocnik JL, Okabe R, Yu JC, Lee BH, Giese N, Schenkein DP, Gilliland DG. Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD. Blood. 2006;108(4):1339–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  562. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, Steffen B, Matsumura I, Kanakura Y, Böhmer FD, Müller-Tidow C, Berdel WE, Serve H. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood. 2003;101(8):3164–73.

    CAS  PubMed  Google Scholar 

  563. Caldarelli A, Müller JP, Paskowski-Rogacz M, Herrmann K, Bauer R, Koch S, Heninger AK, Krastev D, Ding L, Kasper S, Fischer T, Brodhun M, Böhmer FD, Buchholz F. A genome-wide RNAi screen identifies proteins modulating aberrant FLT3-ITD signaling. Leukemia. 2013;27:2301–10. doi:10.1038/leu.2013.83.

    CAS  PubMed Central  PubMed  Google Scholar 

  564. Schmidt-Arras DE, Böhmer A, Markova B, Choudhary C, Serve H, Böhmer FD. Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol Cell Biol. 2005;25(9):3690–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  565. Verstraete K, Vandriessche G, Januar M, Elegheert J, Shkumatov AV, Desfosses A, Van Craenenbroeck K, Svergun DI, Gutsche I, Vergauwen B, Savvides SN. Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood. 2011;118(1):60–8.

    CAS  PubMed  Google Scholar 

  566. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, Lippke J, Saxena K. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004;13(2):169–78.

    CAS  PubMed  Google Scholar 

  567. Knapper S. FLT3 inhibition in acute myeloid leukaemia. Br J Haematol. 2007;138(6):687–99.

    CAS  PubMed  Google Scholar 

  568. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    CAS  PubMed  Google Scholar 

  569. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity. 1995;3(1):147–61.

    CAS  PubMed  Google Scholar 

  570. Rosnet O, Bühring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D, Arnoulet C, Chabannon C, Kanz L, Hannum C, Birnbaum D. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia. 1996;10(2):238–48.

    CAS  PubMed  Google Scholar 

  571. Bigley V, Haniffa M, Doulatov S, Wang XN, Dickinson R, McGovern N, Jardine L, Pagan S, Dimmick I, Chua I, Wallis J, Lordan J, Morgan C, Kumararatne DS, Doffinger R, van der Burg M, van Dongen J, Cant A, Dick JE, Hambleton S, Collin M. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208(2):227–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  572. Merad M, Manz MG. Dendritic cell homeostasis. Blood. 2009;113(15):3418–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  573. Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol. 2010;11(7):585–93.

    CAS  PubMed  Google Scholar 

  574. Schmid MA, Kingston D, Boddupalli S, Manz MG. Instructive cytokine signals in dendritic cell lineage commitment. Immunol Rev. 2010;234(1):32–44.

    CAS  PubMed  Google Scholar 

  575. Mende I, Karsunky H, Weissman IL, Engleman EG, Merad M. Flk2+ myeloid progenitors are the main source of Langerhans cells. Blood. 2006;107(4):1383–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  576. Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med. 2003;198(2):305–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  577. D’Amico A, Wu L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med. 2003;198(2):293–303.

    PubMed Central  PubMed  Google Scholar 

  578. Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol. 2007;179(11):7577–84.

    CAS  PubMed  Google Scholar 

  579. Waskow C, Liu K, Darrasse-Jèze G, Guermonprez P, Ginhoux F, Merad M, Shengelia T, Yao K, Nussenzweig M. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9(6):676–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  580. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Teepe M, Lyman SD, Peschon JJ. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95(11):3489–97.

    CAS  PubMed  Google Scholar 

  581. Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O’Garra A, Liu YJ. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med. 2002;195(7):953–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  582. Onai N, Manz MG. The STATs on dendritic cell development. Immunity. 2008;28(4):490–2.

    CAS  PubMed  Google Scholar 

  583. Naik SH, Metcalf D, van Nieuwenhuijze A, Wicks I, Wu L, O’Keeffe M, Shortman K. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol. 2006;7(6):663–71.

    CAS  PubMed  Google Scholar 

  584. Kingston D, Schmid MA, Onai N, Obata-Onai A, Baumjohann D, Manz MG. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood. 2009;114(4):835–43.

    CAS  PubMed  Google Scholar 

  585. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, Fehling HJ, Hardt WD, Shakhar G, Jung S. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity. 2009;31(3):502–12.

    CAS  PubMed  Google Scholar 

  586. Vempati S, Reindl C, Kaza SK, Kern R, Malamoussi T, Dugas M, Mellert G, Schnittger S, Hiddemann W, Spiekermann K. Arginine 595 is duplicated in patients with acute leukemias carrying internal tandem duplications of FLT3 and modulates its transforming potential. Blood. 2007;110(2):686–94.

    CAS  PubMed  Google Scholar 

  587. Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F, Jung S. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 2007;204(1):171–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  588. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, Caron D, Lebsack ME, McKenna HJ. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood. 2000;96(3):878–84.

    CAS  PubMed  Google Scholar 

  589. Tussiwand R, Onai N, Mazzucchelli L, Manz MG. Inhibition of natural type I IFN-producing and dendritic cell development by a small molecule receptor tyrosine kinase inhibitor with Flt3 affinity. J Immunol. 2005;175(6):3674–80.

    CAS  PubMed  Google Scholar 

  590. Birnberg T, Bar-On L, Sapoznikov A, Caton ML, Cervantes-Barragán L, Makia D, Krauthgamer R, Brenner O, Ludewig B, Brockschnieder D, Riethmacher D, Reizis B, Jung S. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity. 2008;29(6):986–97.

    CAS  PubMed  Google Scholar 

  591. Hochweller K, Miloud T, Striegler J, Naik S, Hämmerling GJ, Garbi N. Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop. Blood. 2009;114(20):4411–21.

    CAS  PubMed  Google Scholar 

  592. Schiavoni G, Mattei F, Sestili P, Borghi P, Venditti M, Morse 3rd HC, Belardelli F, Gabriele L. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med. 2002;196(11):1415–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  593. Laouar Y, Welte T, Fu XY, Flavell RA. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity. 2003;19(6):903–12.

    CAS  PubMed  Google Scholar 

  594. Carotta S, Dakic A, D’Amico A, Pang SH, Greig KT, Nutt SL, Wu L. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity. 2010;32(5):628–41.

    CAS  PubMed  Google Scholar 

  595. Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, Thomson AW. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003;101(11):4457–63.

    CAS  PubMed  Google Scholar 

  596. Sathaliyawala T, O’Gorman WE, Greter M, Bogunovic M, Konjufca V, Hou ZE, Nolan GP, Miller MJ, Merad M, Reizis B. Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity. 2010;33(4):597–606.

    CAS  PubMed Central  PubMed  Google Scholar 

  597. Scheffler JM, Sparber F, Tripp CH, Herrmann C, Humenberger A, Blitz J, et al. LAMTOR2 regulates dendritic cell homeostasis through FLT3-dependent mTOR signalling. Nat Commun. 2014;5:5138.

    CAS  PubMed Central  PubMed  Google Scholar 

  598. Swee LK, Bosco N, Malissen B, Ceredig R, Rolink A. Expansion of peripheral naturally occurring T regulatory cells by Fms-like tyrosine kinase 3 ligand treatment. Blood. 2009;113(25):6277–87.

    CAS  PubMed  Google Scholar 

  599. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu FF, Randolph GJ, Rudensky AY, Nussenzweig M. In vivo analysis of dendritic cell development and homeostasis. Science. 2009;324(5925):392–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  600. Darrasse-Jèze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao KH, Masilamani RF, Dustin ML, Rudensky A, Liu K, Nussenzweig MC. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206(9):1853–62.

    PubMed Central  PubMed  Google Scholar 

  601. Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity. 2007;26(4):503–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  602. Guimond M, Freud AG, Mao HC, Yu J, Blaser BW, Leong JW, Vandeusen JB, Dorrance A, Zhang J, Mackall CL, Caligiuri MA. In vivo role of Flt3 ligand and dendritic cells in NK cell homeostasis. J Immunol. 2010;184(6):2769–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  603. Eidenschenk C, Crozat K, Krebs P, Arens R, Popkin D, Arnold CN, Blasius AL, Benedict CA, Moresco EM, Xia Y, Beutler B. Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells. Proc Natl Acad Sci USA. 2010;107(21):9759–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  604. Drexler. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia. 1996;10(4):588–99.

    CAS  PubMed  Google Scholar 

  605. Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H, Taniwaki M, Kashima K, Fujii H, Abe T, Misawa S. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia. 1997;11(9):1442–6.

    CAS  PubMed  Google Scholar 

  606. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia. 1997;11(10):1605–9.

    CAS  PubMed  Google Scholar 

  607. Rosen DB, Minden MD, Kornblau SM, Cohen A, Gayko U, Putta S, Woronicz J, Evensen E, Fantl WJ, Cesano A. Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP). PLoS One. 2010;5(10):e13543.

    PubMed Central  PubMed  Google Scholar 

  608. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, Carroll AJ, Mrózek K, Vardiman JW, George SL, Kolitz JE, Larson RA, Bloomfield CD, Caligiuri MA. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.

    CAS  PubMed  Google Scholar 

  609. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M, Neubauer A, Ehninger G, Illmer T. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.

    CAS  PubMed  Google Scholar 

  610. Kottaridis PD, Gale RE, Linch DC. Prognostic implications of the presence of FLT3 mutations in patients with acute myeloid leukemia. Leuk Lymphoma. 2003;44(6):905–13.

    CAS  PubMed  Google Scholar 

  611. Baldus CD, Thiede C, Soucek S, Bloomfield CD, Thiel E, Ehninger G. BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol. 2006;24(5):790–7.

    CAS  PubMed  Google Scholar 

  612. Stirewalt DL, Kopecky KJ, Meshinchi S, Engel JH, Pogosova-Agadjanyan EL, Linsley J, Slovak ML, Willman CL, Radich JP. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood. 2006;107(9):3724–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  613. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, Linch DC. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776–84.

    CAS  PubMed  Google Scholar 

  614. Stirewalt DLMS, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH, Cronk MR, Dorcy KS, McQuary AR, Hockenbery D, Wood B, Heimfeld S, Radich JP. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer. 2008;47(1):8–20.

    CAS  PubMed  Google Scholar 

  615. Adamia S, Bar-Natan M, Haibe-Kains B, Pilarski PM, Bach C, Pevzner S, et al. NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML. Blood. 2014;123(18):2816–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  616. Puissant A, Fenouille N, Alexe G, Pikman Y, Bassil CF, Mehta S, et al. SYK is a critical regulator of FLT3 in acute myeloid leukemia. Cancer Cell. 2014;25(2):226–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  617. Choi JH, Cheong C, Dandamudi DB, Park CG, Rodriguez A, Mehandru S, Velinzon K, Jung IH, Yoo JY, Oh GT, Steinman RM. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity. 2011;35(5):819–31.

    CAS  PubMed  Google Scholar 

  618. Rosnet O, Mattei MG, Marchetto S, Birnbaum D. Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics. 1991;9(2):380–5.

    CAS  PubMed  Google Scholar 

  619. Dubreuil P, Courcoul M, Birnbaum D, Planche J, Pebusque M-J, Mannoni P, et al. Cloning and functional analysis of the human c-fms gene. In: Dornand J, Mani J-C, editors. Lymphocyte activation and differentiation. Berlin: de Gruyter; 1988. p. 351–4.

    Google Scholar 

  620. Agnès F, Shamoon B, Dina C, Rosnet O, Birnbaum D, Galibert F. Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III. Gene. 1994;145(2):283–8.

    PubMed  Google Scholar 

  621. Imbert A, Rosnet O, Marchetto S, Ollendorff V, Birnbaum D, Pébusque MJ. Characterization of a yeast artificial chromosome from human chromosome band 13q12 containing the FLT1 and FLT3 receptor-type tyrosine kinase genes. Cytogenet Cell Genet. 1994;67(3):175–7.

    CAS  PubMed  Google Scholar 

  622. Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y, Birg F, Birnbaum D. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood. 1993;82(4):1110–9.

    CAS  PubMed  Google Scholar 

  623. Lavagna C, Marchetto S, Birnbaum D, Rosnet O. Identification and characterization of a functional murine FLT3 isoform produced by exon skipping. J Biol Chem. 1995;270(7):3165–71.

    CAS  PubMed  Google Scholar 

  624. Fleischman RA, Saltman DL, Stastny V, Zneimer S. Deletion of the c-kit protooncogene in the human developmental defect piebald trait. Proc Natl Acad Sci USA. 1991;88(23):10885–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  625. Holmes ML, Carotta S, Corcoran LM, Nutt SL. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 2006;20(8):933–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  626. Nin DS, Kok WK, Li F, Takahashi S, Chng WJ, Khan M. Role of misfolded N-CoR mediated transcriptional deregulation of Flt3 in acute monocytic leukemia (AML)-M5 subtype. PLoS One. 2012;7(4):e34501.

    CAS  PubMed Central  PubMed  Google Scholar 

  627. Gwin K, Frank E, Bossou A, Medina KL. Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. J Immunol. 2010;185(11):6572–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  628. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.

    CAS  PubMed  Google Scholar 

  629. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees DC, Vandenberghe EA, Winship PR, Reilly JT. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol. 2000;111(1):190–5.

    CAS  PubMed  Google Scholar 

  630. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–9.

    CAS  PubMed  Google Scholar 

  631. Moriyama Y, Tsujimura T, Hashimoto K, Morimoto M, Kitayama H. Role of aspartic acid 814 in the function and expression of c-kit receptor tyrosine kinase. J Biol Chem. 1996;271(7):3347–50.

    CAS  PubMed  Google Scholar 

  632. Morley GM, Uden M, Gullick WJ, Dibb NJ. Cell specific transformation by c-fms activating loop mutations is attributable to constitutive receptor degradation. Oncogene. 1999;18(20):3076–84.

    CAS  PubMed  Google Scholar 

  633. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Müller C, Grüning W, Kratz-Albers K, Serve S, Steur C, Büchner T, Kienast J, Kanakura Y, Berdel WE, Serve H. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 2000;96(12):3907–14.

    CAS  PubMed  Google Scholar 

  634. Finger C, Escher C, Schneider D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal. 2009;2(89):ra56.

    PubMed  Google Scholar 

  635. Oates J, King G, Dixon AM. Strong oligomerization behavior of PDGFbeta receptor transmembrane domain and its regulation by the juxtamembrane regions. Biochim Biophys Acta. 2010;1798(3):605–15.

    CAS  PubMed  Google Scholar 

  636. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93(9):3074–80.

    CAS  PubMed  Google Scholar 

  637. Verstraete K, Savvides SN. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat Rev Cancer. 2012;12(11):753–66.

    CAS  PubMed  Google Scholar 

  638. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 2006;4(5):e144.

    PubMed Central  PubMed  Google Scholar 

  639. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–63.

    CAS  PubMed  Google Scholar 

  640. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med. 1996;184(5):1953–62.

    CAS  PubMed  Google Scholar 

  641. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485(7397):260–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  642. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.

    PubMed  Google Scholar 

  643. Schlessinger J. Signal transduction. Autoinhibition control. Science. 2003;300(5620):750–2.

    CAS  PubMed  Google Scholar 

  644. Lyman SD, Stocking K, Davison B, Fletcher F, Johnson L, Escobar S. Structural analysis of human and murine flt3 ligand genomic loci. Oncogene. 1995;11(6):1165–72.

    CAS  PubMed  Google Scholar 

  645. Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, Kastelein R, Hudak S, Wagner J, Mattson J. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994;368(6472):643–8.

    CAS  PubMed  Google Scholar 

  646. Lyman SD, James L, Johnson L, Brasel K, de Vries P, Escobar SS, Downey H, Splett RR, Beckmann MP, McKenna HJ. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood. 1994;83(10):2795–801.

    CAS  PubMed  Google Scholar 

  647. Horiuchi K, Morioka H, Takaishi H, Akiyama H, Blobel CP, Toyama Y. Ectodomain shedding of FLT3 ligand is mediated by TNF-alpha converting enzyme. J Immunol. 2009;182(12):7408–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  648. Lyman SD, James L, Escobar S, Downey H, de Vries P, Brasel K, Stocking K, Beckmann MP, Copeland NG, Cleveland LS, et al. Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs. Oncogene. 1995;10(1):149–57.

    CAS  PubMed  Google Scholar 

  649. McClanahan T, Culpepper J, Campbell D, Wagner J, Franz-Bacon K, Mattson J, Tsai S, Luh J, Guimaraes MJ, Mattei MG, Rosnet O, Birnbaum D, Hannum CH. Biochemical and genetic characterization of multiple splice variants of the Flt3 ligand. Blood. 1996;88(9):3371–82.

    CAS  PubMed  Google Scholar 

  650. Lyman SD, Brasel K, Rousseau AM, Williams DE. The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor. Stem Cells. 1994;12 Suppl 1:99–107.

    PubMed  Google Scholar 

  651. Broudy VC, Kovach NL, Bennett LG, Lin N, Jacobsen FW, Kidd PG. Human umbilical vein endothelial cells display high-affinity c-kit receptors and produce a soluble form of the c-kit receptor. Blood. 1994;83(8):2145–52.

    CAS  PubMed  Google Scholar 

  652. Lavagna-Sévenier C, Marchetto S, Birnbaum D, Rosnet O. FLT3 signaling in hematopoietic cells involves CBL, SHC and an unknown P115 as prominent tyrosine-phosphorylated substrates. Leukemia. 1998;12(3):301–10.

    PubMed  Google Scholar 

  653. Zhang S, Broxmeyer HE. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun. 2000;277(1):195–9.

    CAS  PubMed  Google Scholar 

  654. Zhang S, Mantel C, Broxmeyer HE. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol. 1999;65(3):372–80.

    CAS  PubMed  Google Scholar 

  655. Zhang S, Broxmeyer HE. p85 subunit of PI3 kinase does not bind to human Flt3 receptor, but associates with SHP2, SHIP, and a tyrosine-phosphorylated 100-kDa protein in Flt3 ligand-stimulated hematopoietic cells. Biochem Biophys Res Commun. 1999;254(2):440–5.

    CAS  PubMed  Google Scholar 

  656. Rosnet O, Bühring HJ. Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol. 1996;95(3–4):218–23.

    CAS  PubMed  Google Scholar 

  657. Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, Leonard WJ, Broxmeyer HE. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med. 2000;192(5):719–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  658. Heiss E, Masson K, Sundberg C, Pedersen M, Sun J, Bengtsson S, Rönnstrand L. Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2. Blood. 2006;108(5):1542–50.

    CAS  PubMed  Google Scholar 

  659. Razumovskaya E, Masson K, Khan R, Bengtsson S, Rönnstrand L. Oncogenic Flt3 receptors display different specificity and kinetics of autophosphorylation. Exp Hematol. 2009;37(8):979–89.

    CAS  PubMed  Google Scholar 

  660. Lavagna-Sévenier C, Marchetto S, Birnbaum D, Rosnet O. The CBL-related protein CBLB participates in FLT3 and interleukin-7 receptor signal transduction in pro-B cells. J Biol Chem. 1998;273(24):14962–7.

    PubMed  Google Scholar 

  661. Grundler R, Miething C, Thiede C, Peschel C, Duyster J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood. 2005;105(12):4792–9.

    CAS  PubMed  Google Scholar 

  662. Srinivasa SP, Doshi PD. Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line. Leukemia. 2002;16(2):244–53.

    CAS  PubMed  Google Scholar 

  663. Lin DC, Yin T, Koren-Michowitz M, Ding LW, Gueller S, Gery S, Tabayashi T, Bergholz U, Kazi JU, Rönnstrand L, Stocking C, Koeffler HP. Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3. Blood. 2012;120(16):3310–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  664. Kazi JU, Rönnstrand L. Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling. PLoS One. 2012;7(12):e53509.

    CAS  PubMed Central  PubMed  Google Scholar 

  665. Kazi JU, Rönnstrand L. Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Mol Oncol. 2013;7(3):693–703.

    CAS  PubMed  Google Scholar 

  666. Kazi JU, Sun J, Phung B, Zadjali F, Flores-Morales A, Rönnstrand L. Suppressor of cytokine signaling 6 (SOCS6) negatively regulates Flt3 signal transduction through direct binding to phosphorylated tyrosines 591 and 919 of Flt3. J Biol Chem. 2012;287(43):36509–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  667. Arora D, Stopp S, Böhmer SA, Schons J, Godfrey R, Masson K, Razumovskaya E, Rönnstrand L, Tänzer S, Bauer R, Böhmer FD, Müller JP. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J Biol Chem. 2011;286(13):10918–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  668. Böhmer SA, Weibrecht I, Söderberg O, Böhmer FD. Association of the Protein-Tyrosine Phosphatase DEP-1 with Its Substrate FLT3 Visualized by In Situ Proximity Ligation Assay. PLoS One. 2013;8:5.

    Google Scholar 

  669. Tse KF, Mukherjee G, Small D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia. 2000;14(10):1766–76.

    CAS  PubMed  Google Scholar 

  670. Tse KF, Allebach J, Levis M, Smith BD, Bohmer FD, Small D. Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor. Leukemia. 2002;16(10):2027–36.

    CAS  PubMed  Google Scholar 

  671. Schmidt-Arras D, Böhmer SA, Koch S, Müller JP, Blei L, Cornils H, Bauer R, Korasikha S, Thiede C, Böhmer FD. Anchoring of FLT3 in the endoplasmic reticulum alters signaling quality. Blood. 2009;113(15):3568–76.

    CAS  PubMed  Google Scholar 

  672. Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Böhmer FD, Gerke V, Schmidt-Arras DE, Berdel WE, Müller-Tidow C, Mann M, Serve H. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell. 2009;36(2):326–39.

    CAS  PubMed  Google Scholar 

  673. Godfrey R, Arora D, Bauer R, Stopp S, Müller JP, Heinrich T, Böhmer SA, Dagnell M, Schnetzke U, Scholl S, Östman A, Böhmer FD. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ. Blood. 2012;119(19):4499–511.

    CAS  PubMed  Google Scholar 

  674. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.

    CAS  PubMed  Google Scholar 

  675. Choudhary C, Brandts C, Schwable J, Tickenbrock L, Sargin B, Ueker A, Böhmer FD, Berdel WE, Müller-Tidow C, Serve H. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood. 2007;110(1):370–4.

    CAS  PubMed  Google Scholar 

  676. Kelly LM, Yu JC, Boulton CL, Apatira M, Li J, Sullivan CM, Williams I, Amaral SM, Curley DP, Duclos N, Neuberg D, Scarborough RM, Pandey A, Hollenbach S, Abe K, Lokker NA, Gilliland DG, Giese NA. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell. 2002;1(5):421–32.

    CAS  PubMed  Google Scholar 

  677. Müller-Tidow C, Steur C, Mizuki M, Schwäble J, Brandts C, Berdel WE, Serve H. Mutations of growth factor receptor Flt3 in acute myeloid leukemia: transformation of myeloid cells by Ras-dependent and Ras-independent mechanisms. Dtsch Med Wochenschr. 2002;127(42):2195–200.

    PubMed  Google Scholar 

  678. Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H, Suzu S, Shibuya M, Kamihira S, Nosaka T, Asano S, Kitamura T. Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem. 2003;278(35):32892–8.

    CAS  PubMed  Google Scholar 

  679. Gu TL, Nardone J, Wang Y, Loriaux M, Villén J, Beausoleil S, Tucker M, Kornhauser J, Ren J, MacNeill J, Gygi SP, Druker BJ, Heinrich MC, Rush J, Polakiewicz RD. Survey of activated FLT3 signaling in leukemia. PLoS One. 2011;6(4):e19169.

    CAS  PubMed Central  PubMed  Google Scholar 

  680. Ohtani M, Nagai S, Kondo S, Mizuno S, Nakamura K, Tanabe M, Takeuchi T, Matsuda S, Koyasu S. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood. 2008;112(3):635–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  681. Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, Kolbe T, Stulnig TM, Hörl WH, Hengstschläger M, Müller M, Säemann MD. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity. 2008;29(4):565–77.

    CAS  PubMed  Google Scholar 

  682. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol. 2008;9(10):1157–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  683. Guiducci C, Ghirelli C, Marloie-Provost MA, Matray T, Coffman RL, Liu YJ, Barrat FJ, Soumelis V. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med. 2008;205(2):315–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  684. Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia. 2003;17(9):1738–52.

    CAS  PubMed  Google Scholar 

  685. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110(4):1262–70.

    CAS  PubMed  Google Scholar 

  686. Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC, Beran M, Zhu Z, Ludwig D, Hicklin D, Witte L, Li Y, Small D. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood. 2004;103(1):267–74.

    CAS  PubMed  Google Scholar 

  687. Yao Q, Nishiuchi R, Kitamura T, Kersey JH. Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia. 2005;19(9):1605–12.

    CAS  PubMed  Google Scholar 

  688. Weigel BJ, Blaney S, Reid JM, Safgren SL, Bagatell R, Kersey J, Neglia JP, Ivy SP, Ingle AM, Whitesell L, Gilbertson RJ, Krailo M, Ames M, Adamson PC. A phase I study of 17-allylaminogeldanamycin in relapsed/refractory pediatric patients with solid tumors: a Children’s Oncology Group study. Clin Cancer Res. 2007;13(6):1789–93.

    CAS  PubMed  Google Scholar 

  689. Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther. 2002;2(1):3–24.

    CAS  PubMed  Google Scholar 

  690. Bagatell R, Whitesell L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther. 2004;3:1021–30.

    CAS  PubMed  Google Scholar 

  691. Whitesell L, Lindquist SL. Hsp90 and the chaperoning of cancer. Nat Rev Cancer. 2005;10:761–2.

    Google Scholar 

  692. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997;98(2):239–50.

    Google Scholar 

  693. Minami Y, Kiyoi H, Yamamoto Y, Yamamoto K, Ueda R, Saito H, Naoe T. Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia. 2002;16(8):1535–40.

    CAS  PubMed  Google Scholar 

  694. Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH. FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res. 2003;9(12):4483–93.

    CAS  PubMed  Google Scholar 

  695. George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F, Sigua C, Sondarva G, Moscinski L, Atadja P, Bhalla K. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood. 2005;105(4):1768–76.

    CAS  PubMed  Google Scholar 

  696. Yao Q, Weigel B, Kersey J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res. 2007;13(5):1591–600.

    CAS  PubMed  Google Scholar 

  697. Schulte TW, Neckers L. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol. 1998;42(4):273–9.

    CAS  PubMed  Google Scholar 

  698. Schnur RC, Corman ML, Gallaschun RJ, Cooper BA, Dee MF, Doty JL, Muzzi ML, Moyer JD, DiOrio CI, Barbacci EG, et al. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem. 1995;38(19):3806–12.

    CAS  PubMed  Google Scholar 

  699. Bagatell R, Gore L, Egorin MJ, Ho R, Heller G, Boucher N, Zuhowski EG, Whitlock JA, Hunger SP, Narendran A, Katzenstein HM, Arceci RJ, Boklan J, Herzog CE, Whitesell L, Ivy SP, Trippett TM. Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res. 2007;13(6):1783–8.

    CAS  PubMed  Google Scholar 

  700. Usmani SZ, Bona R, Li Z. 17 AAG for HSP90 inhibition in cancer—from bench to bedside. Curr Mol Med. 2009;9(5):654–64.

    CAS  PubMed  Google Scholar 

  701. Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol. 2006;2(7):358–64.

    CAS  PubMed  Google Scholar 

  702. Weisberg E, Banerji L, Wright RD, Barrett R, Ray A, Moreno D, Catley L, Jiang J, Hall-Meyers E, Sauveur-Michel M, Stone R, Galinsky I, Fox E, Kung AL, Griffin JD. Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells. Blood. 2008;111(7):3723–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  703. Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD. FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat. 2009;12(3):81–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  704. Weisberg E, Choi HG, Barrett R, Zhou W, Zhang J, Ray A, Nelson EA, Jiang J, Moreno D, Stone R, Galinsky I, Fox E, Adamia S, Kung AL, Gray NS, Griffin JD. Discovery and characterization of novel mutant FLT3 kinase inhibitors. Mol Cancer Ther. 2010;9(9):2468–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  705. Weisberg E, Ray A, Nelson E, Adamia S, Barrett R, Sattler M, Zhang C, Daley JF, Frank D, Fox E, Griffin JD. Reversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells. PLoS One. 2011;6(9):e25351.

    CAS  PubMed Central  PubMed  Google Scholar 

  706. Weisberg E, Roesel J, Bold G, Furet P, Jiang J, Cools J, Wright RD, Nelson E, Barrett R, Ray A, Moreno D, Hall-Meyers E, Stone R, Galinsky I, Fox E, Gilliland G, Daley JF, Lazo-Kallanian S, Kung AL, Griffin JD. Antileukemic effects of the novel, mutant FLT3 inhibitor NVP-AST487: effects on PKC412-sensitive and -resistant FLT3-expressing cells. Blood. 2008;112(13):5161–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  707. Weisberg E, Roesel J, Furet P, Bold G, Imbach P, Flörsheimer A, Caravatti G, Jiang J, Manley P, Ray A, Griffin JD. Antileukemic effects of novel first- and second-generation FLT3 inhibitors: Structure-affinity comparison. Genes Cancer. 2010;1(10):1021–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  708. Weisberg E, Sattler M, Ray A, Griffin JD. Drug resistance in mutant FLT3-positive AML. Oncogene. 2010;29(37):5120–34.

    CAS  PubMed  Google Scholar 

  709. Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J. Source. Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood. 2003;102(2):646–51.

    CAS  PubMed  Google Scholar 

  710. Clark JJ, Cools J, Curley DP, Yu JC, Lokker NA, Giese NA, Gilliland DG. Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood. 2004;104(9):2867–72.

    CAS  PubMed  Google Scholar 

  711. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG, Griffin JD. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002;1(5):433–43.

    CAS  PubMed  Google Scholar 

  712. DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB, Caligiuri MA, Cooper MR, Lecerf JM, Karol MD, Sheng S, Holford N, Curtin PT, Druker BJ, Heinrich MC. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood. 2006;108(12):3674–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  713. Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, O'Brien S, Estrov Z, Borthakur G, Thomas D, Pierce SR, Brandt M, Byrd A, Bekele BN, Pratz K, Luthra R, Levis M, Andreeff M, Kantarjian HM. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28(11):1856–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  714. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S, Erba H, Stuart RK, Baccarani M, Cripe LD, Tallman MS, Meloni G, Godley LA, Langston AA, Amadori S, Lewis ID, Nagler A, Stone R, Yee K, Advani A, Douer D, Wiktor-Jedrzejczak W, Juliusson G, Litzow MR, Petersdorf S, Sanz M, Kantarjian HM, Sato T, Tremmel L, Bensen-Kennedy DM, Small D, Smith BD. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011;117(12):3294–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  715. Schnittger S, Bacher U, Haferlach C, Kern W, Alpermann T, Haferlach T. Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica. 2011;96(12):1799–807.

    CAS  PubMed Central  PubMed  Google Scholar 

  716. Huang Y, Ratajczak MZ, Reca R, Xu H, Tanner M, Rezzoug F, Hussain LR, Fugier-Vivier I, Bolli R, Ildstad ST. Fms-related tyrosine kinase 3 expression discriminates hematopoietic stem cells subpopulations with differing engraftment-potential: identifying the most potent combination. Transplantation. 2008;85(8):1175–84.

    CAS  PubMed  Google Scholar 

  717. Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M. Source. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood. 2010;115(7):1425–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  718. Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, Burnett AK. The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood. 2006;108(10):3494–503.

    CAS  PubMed  Google Scholar 

  719. Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood. 2010;116(24):5089–102.

    CAS  PubMed  Google Scholar 

  720. Eriksson A, Hermanson M, Wickström M, Lindhagen E, Ekholm C, Jenmalm Jensen A, Löthgren A, Lehmann F, Larsson R, Parrow V, Höglund M. The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia. Blood Cancer J. 2012;2:e81.

    CAS  PubMed Central  PubMed  Google Scholar 

  721. Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD, Gilliland DG, Neel BG. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA. 2004;101(9):3130–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  722. Nishioka C, Ikezoe T, Yang J, Takeshita A, Taniguchi A, Komatsu N, Togitani K, Koeffler HP, Yokoyama A. Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene. Leuk Res. 2008;32(6):865–72.

    CAS  PubMed  Google Scholar 

  723. Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci. 2005;1044:1–5.

    PubMed  Google Scholar 

  724. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002;16(9):1713–24.

    CAS  PubMed  Google Scholar 

  725. Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S, Small D, Burnett A, Levis M. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood. 2011;117(12):3283–93.

    Google Scholar 

  726. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, Naoe T. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12(9):1333–7.

    CAS  PubMed  Google Scholar 

  727. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Kéri G, Mann M, Daub H. Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009;8(7):1751–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  728. Ashman L. The biology of stem cell factor and its receptor c-kit. Int J Biochem Cell Biol. 1999;31(10):1037–51.

    CAS  PubMed  Google Scholar 

  729. Langley KE, Bennett LG, Wypych J, Yancik SA, Liu XD, Westcott KR, et al. Soluble stem cell factor in human serum. Blood. 1993;81(3):656–60. Epub 1993/02/01. eng.

    CAS  PubMed  Google Scholar 

  730. Zhang Z, Zhang R, Joachimiak A, Schlessinger J, Kong XP. Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci USA. 2000;97(14):7732–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  731. Ropers HH, Craig IW. Report of the committee on the genetic constitution of chromosomes 12 and 13. Cytogenet Cell Genet. 1989;51(1–4):259–79. Epub 1989/01/01. eng.

    CAS  PubMed  Google Scholar 

  732. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63:213–24.

    CAS  PubMed  Google Scholar 

  733. Majumdar MK, Feng L, Medlock E, Toksoz D, Williams DA. Identification and mutation of primary and secondary proteolytic cleavage sites in murine stem cell factor cDNA yields biologically active, cell-associated protein. J Biol Chem. 1994;269(2):1237–42. Epub 1994/01/14. eng.

    CAS  PubMed  Google Scholar 

  734. Lev S, Blechman JM, Givol D, Yarden Y. Steel factor and c-kit protooncogene: genetic lessons in signal transduction. Crit Rev Oncog. 1994;5(2–3):141–68.

    CAS  PubMed  Google Scholar 

  735. Tajima Y, Moore MA, Soares V, Ono M, Kissel H, Besmer P. Consequences of exclusive expression in vivo of Kit-ligand lacking the major proteolytic cleavage site. Proc Natl Acad Sci USA. 1998;95(20):11903–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  736. Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ, Lederman L, et al. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature. 1986;320(6061):415–21.

    CAS  PubMed  Google Scholar 

  737. D’Auriol L, Mattei MG, Andre C, Galibert F. Localization of the human c-kit protooncogene on the q11-q12 region of chromosome 4. Hum Genet. 1988;78(4):374–6. Epub 1988/04/01. eng.

    PubMed  Google Scholar 

  738. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6(11):3341–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  739. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988;335(6185):88–9.

    CAS  PubMed  Google Scholar 

  740. Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell. 1988;55(1):185–92.

    CAS  PubMed  Google Scholar 

  741. Rossi P, Marziali G, Albanesi C, Charlesworth A, Geremia R, Sorrentino V. A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Dev Biol. 1992;152(1):203–7.

    CAS  PubMed  Google Scholar 

  742. Katayama I, Otoyama K, Yokozeki H, Nishioka K. Retinoic acid upregulates c-kit ligand production by murine keratinocyte in vitro and increases cutaneous mast cell in vivo. J Dermatol Sci. 1995;9(1):27–35. Epub 1995/01/01. eng.

    CAS  PubMed  Google Scholar 

  743. Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92(4):1619–49. Epub 2012/10/18. eng.

    CAS  PubMed  Google Scholar 

  744. Ratajczak MZ, Perrotti D, Melotti P, Powzaniuk M, Calabretta B, Onodera K, et al. Myb and ets proteins are candidate regulators of c-kit expression in human hematopoietic cells. Blood. 1998;91(6):1934–46. Epub 1998/04/16. eng.

    CAS  PubMed  Google Scholar 

  745. Huang S, Jean D, Luca M, Tainsky MA, Bar-Eli M. Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. EMBO J. 1998;17(15):4358–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  746. Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development. 1997;124(12):2377–86. Epub 1997/06/01. eng.

    CAS  PubMed  Google Scholar 

  747. Gao XN, Lin J, Gao L, Li YH, Wang LL, Yu L. MicroRNA-193b regulates c-Kit proto-oncogene and represses cell proliferation in acute myeloid leukemia. Leuk Res. 2011;35(9):1226–32. Epub 2011/07/05. eng.

    CAS  PubMed  Google Scholar 

  748. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA. 2005;102(50):18081–6. Epub 2005/12/07. eng.

    CAS  PubMed Central  PubMed  Google Scholar 

  749. Fan R, Zhong J, Zheng S, Wang Z, Xu Y, Li S, et al. MicroRNA-218 inhibits gastrointestinal stromal tumor cell and invasion by targeting KIT. Tumour Biol. 2014;35(5):4209–17.

    CAS  PubMed  Google Scholar 

  750. Igoucheva O, Alexeev V. MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem Biophys Res Commun. 2009;379(3):790–4. Epub 2009/01/08. eng.

    CAS  PubMed  Google Scholar 

  751. Lee YN, Brandal S, Noel P, Wentzel E, Mendell JT, McDevitt MA, et al. KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood. 2011;117(13):3629–40. Epub 2011/01/29. eng.

    CAS  PubMed Central  PubMed  Google Scholar 

  752. Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland NG, et al. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J. 1991;10(9):2425–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  753. Matsui Y, Zsebo KM, Hogan BL. Embryonic expression of a haematopoietic growth factor encoded by the Sl locus and the ligand for c-kit. Nature. 1990;347(6294):667–9. Epub 1990/10/18. eng.

    CAS  PubMed  Google Scholar 

  754. Orr-Urtreger A, Avivi A, Zimmer Y, Givol D, Yarden Y, Lonai P. Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development. 1990;109(4):911–23. Epub 1990/08/01. eng.

    CAS  PubMed  Google Scholar 

  755. Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice–evidence for an impaired c-kit kinase in mutant mice. Genes Dev. 1989;3(6):816–26.

    CAS  PubMed  Google Scholar 

  756. De Felici M, Di Carlo A, Pesce M. Role of stem cell factor in somatic-germ cell interactions during prenatal oogenesis. Zygote. 1996;4(4):349–51. Epub 1996/11/01. eng.

    PubMed  Google Scholar 

  757. Runyan C, Schaible K, Molyneaux K, Wang Z, Levin L, Wylie C. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development. 2006;133(24):4861–9. Epub 2006/11/17. eng.

    CAS  PubMed  Google Scholar 

  758. Yoshida H, Kunisada T, Grimm T, Nishimura EK, Nishioka E, Nishikawa SI. Review: melanocyte migration and survival controlled by SCF/c-kit expression. J Investig Dermatol Symp Proc. 2001;6(1):1–5. Epub 2002/01/05. eng.

    CAS  PubMed  Google Scholar 

  759. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.

    CAS  PubMed  Google Scholar 

  760. Bell CA, Tynan JA, Hart KC, Meyer AN, Robertson SC, Donoghue DJ. Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase. Mol Biol Cell. 2000;11(10):3589–99. Epub 2000/10/12. eng.

    CAS  PubMed Central  PubMed  Google Scholar 

  761. Lennartsson J, Wernstedt C, Engström U, Hellman U, Rönnstrand L. Identification of Tyr900 in the kinase domain of c-Kit as a Src-dependent phosphorylation site mediating interaction with c-Crk. Exp Cell Res. 2003;288(1):110–8.

    CAS  PubMed  Google Scholar 

  762. Blume-Jensen P, Wernstedt C, Heldin CH, Rönnstrand L. Identification of the major phosphorylation sites for protein kinase C in kit/stem cell factor receptor in vitro and in intact cells. J Biol Chem. 1995;270(23):14192–200.

    CAS  PubMed  Google Scholar 

  763. Masson K, Heiss E, Band H, Rönnstrand L. Direct binding of Cbl to Tyr568 and Tyr936 of the stem cell factor receptor/c-Kit is required for ligand-induced ubiquitination, internalization and degradation. Biochem J. 2006;399(1):59–67. Epub 2006/06/20. eng.

    CAS  PubMed Central  PubMed  Google Scholar 

  764. Sun J, Pedersen M, Bengtsson S, Rönnstrand L. Grb2 mediates negative regulation of stem cell factor receptor/c-Kit signaling by recruitment of Cbl. Exp Cell Res. 2007;313(18):3935–42. Epub 2007/10/02. eng.

    CAS  PubMed  Google Scholar 

  765. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol. 2003;5(5):461–6.

    CAS  PubMed  Google Scholar 

  766. Anderson DM, Williams DE, Tushinski R, Gimpel S, Eisenman J, Cannizzaro LA, et al. Alternate splicing of mRNAs encoding human mast cell growth factor and localization of the gene to chromosome 12q22-q24. Cell Growth Differ. 1991;2(8):373–8. Epub 1991/08/01. eng.

    CAS  PubMed  Google Scholar 

  767. Zhu WM, Dong WF, Minden M. Alternate splicing creates two forms of the human kit protein. Leuk Lymphoma. 1994;12(5–6):441–7.

    CAS  PubMed  Google Scholar 

  768. Crosier PS, Ricciardi ST, Hall LR, Vitas MR, Clark SC, Crosier KE. Expression of isoforms of the human receptor tyrosine kinase c-kit in leukemic cell lines and acute myeloid leukemia. Blood. 1993;82(4):1151–8.

    CAS  PubMed  Google Scholar 

  769. Voytyuk O, Lennartsson J, Mogi A, Caruana G, Courtneidge S, Ashman LK, et al. Src family kinases are involved in the differential signaling from two splice forms of c-Kit. J Biol Chem. 2003;278(11):9159–66.

    CAS  PubMed  Google Scholar 

  770. Caruana G, Cambareri AC, Ashman LK. Isoforms of c-KIT differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene. 1999;18(40):5573–81.

    CAS  PubMed  Google Scholar 

  771. Phung B, Steingrímsson E, Rönnstrand L. Differential activity of c-KIT splice forms is controlled by extracellular peptide insert length. Cell Signal. 2013;25(11):2231–8.

    CAS  PubMed  Google Scholar 

  772. Paronetto MP, Venables JP, Elliott DJ, Geremia R, Rossi P, Sette C. Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68. Oncogene. 2003;22(54):8707–15.

    CAS  PubMed  Google Scholar 

  773. Broudy VC, Lin NL, Sabath DF. The fifth immunoglobulin-like domain of the Kit receptor is required for proteolytic cleavage from the cell surface. Cytokine. 2001;15(4):188–95.

    CAS  PubMed  Google Scholar 

  774. Reshetnyak AV, Nelson B, Shi X, Boggon TJ, Pavlenco A, Mandel-Bausch EM, et al. Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region. Proc Natl Acad Sci USA. 2013;110(44):17832–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  775. Opatowsky Y, Lax I, Tome F, Bleichert F, Unger VM, Schlessinger J. Structure, domain organization, and different conformational states of stem cell factor-induced intact KIT dimers. Proc Natl Acad Sci USA. 2014;111(5):1772–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  776. Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang BC, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem. 2003;278(34):31461–4.

    CAS  PubMed  Google Scholar 

  777. Agarwal S, Kazi JU, Rönnstrand L. Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation. J Biol Chem. 2013;288(31):22460–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  778. Zeng S, Xu Z, Lipkowitz S, Longley JB. Regulation of stem cell factor receptor signaling by CBL family proteins (CBL-B/c-CBL). Blood. 2004;17.

    Google Scholar 

  779. Zadjali F, Pike AC, Vesterlund M, Sun J, Wu C, Li SS, et al. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. J Biol Chem. 2011;286(1):480–90. Epub 2010/10/30. eng.

    CAS  PubMed Central  PubMed  Google Scholar 

  780. Kazi JU, Agarwal S, Sun J, Bracco E, Rönnstrand L. Src-like adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. J Cell Sci. 2014;127:653–62.

    CAS  PubMed  Google Scholar 

  781. Miyazawa K, Toyama K, Gotoh A, Hendrie PC, Mantel C, Broxmeyer HE. Ligand-dependent polyubiquitination of c-kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood. 1994;83(1):137–45.

    CAS  PubMed  Google Scholar 

  782. Yee NS, Hsiau CW, Serve H, Vosseller K, Besmer P. Mechanism of down-regulation of c-kit receptor. Roles of receptor tyrosine kinase, phosphatidylinositol 3′-kinase, and protein kinase C. J Biol Chem. 1994;269(50):31991–8.

    CAS  PubMed  Google Scholar 

  783. Park M, Kim WK, Song M, Park M, Kim H, Nam HJ, et al. Protein kinase C-delta-mediated recycling of active KIT in colon cancer. Clin Cancer Res. 2013;19(18):4961–71.

    CAS  PubMed  Google Scholar 

  784. Paulson RF, Vesely S, Siminovitch KA, Bernstein A. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nat Genet. 1996;13(3):309–15.

    CAS  PubMed  Google Scholar 

  785. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol Cell Biol. 1998;18(4):2089–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  786. Linnekin D, DeBerry CS, Mou S. Lyn associates with the juxtamembrane region of c-Kit and is activated by stem cell factor in hematopoietic cell lines and normal progenitor cells. J Biol Chem. 1997;272(43):27450–5.

    CAS  PubMed  Google Scholar 

  787. Krystal GW, DeBerry CS, Linnekin D, Litz J. Lck associates with and is activated by Kit in a small cell lung cancer cell line: inhibition of SCF-mediated growth by the Src family kinase inhibitor PP1. Cancer Res. 1998;58(20):4660–6.

    CAS  PubMed  Google Scholar 

  788. Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M, Rönnstrand L. Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene. 1999;18(40):5546–53.

    CAS  PubMed  Google Scholar 

  789. Price DJ, Rivnay B, Fu Y, Jiang S, Avraham S, Avraham H. Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes. J Biol Chem. 1997;272(9):5915–20.

    CAS  PubMed  Google Scholar 

  790. Bondzi C, Litz J, Dent P, Krystal GW. Src family kinase activity is required for Kit-mediated mitogen- activated protein (MAP) kinase activation, however loss of functional retinoblastoma protein makes MAP kinase activation unnecessary for growth of small cell lung cancer cells. Cell Growth Differ. 2000;11(6):305–14.

    CAS  PubMed  Google Scholar 

  791. Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S, et al. Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood. 2002;99(5):1866–9.

    PubMed  Google Scholar 

  792. Sun J, Pedersen M, Rönnstrand L. Gab2 is involved in differential phosphoinositide 3-kinase signaling by two splice forms of c-Kit. J Biol Chem. 2008;283(41):27444–51.

    CAS  PubMed  Google Scholar 

  793. Timokhina I, Kissel H, Stella G, Besmer P. Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1 and JNK activation in mast cell proliferation. EMBO J. 1998;17(21):6250–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  794. Shivakrupa R, Linnekin D. Lyn contributes to regulation of multiple Kit-dependent signaling pathways in murine bone marrow mast cells. Cell Signal. 2005;17(1):103–9.

    CAS  PubMed  Google Scholar 

  795. Samayawardhena LA, Hu J, Stein PL, Craig AW. Fyn kinase acts upstream of Shp2 and p38 mitogen-activated protein kinase to promote chemotaxis of mast cells towards stem cell factor. Cell Signal. 2006;18(9):1447–54.

    CAS  PubMed  Google Scholar 

  796. Mou S, Linnekin D. Lyn is activated during late G1 of stem-cell-factor-induced cell cycle progression in haemopoietic cells. Biochem J. 1999;342:163–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  797. O’Laughlin-Bunner B, Radosevic N, Taylor ML, Shivakrupa R, DeBerry C, Metcalfe DD, et al. Lyn is required for normal stem cell factor-induced proliferation and chemotaxis of primary hematopoietic cells. Blood. 2001;98(2):343–50.

    PubMed  Google Scholar 

  798. Glenney Jr JR, Zokas L. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol. 1989;108(6):2401–8.

    CAS  PubMed  Google Scholar 

  799. Thomas SM, Soriano P, Imamoto A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature. 1995;376(6537):267–71.

    CAS  PubMed  Google Scholar 

  800. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2(5):249–56.

    CAS  PubMed  Google Scholar 

  801. Agosti V, Corbacioglu S, Ehlers I, Waskow C, Sommer G, Berrozpe G, et al. Critical role for Kit-mediated Src kinase but Not PI 3-kinase signaling in Pro T and Pro B cell development. J Exp Med. 2004;199(6):867–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  802. Kimura Y, Jones N, Kluppel M, Hirashima M, Tachibana K, Cohn J, et al. Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages. Proc Natl Acad Sci USA. 2004;101(16):6015–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  803. Tatton L, Morley GM, Chopra R, Khwaja A. The Src-selective kinase inhibitor PP1 also inhibits Kit and Bcr-Abl tyrosine kinases. J Biol Chem. 2003;278(7):4847–53.

    CAS  PubMed  Google Scholar 

  804. Sun J, Pedersen M, Rönnstrand L. The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction. J Biol Chem. 2009;284(17):11039–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  805. Sun J, Mohlin S, Lundby A, Kazi JU, Hellman U, Påhlman S, et al. The PI3-kinase isoform p110δ is essential for cell transformation induced by the D816V mutant of c-Kit in a lipid-kinase independent manner. Oncogene. 2014;33(46):5360–9.

    CAS  PubMed  Google Scholar 

  806. Piao X, Paulson R, Van Der Geer P, Pawson T, Bernstein A. Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA. 1996;93:14665–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  807. Klippel A, Escobedo JA, Hirano M, Williams LT. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol. 1994;14(4):2675–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  808. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell- intrinsic death machinery. Cell. 1997;91(2):231–41.

    CAS  PubMed  Google Scholar 

  809. Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol. 2002;22(3):965–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  810. Sattler M, Salgia R, Shrikhande G, Verma S, Pisick E, Prasad KV, et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL). J Biol Chem. 1997;272(15):10248–53.

    CAS  PubMed  Google Scholar 

  811. Hartley D, Meisner H, Corvera S. Specific association of the beta isoform of the p85 subunit of phosphatidylinositol-3 kinase with the proto-oncogene c-cbl. J Biol Chem. 1995;270(31):18260–3.

    CAS  PubMed  Google Scholar 

  812. Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Natl Acad Sci USA. 2007;104(19):7809–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  813. Lev S, Givol D, Yarden Y. Interkinase domain of kit contains the binding site for phosphatidylinositol 3′ kinase. Proc Natl Acad Sci USA. 1992;89(2):678–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  814. Serve H, Hsu Y, Besmer P. Tyrosine residue 719 of the c-kit receptor is essential for binding of the P85 subunit of phosphatidylinositol (PI) 3-kinase and for c-kit-associated PI 3-kinase activity in cos-1 cells. J Biol Chem. 1994;269:6026–30.

    CAS  PubMed  Google Scholar 

  815. Yu M, Luo J, Yang W, Wang Y, Mizuki M, Kanakura Y, et al. The scaffolding adapter Gab2, via Shp-2, regulates kit-evoked mast cell proliferation by activating the Rac/JNK pathway. J Biol Chem. 2006;281(39):28615–26.

    CAS  PubMed  Google Scholar 

  816. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995;80(2):285–91.

    CAS  PubMed  Google Scholar 

  817. Blume-Jensen P, Janknecht R, Hunter T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr Biol. 1998;8(13):779–82.

    CAS  PubMed  Google Scholar 

  818. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell. 1996;87(4):619–28.

    CAS  PubMed  Google Scholar 

  819. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.

    CAS  PubMed  Google Scholar 

  820. Dhandapani KM, Wade FM, Wakade C, Mahesh VB, Brann DW. Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB. J Neurochem. 2005;95(1):9–19.

    CAS  PubMed  Google Scholar 

  821. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68.

    CAS  PubMed  Google Scholar 

  822. Engström M, Karlsson R, Jönsson JI. Inactivation of the forkhead transcription factor FoxO3 is essential for PKB-mediated survival of hematopoietic progenitor cells by kit ligand. Exp Hematol. 2003;31(4):316–23.

    PubMed  Google Scholar 

  823. Möller C, Alfredsson J, Engström M, Wootz H, Xiang Z, Lennartsson J, et al. Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood. 2005;106(4):1330–6.

    PubMed  Google Scholar 

  824. Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein. Bim. J Biol Chem. 2003;278(21):18811–6.

    CAS  PubMed  Google Scholar 

  825. Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene. 2003;22(43):6785–93.

    CAS  PubMed  Google Scholar 

  826. Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R, et al. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood. 1999;93(9):2928–35.

    CAS  PubMed  Google Scholar 

  827. Fiorentini D, Prata C, Maraldi T, Zambonin L, Bonsi L, Hakim G, et al. Contribution of reactive oxygen species to the regulation of Glut1 in two hemopoietic cell lines differing in cytokine sensitivity. Free Radic Biol Med. 2004;37(9):1402–11.

    CAS  PubMed  Google Scholar 

  828. Baumer AT, Ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, et al. Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem. 2008;283(12):7864–76.

    PubMed  Google Scholar 

  829. Ortutay C, Nore BF, Vihinen M, Smith CI. Phylogeny of Tec family kinases identification of a premetazoan origin of Btk, Bmx, Itk, Tec, Txk, and the Btk regulator SH3BP5. Adv Genet. 2008;64:51–80.

    CAS  PubMed  Google Scholar 

  830. Chong H, Guan KL. Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J Biol Chem. 2003;278(38):36269–76.

    CAS  PubMed  Google Scholar 

  831. Brown MD, Sacks DB. Protein scaffolds in MAP kinase signalling. Cell Signal. 2009;21(4):462–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  832. Thömmes K, Lennartsson J, Carlberg M, Rönnstrand L. Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochem J. 1999;341(Pt 1):211–6.

    PubMed Central  PubMed  Google Scholar 

  833. Agosti V, Karur V, Sathyanarayana P, Besmer P, Wojchowski DM. A KIT juxtamembrane PY567-directed pathway provides nonredundant signals for erythroid progenitor cell development and stress erythropoiesis. Exp Hematol. 2009;37(2):159–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  834. Wandzioch E, Edling CE, Palmer RH, Carlsson L, Hallberg B. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood. 2004;104(1):51–7.

    CAS  PubMed  Google Scholar 

  835. Bokoch GM. Biology of the p21-activated kinases. Annu Rev Biochem. 2003;72:743–81.

    CAS  PubMed  Google Scholar 

  836. McDaniel AS, Allen JD, Park SJ, Jaffer ZM, Michels EG, Burgin SJ, et al. Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells. Blood. 2008;112(12):4646–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  837. Chen M, Burgin S, Staser K, He Y, Li X, Robinson M, et al. Kinase suppressor of Ras (KSR1) modulates multiple kit-ligand-dependent mast cell functions. Exp Hematol. 2011;39(10):969–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  838. Sundström M, Alfredsson J, Olsson N, Nilsson G. Stem cell factor-induced migration of mast cells requires p38 mitogen-activated protein kinase activity. Exp Cell Res. 2001;267(1):144–51.

    PubMed  Google Scholar 

  839. Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, et al. Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol. 2008;103(3):265–73.

    CAS  PubMed  Google Scholar 

  840. Ueda S, Mizuki M, Ikeda H, Tsujimura T, Matsumura I, Nakano K, et al. Critical roles of c-kit tyrosine residues 567 and 719 in stem cell factor-induced chemotaxis: contribution of src family kinase and PI3-kinase on calcium mobilization and cell migration. Blood. 2002;99:3342–9.

    CAS  PubMed  Google Scholar 

  841. Smith JA, Samayawardhena LA, Craig AW. Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and beta1 integrin receptors. Cell Signal. 2010;22(3):427–36.

    CAS  PubMed  Google Scholar 

  842. Lee SJ, Yoon JH, Song KS. Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells. Biochem Pharmacol. 2007;74(2):215–25.

    CAS  PubMed  Google Scholar 

  843. Garrington TP, Ishizuka T, Papst PJ, Chayama K, Webb S, Yujiri T, et al. MEKK2 gene disruption causes loss of cytokine production in response to IgE and c-Kit ligand stimulation of ES cell-derived mast cells. EMBO J. 2000;19(20):5387–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  844. Gommerman JL, Sittaro D, Klebasz NZ, Williams DA, Berger SA. Differential stimulation of c-Kit mutants by membrane-bound and soluble Steel Factor correlates with leukemic potential. Blood. 2000;96(12):3734–42.

    CAS  PubMed  Google Scholar 

  845. Trieselmann NZ, Soboloff J, Berger SA. Mast cells stimulated by membrane-bound, but not soluble, steel factor are dependent on phospholipase C activation. Cell Mol Life Sci. 2003;60(4):759–66.

    CAS  PubMed  Google Scholar 

  846. Koike T, Hirai K, Morita Y, Nozawa Y. Stem cell factor-induced signal transduction in rat mast cells. Activation of phospholipase D but not phosphoinositide-specific phospholipase C in c-kit receptor stimulation. J Immunol. 1993;151(1):359–66.

    CAS  PubMed  Google Scholar 

  847. Kozawa O, Blume-Jensen P, Heldin CH, Rönnstrand L. Involvement of phosphatidylinositol 3′-kinase in stem-cell-factor- induced phospholipase D activation and arachidonic acid release. Eur J Biochem. 1997;248(1):149–55.

    CAS  PubMed  Google Scholar 

  848. Hong L, Munugalavadla V, Kapur R. c-Kit-mediated overlapping and unique functional and biochemical outcomes via diverse signaling pathways. Mol Cell Biol. 2004;24(3):1401–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  849. Maddens S, Charruyer A, Plo I, Dubreuil P, Berger S, Salles B, et al. Kit signaling inhibits the sphingomyelin-ceramide pathway through PLC gamma 1: implication in stem cell factor radioprotective effect. Blood. 2002;100(4):1294–301.

    CAS  PubMed  Google Scholar 

  850. Albanesi C, Geremia R, Giorgio M, Dolci S, Sette C, Rossi P. A cell- and developmental stage-specific promoter drives the expression of a truncated c-kit protein during mouse spermatid elongation. Development. 1996;122(4):1291–302.

    CAS  PubMed  Google Scholar 

  851. Sette C, Bevilacqua A, Bianchini A, Mangia F, Geremia R, Rossi P. Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development. 1997;124(11):2267–74.

    CAS  PubMed  Google Scholar 

  852. Sette C, Paronetto MP, Barchi M, Bevilacqua A, Geremia R, Rossi P. Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J. 2002;21(20):5386–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  853. Han DC, Shen TL, Guan JL. The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions. Oncogene. 2001;20(44):6315–21.

    CAS  PubMed  Google Scholar 

  854. Jahn T, Seipel P, Urschel S, Peschel C, Duyster J. Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol. 2002;22(4):979–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  855. Gery S, Koeffler HP. Role of the adaptor protein LNK in normal and malignant hematopoiesis. Oncogene. 2013;32(26):3111–8.

    CAS  PubMed  Google Scholar 

  856. Gueller S, Gery S, Nowak V, Liu L, Serve H, Koeffler HP. Adaptor protein Lnk associates with Tyr(568) in c-Kit. Biochem J. 2008;415(2):241–5.

    CAS  PubMed  Google Scholar 

  857. Wollberg P, Lennartsson J, Gottfridsson E, Yoshimura A, Rönnstrand L. The adapter protein APS associates to the multifunctional docking sites Tyr568 and Tyr936 in c-Kit: possible role in v-Kit transformation. Biochem J. 2003;370:1033–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  858. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N, et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood. 2008;112(10):4039–47.

    CAS  PubMed  Google Scholar 

  859. Hu J, Hubbard SR. Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. J Biol Chem. 2005;280(19):18943–9.

    CAS  PubMed  Google Scholar 

  860. Takaki S, Morita H, Tezuka Y, Takatsu K. Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J Exp Med. 2002;195(2):151–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  861. Kubo-Akashi C, Iseki M, Kwon SM, Takizawa H, Takatsu K, Takaki S. Roles of a conserved family of adaptor proteins, Lnk, SH2-B, and APS, for mast cell development, growth, and functions: APS-deficiency causes augmented degranulation and reduced actin assembly. Biochem Biophys Res Commun. 2004;315(2):356–62.

    CAS  PubMed  Google Scholar 

  862. Takaki S, Sauer K, Iritani BM, Chien S, Ebihara Y, Tsuji K, et al. Control of B cell production by the adaptor protein lnk. Definition of a conserved family of signal-modulating proteins. Immunity. 2000;13(5):599–609.

    CAS  PubMed  Google Scholar 

  863. Tanaka S, Ouchi T, Hanafusa H. Downstream of Crk adaptor signaling pathway: activation of Jun kinase by v-Crk through the guanine nucleotide exchange protein C3G. Proc Natl Acad Sci USA. 1997;94(6):2356–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  864. Laine E. Chauvot de Beauchene I, Perahia D, Auclair C, Tchertanov L. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms. PLoS Comput Biol. 2011;7(6):e1002068.

    CAS  PubMed Central  PubMed  Google Scholar 

  865. Bougherara H, Subra F, Crepin R, Tauc P, Auclair C, Poul MA. The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment. Mol Cancer Res. 2009;7(9):1525–33.

    CAS  PubMed  Google Scholar 

  866. Tabone-Eglinger S, Subra F, El Sayadi H, Alberti L, Tabone E, Michot JP, et al. KIT mutations induce intracellular retention and activation of an immature form of the KIT protein in gastrointestinal stromal tumors. Clin Cancer Res. 2008;14(8):2285–94.

    CAS  PubMed  Google Scholar 

  867. Xiang Z, Kreisel F, Cain J, Colson A, Tomasson MH. Neoplasia driven by mutant c-KIT is mediated by intracellular, not plasma membrane, receptor signaling. Mol Cell Biol. 2007;27(1):267–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  868. Taylor ML, Dastych J, Sehgal D, Sundström M, Nilsson G, Akin C, et al. The Kit-activating mutation D816V enhances stem cell factor-dependent chemotaxis. Blood. 2001;98:1195–9.

    CAS  PubMed  Google Scholar 

  869. Chian R, Young S, Danilkovitch-Miagkova A, Rönnstrand L, Leonard E, Ferrao P, et al. Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood. 2001;98(5):1365–73.

    CAS  PubMed  Google Scholar 

  870. Burke P, Schooler K, Wiley HS. Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell. 2001;12(6):1897–910.

    CAS  PubMed Central  PubMed  Google Scholar 

  871. Voisset E, Lopez S, Dubreuil P, De Sepulveda P. The tyrosine kinase FES is an essential effector of KITD816V proliferation signal. Blood. 2007;110(7):2593–9.

    CAS  PubMed  Google Scholar 

  872. Hashimoto K, Matsumura I, Tsujimura T, Kim D, Ogihara H, Ikeda H, et al. Necessity of tyrosine 719 and phosphatidylinositol 3′-kinase-mediated signal pathway in constitutive activation and oncogenic potential of c-Kit receptor tyrosine kinase with the Asp814Val mutation. Blood. 2003;101(3):1094–102.

    CAS  PubMed  Google Scholar 

  873. Munugalavadla V, Sims EC, Chan RJ, Lenz SD, Kapur R. Requirement for p85alpha regulatory subunit of class IA PI3K in myeloproliferative disease driven by an activation loop mutant of KIT. Exp Hematol. 2008;36(3):301–8.

    CAS  PubMed  Google Scholar 

  874. Tarsitano M, De Falco S, Colonna V, McGhee JD, Persico MG. The C. elegans pvf-1 gene encodes a PDGF/VEGF-like factor able to bind mammalian VEGF receptors and to induce angiogenesis. FASEB J. 2006;20(2):227–33. Epub 2006/02/02.

    CAS  PubMed  Google Scholar 

  875. Heldin C-H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283–316. Epub 1999/10/03.

    CAS  PubMed  Google Scholar 

  876. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276–312. Epub 2008/05/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  877. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol. 2007;177(3):489–500. Epub 2007/05/02.

    CAS  PubMed Central  PubMed  Google Scholar 

  878. Fredriksson L, Li H, Fieber C, Li X, Eriksson U. Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J. 2004;23(19):3793–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  879. Ustach CV, Kim HR. Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol Cell Biol. 2005;25(14):6279–88. Epub 2005/07/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  880. Östman A, Andersson M, Betsholtz C, Westermark B, Heldin C-H. Identification of a cell retention signal in the B-chain of platelet-derived growth factor and in the long splice version of the A-chain. Cell Regul. 1991;2:503–12.

    PubMed Central  PubMed  Google Scholar 

  881. Kelly JL, Sánchez A, Brown GS, Chesterman CN, Sleigh MJ. Accumulation of PDGF B and cell-binding forms of PDGF A in the extracellular matrix. J Cell Biol. 1993;121(5):1153–63.

    CAS  PubMed  Google Scholar 

  882. Murray-Rust J, McDonald NQ, Blundell TL, Hosang M, Oefner C, Winkler F, et al. Topological similarities in TGF-β2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure. 1993;1:153–9.

    CAS  PubMed  Google Scholar 

  883. McDonald NQ, Hendrickson WA. A structural superfamily of growth factors containing a cystine knot motif. Cell. 1993;73:421–4.

    CAS  PubMed  Google Scholar 

  884. Spritz RA, Strunk KM, Lee ST, Lu-Kuo JM, Ward DC, Le Paslier D, et al. A YAC contig spanning a cluster of human type III receptor protein tyrosine kinase genes (PDGFRA-KIT-KDR) in chromosome segment 4q12. Genomics. 1994;22(2):431–6. Epub 1994/07/15.

    CAS  PubMed  Google Scholar 

  885. Kawagishi J, Kumabe T, Yoshimoto T, Yamamoto T. Structure, organization, and transcription units of the human α-platelet-derived growth factor receptor gene, PDGFRA. Genomics. 1995;30(2):224–32.

    CAS  PubMed  Google Scholar 

  886. Claesson-Welsh L, Eriksson A, Westermark B, Heldin C-H. cDNA cloning and expression of the human A-type platelet-derived growth factor (PDGF) receptor establishes structural similarity to the B-type PDGF receptor. Proc Natl Acad Sci USA. 1989;86:4917–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  887. Matsui T, Heidaran M, Miki T, Toru M, Popescu N, La Rochelle W, et al. Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science. 1989;243:800–3.

    CAS  PubMed  Google Scholar 

  888. Yarden Y, Escobedo JA, Kuang W-J, Yang-Feng TL, Daniel TO, Tremble PM, et al. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature. 1986;323:226–32.

    CAS  PubMed  Google Scholar 

  889. Roberts WM, Look AT, Roussel MF, Scherr CJ. Tandem linkage of human CSF-1 receptor (c-fms) and PDGF receptor genes. Cell. 1988;55:655–61.

    CAS  PubMed  Google Scholar 

  890. Vizmanos JL. PDGFRB (platelet-derived growth factor receptor, beta polypeptide) (5q31-q32). Atlas Genet Cytogenet Oncol Haematol. 2005;9(4):587–97.

    Google Scholar 

  891. Heidaran MA, Pierce JH, Jensen RA, Matsui T, Aaronson SA. Chimeric α- and β-platelet-derived growth factor (PDGF) receptors define three immunoglobulin-like domains of the α-PDGF receptor that determine PDGF-AA binding specificity. J Biol Chem. 1990;265(31):18741–4.

    CAS  PubMed  Google Scholar 

  892. Lokker NA, O'Hare JP, Barsoumian A, Tomlinson JE, Ramakrishnan V, Fretto LJ, et al. Functional importance of platelet-derived growth factor (PDGF) receptor extracellular immunoglobulin-like domains. Identification of PDGF binding site and neutralizing monoclonal antibodies. J Biol Chem. 1997;272(52):33037–44.

    CAS  PubMed  Google Scholar 

  893. Miyazawa K, Bäckström G, Leppänen O, Persson C, Wernstedt C, Hellman U, et al. Role of immunoglobulin-like domains 2–4 of the platelet-derived growth factor α-receptor in ligand-receptor complex assembly. J Biol Chem. 1998;273(39):25495–502.

    CAS  PubMed  Google Scholar 

  894. Shim AH, Liu H, Focia PJ, Chen X, Lin PC, He X. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex. Proc Natl Acad Sci USA. 2010;107(25):11307–12. Epub 2010/06/11.

    CAS  PubMed  Google Scholar 

  895. Omura T, Heldin C-H, Östman A. Immunoglobulin-like domain 4-mediated receptor-receptor interactions contribute to platelet-derived growth factor-induced receptor dimerization. J Biol Chem. 1997;272(19):12676–82.

    CAS  PubMed  Google Scholar 

  896. Heldin C-H, Östman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998;1378(1):F79–F113.

    CAS  PubMed  Google Scholar 

  897. Baxter RM, Secrist JP, Vaillancourt RR, Kazlauskas A. Full activation of the platelet-derived growth factor beta-receptor kinase involves multiple events. J Biol Chem. 1998;273(27):17050–5.

    CAS  PubMed  Google Scholar 

  898. Irusta PM, Luo Y, Bakht O, Lai CC, Smith SO, DiMaio D. Definition of an inhibitory juxtamembrane WW-like domain in the platelet-derived growth factor beta receptor. J Biol Chem. 2002;277(41):38627–34.

    CAS  PubMed  Google Scholar 

  899. Chiara F, Bishayee S, Heldin C-H, Demoulin J-B. Autoinhibition of the platelet-derived growth factor β receptor tyrosine kinase by its C-terminal tail. J Biol Chem. 2004;279(19):19732–8.

    CAS  PubMed  Google Scholar 

  900. Pawson T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell. 2004;116(2):191–203.

    CAS  PubMed  Google Scholar 

  901. Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell. 1990;62:481–92.

    CAS  PubMed  Google Scholar 

  902. Mori S, Rönnstrand L, Yokote K, Engström Å, Courtneidge SA, Claesson-Welsh L, et al. Identification of two juxtamembrane autophosphorylation sites in the PDGF β-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J. 1993;12(6):2257–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  903. Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, et al. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor β. J Biol Chem. 1993;268(29):21478–81.

    CAS  PubMed  Google Scholar 

  904. Kazlauskas A, Feng G-S, Pawson T, Valius M. The 64-kDa protein that associates with the platelet-derived growth factor receptor β subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc Natl Acad Sci USA. 1993;90(15):6939–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  905. Rönnstrand L, Mori S, Arvidsson A-K, Eriksson A, Wernstedt C, Hellman U, et al. Identification of two C-terminal autophosphorylation sites in the PDGF β-receptor: involvement in the interaction with phospholipase C-γ. EMBO J. 1992;11(11):3911–9.

    PubMed Central  PubMed  Google Scholar 

  906. Fantl WJ, Escobedo JA, Martin GA, Turck CW, del Rosario M, McCormick F, et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell. 1992;69:413–23.

    CAS  PubMed  Google Scholar 

  907. Arvidsson A-K, Rupp E, Nånberg E, Downward J, Rönnstrand L, Wennström S, et al. Tyr-716 in the platelet-derived growth factor β-receptor kinase insert is involved in GRB2 binding and Ras activation. Mol Cell Biol. 1994;14(10):6715–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  908. Kazlauskas A, Cooper JA. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell. 1989;58(6):1121–33.

    CAS  PubMed  Google Scholar 

  909. Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell. 1989;57:167–75.

    CAS  PubMed  Google Scholar 

  910. Coughlin SR, Escobedo JA, Williams LT. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science. 1989;243:1191–4.

    CAS  PubMed  Google Scholar 

  911. Valgeirsdóttir S, Paukku K, Silvennoinen O, Heldin C-H, Claesson-Welsh L. Activation of Stat5 by platelet-derived growth factor (PDGF) is dependent on phosphorylation sites in PDGF β-receptor juxtamembrane and kinase insert domains. Oncogene. 1998;16(4):505–15.

    PubMed  Google Scholar 

  912. Demoulin J-B, Seo JK, Ekman S, Grapengiesser E, Hellman U, Rönnstrand L, et al. Ligand-induced recruitment of Na+/H+ exchanger regulatory factor to the PDGF (platelet-derived growth factor) receptor regulates actin cytoskeleton reorganization by PDGF. Biochem J. 2003;376(Pt 2):505–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  913. Maudsley S, Zamah AM, Rahman N, Blitzer JT, Luttrell LM, Lefkowitz RJ, et al. Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity. Mol Cell Biol. 2000;20(22):8352–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  914. Takahashi Y, Morales FC, Kreimann EL, Georgescu MM. PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J. 2006;25(4):910–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  915. Theisen CS, Wahl 3rd JK, Johnson KR, Wheelock MJ. NHERF links the N-cadherin/catenin complex to the platelet-derived growth factor receptor to modulate the actin cytoskeleton and regulate cell motility. Mol Biol Cell. 2007;18(4):1220–32. Epub 2007/01/19.

    CAS  PubMed Central  PubMed  Google Scholar 

  916. Lennartsson J, Wardega P, Engström U, Hellman U, Heldin C-H. Alix facilitates the interaction between c-Cbl and platelet-derived growth factor β-receptor and thereby modulates receptor downregulation. J Biol Chem. 2006;281(51):39152–8.

    CAS  PubMed  Google Scholar 

  917. Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell. 1999;97(6):727–41.

    CAS  PubMed  Google Scholar 

  918. Bae YS, Sung J-Y, Kim O-S, Kim YJ, Hur KC, Kazlauskas A, et al. Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem. 2000;275(14):10527–31.

    CAS  PubMed  Google Scholar 

  919. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995;270(5234):296–9.

    CAS  PubMed  Google Scholar 

  920. Jurek A, Amagasaki K, Gembarska A, Heldin C-H, Lennartsson J. Negative and positive regulation of MAPK phosphatase 3 controls platelet-derived growth factor-induced Erk activation. J Biol Chem. 2009;284(7):4626–34.

    CAS  PubMed  Google Scholar 

  921. Jurek A, Heldin C-H, Lennartsson J. Platelet-derived growth factor-induced signaling pathways interconnect to regulate the temporal pattern of Erk1/2 phosphorylation. Cell Signal. 2011;23(1):280–7.

    CAS  PubMed  Google Scholar 

  922. Ekman S, Rupp Thuresson E, Heldin C-H, Rönnstrand L. Increased mitogenicity of an αβ heterodimeric PDGF receptor complex correlates with lack of RasGAP binding. Oncogene. 1999;18(15):2481–8.

    CAS  PubMed  Google Scholar 

  923. Peng Z-Y, Cartwright CA. Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association. Oncogene. 1995;11(10):1955–62.

    CAS  PubMed  Google Scholar 

  924. Dance M, Montagner A, Salles JP, Yart A, Raynal P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal. 2008;20(3):453–9. Epub 2007/11/13.

    CAS  PubMed  Google Scholar 

  925. Sundberg C, Rubin K. Stimulation of β1 integrins on fibroblasts induces PDGF independent tyrosine phosphorylation of PDGF β-receptors. J Cell Biol. 1996;132(4):741–52.

    CAS  PubMed  Google Scholar 

  926. Li L, Heldin C-H, Heldin P. Inhibition of platelet-derived growth factor-BB-induced receptor activation and fibroblast migration by hyaluronan activation of CD44. J Biol Chem. 2006;281(36):26512–9.

    CAS  PubMed  Google Scholar 

  927. Sorkin A, Westermark B, Heldin C-H, Claesson-Welsh L. Effect of receptor kinase inactivation on the rate of internalization and degradation of PDGF and the PDGF β-receptor. J Cell Biol. 1991;112(3):469–78.

    CAS  PubMed  Google Scholar 

  928. Wang Y, Pennock SD, Chen X, Kazlauskas A, Wang Z. Platelet-derived growth factor receptor-mediated signal transduction from endosomes. J Biol Chem. 2004;279(9):8038–46. Epub 2003/12/09.

    CAS  PubMed  Google Scholar 

  929. Miyake S, Mullane-Robinson KP, Lill NL, Douillard P, Band H. Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation: a critical role for Cbl tyrosine kinase-binding domain. J Biol Chem. 1999;274(23):16619–28.

    CAS  PubMed  Google Scholar 

  930. Karlsson S, Kowanetz K, Sandin Å, Persson C, Östman A, Heldin C-H, et al. Loss of T-cell protein tyrosine phosphatase induces recycling of the platelet-derived growth factor (PDGF) β-receptor but not the PDGF α-receptor. Mol Biol Cell. 2006;17(11):4846–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  931. Hellberg C, Schmees C, Karlsson S, Åhgren A, Heldin C-H. Activation of protein kinase C α is necessary for sorting the PDGF β-receptor to Rab4a-dependent recycling. Mol Biol Cell. 2009;20(12):2856–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  932. Schmees C, Villaseñor R, Zheng W, Ma H, Zerial M, Heldin C-H, et al. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V. Mol Biol Cell. 2012;23(13):2571–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  933. Hoch RV, Soriano P. Roles of PDGF in animal development. Development. 2003;130(20):4769–84. Epub 2003/09/04.

    CAS  PubMed  Google Scholar 

  934. Klinghoffer RA, Mueting-Nelsen PF, Faerman A, Shani M, Soriano P. The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol Cell. 2001;7(2):343–54.

    CAS  PubMed  Google Scholar 

  935. Ataliotis P, Symes K, Chou MM, Ho L, Mercola M. PDGF signalling is required for gastrulation of Xenopus laevis. Development. 1995;121(9):3099–110.

    CAS  PubMed  Google Scholar 

  936. Ramachandran RK, Wikramanayake AH, Uzman JA, Govindarajan V, Tomlinson CR. Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor. Development. 1997;124(12):2355–64.

    CAS  PubMed  Google Scholar 

  937. Montero JA, Heisenberg CP. Gastrulation dynamics: cells move into focus. Trends Cell Biol. 2004;14(11):620–7. Epub 2004/11/03.

    CAS  PubMed  Google Scholar 

  938. Palmieri SL, Payne J, Stiles CD, Biggers JD, Mercola M. Expression of mouse PDGF-A and PDGF α-receptor genes during pre- and post-implantation development: evidence for a developmental shift from an autocrine to a paracrine mode of action. Mech Dev. 1992;39(3):181–91.

    CAS  PubMed  Google Scholar 

  939. Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol. 2003;23(11):4013–25. Epub 2003/05/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  940. Soriano P. The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development. 1997;124(14):2691–700.

    CAS  PubMed  Google Scholar 

  941. Tallquist MD, Soriano P. Cell autonomous requirement for PDGFRα in populations of cranial and cardiac neural crest cells. Development. 2003;130(3):507–18. Epub 2002/12/20.

    CAS  PubMed  Google Scholar 

  942. Tallquist MD, Weismann KE, Hellstrom M, Soriano P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development. 2000;127(23):5059–70. Epub 2000/11/04.

    CAS  PubMed  Google Scholar 

  943. Xu X, Bringas Jr P, Soriano P, Chai Y. PDGFR-α signaling is critical for tooth cusp and palate morphogenesis. Dev Dyn. 2005;232(1):75–84. Epub 2004/11/16.

    CAS  PubMed  Google Scholar 

  944. Boström H, Willetts K, Pekny M, Levéen P, Lindahl P, Hedstrand H, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell. 1996;85(6):863–73.

    PubMed  Google Scholar 

  945. Lindahl P, Karlsson L, Hellström M, Gebre-Medhin S, Willetts K, Heath JK, et al. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development. 1997;124(20):3943–53.

    CAS  PubMed  Google Scholar 

  946. Karlsson L, Lindahl P, Heath JK, Betsholtz C. Abnormal gastrointestinal development in PDGF-A and PDGFR-α deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development. 2000;127(16):3457–66.

    CAS  PubMed  Google Scholar 

  947. Karlsson L, Bondjers C, Betsholtz C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development. 1999;126(12):2611–21.

    CAS  PubMed  Google Scholar 

  948. Brennan J, Tilmann C, Capel B. PDGFR-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 2003;17(6):800–10. Epub 2003/03/26.

    CAS  PubMed Central  PubMed  Google Scholar 

  949. Gnessi L, Basciani S, Mariani S, Arizzi M, Spera G, Wang C, et al. Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J Cell Biol. 2000;149(5):1019–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  950. Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8(16):1875–87.

    PubMed  Google Scholar 

  951. Soriano P. Abnormal kidney development and hematological disorders in PDGF β-receptor mutant mice. Genes Dev. 1994;8(16):1888–96.

    CAS  PubMed  Google Scholar 

  952. Bjarnegård M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A, et al. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development. 2004;131(8):1847–57. Epub 2004/04/16.

    PubMed  Google Scholar 

  953. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126(14):3047–55.

    PubMed  Google Scholar 

  954. Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.

    CAS  PubMed  Google Scholar 

  955. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  956. Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125(17):3313–22.

    CAS  PubMed  Google Scholar 

  957. Van den Akker NM, Winkel LC, Nisancioglu MH, Maas S, Wisse LJ, Armulik A, et al. PDGF-B signaling is important for murine cardiac development: its role in developing atrioventricular valves, coronaries, and cardiac innervation. Dev Dyn. 2008;237(2):494–503. Epub 2008/01/24.

    PubMed  Google Scholar 

  958. Ohlsson R, Falck P, Hellström M, Lindahl P, Boström H, Franklin G, et al. PDGFB regulates the development of the labyrinthine layer of the mouse fetal placenta. Dev Biol. 1999;212(1):124–36.

    CAS  PubMed  Google Scholar 

  959. Rolny C, Nilsson I, Magnusson P, Armulik A, Jakobsson L, Wentzel P, et al. Platelet-derived growth factor receptor-beta promotes early endothelial cell differentiation. Blood. 2006;108(6):1877–86.

    CAS  PubMed  Google Scholar 

  960. Robson MC, Phillips LG, Thomason A, Robson LE, Pierce GF. Platelet-derived growth factor BB for the treatment of chronic pressure ulcers. Lancet. 1992;339:23–5.

    CAS  PubMed  Google Scholar 

  961. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg. 2006;117(7 Suppl):143S–9S. discussion 50S-51S. Epub 2006/06/27.

    CAS  PubMed  Google Scholar 

  962. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70. Epub 2003/07/05.

    CAS  PubMed  Google Scholar 

  963. Chen H, Gu X, Liu Y, Wang J, Wirt SE, Bottino R, et al. PDGF signalling controls age-dependent proliferation in pancreatic β-cells. Nature. 2011;478(7369):349–55. Epub 2011/10/14.

    CAS  PubMed Central  PubMed  Google Scholar 

  964. Rodt SÅ, Åhlén K, Berg A, Rubin K, Reed RK. A novel physiological function for platelet-derived growth factor-BB in rat dermis. J Physiol. 1996;495(Pt 1):193–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  965. Lidén A, Berg A, Nedrebø T, Reed RK, Rubin K. Platelet-derived growth factor BB-mediated normalization of dermal interstitial fluid pressure after mast cell degranulation depends on beta3 but not beta1 integrins. Circ Res. 2006;98(5):635–41. Epub 2006/02/04.

    PubMed  Google Scholar 

  966. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15(4):255–73. Epub 2004/06/23.

    CAS  PubMed  Google Scholar 

  967. Olson LE, Soriano P. Increased PDGFRα activation disrupts connective tissue development and drives systemic fibrosis. Dev Cell. 2009;16(2):303–13. Epub 2009/02/17.

    CAS  PubMed Central  PubMed  Google Scholar 

  968. Krampert M, Heldin C-H, Heuchel R. A gain-of-function mutation in the PDGFR-β alters the kinetics of injury response in liver and skin. Lab Invest. 2008;88(11):1204–14.

    CAS  PubMed  Google Scholar 

  969. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–10.

    CAS  PubMed  Google Scholar 

  970. Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M, et al. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood. 2011;117(10):2935–43. Epub 2011/01/13.

    CAS  PubMed  Google Scholar 

  971. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14.

    CAS  PubMed  Google Scholar 

  972. Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R. Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci USA. 2003;100(13):7830–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  973. Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BM, et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood. 2003;102(9):3093–6. Epub 2003/07/05.

    CAS  PubMed  Google Scholar 

  974. Stover EH, Chen J, Folens C, Lee BH, Mentens N, Marynen P, et al. Activation of FIP1L1-PDGFRα requires disruption of the juxtamembrane domain of PDGFRα and is FIP1L1-independent. Proc Natl Acad Sci USA. 2006;103(21):8078–83. Epub 2006/05/13.

    CAS  PubMed Central  PubMed  Google Scholar 

  975. Toffalini F, Hellberg C, Demoulin J-B. Critical role of the platelet-derived growth factor receptor (PDGFR) β transmembrane domain in the TEL-PDGFRβ cytosolic oncoprotein. J Biol Chem. 2010;285(16):12268–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  976. Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, et al. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res. 1992;52:4550–3.

    CAS  PubMed  Google Scholar 

  977. Kumabe T, Sohma Y, Kayama T, Yoshimoto T, Yamamoto T. Amplification of α-platelet-derived growth factor receptor gene lacking an exon coding for a portion of the extracellular region in a primary brain tumor of glial origin. Oncogene. 1992;7:627–33.

    CAS  PubMed  Google Scholar 

  978. Puputti M, Tynninen O, Sihto H, Blom T, Maenpaa H, Isola J, et al. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res. 2006;4(12):927–34.

    CAS  PubMed  Google Scholar 

  979. Smith JS, Wang XY, Qian J, Hosek SM, Scheithauer BW, Jenkins RB, et al. Amplification of the platelet-derived growth factor receptor-A (PDGFRA) gene occurs in oligodendrogliomas with grade IV anaplastic features. J Neuropathol Exp Neurol. 2000;59(6):495–503. Epub 2000/06/13.

    CAS  PubMed  Google Scholar 

  980. Arai H, Ueno T, Tangoku A, Yoshino S, Abe T, Kawauchi S, et al. Detection of amplified oncogenes by genome DNA microarrays in human primary esophageal squamous cell carcinoma: comparison with conventional comparative genomic hybridization analysis. Cancer Genet Cytogenet. 2003;146(1):16–21. Epub 2003/09/23.

    CAS  PubMed  Google Scholar 

  981. Zhao J, Roth J, Bode-Lesniewska B, Pfaltz M, Heitz PU, Komminoth P. Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors. Genes Chromosomes Cancer. 2002;34(1):48–57. Epub 2002/03/29.

    CAS  PubMed  Google Scholar 

  982. Clarke ID, Dirks PB. A human brain tumor-derived PDGFR-α deletion mutant is transforming. Oncogene. 2003;22(5):722–33.

    CAS  PubMed  Google Scholar 

  983. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. Epub 2009/12/01.

    CAS  PubMed  Google Scholar 

  984. Jechlinger M, Grunert S, Tamir IH, Janda E, Ludemann S, Waerner T, et al. Expression profiling of epithelial plasticity in tumor progression. Oncogene. 2003;22(46):7155–69. Epub 2003/10/17.

    CAS  PubMed  Google Scholar 

  985. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 2006;116(6):1561–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  986. Gotzmann J, Fischer AN, Zojer M, Mikula M, Proell V, Huber H, et al. A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes. Oncogene. 2006;25(22):3170–85.

    CAS  PubMed  Google Scholar 

  987. Dolloff NG, Shulby SS, Nelson AV, Stearns ME, Johannes GJ, Thomas JD, et al. Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by alpha platelet-derived growth factor receptor. Oncogene. 2005;24(45):6848–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  988. Russell MR, Jamieson WL, Dolloff NG, Fatatis A. The α-receptor for platelet-derived growth factor as a target for antibody-mediated inhibition of skeletal metastases from prostate cancer cells. Oncogene. 2009;28(3):412–21. Epub 2008/10/14.

    CAS  PubMed  Google Scholar 

  989. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994;77(2):307–16.

    CAS  PubMed  Google Scholar 

  990. Magnusson MK, Meade KE, Brown KE, Arthur DC, Krueger LA, Barrett AJ, et al. Rabaptin-5 is a novel fusion partner to platelet-derived growth factor β receptor in chronic myelomonocytic leukemia. Blood. 2001;98(8):2518–25.

    CAS  PubMed  Google Scholar 

  991. O’Brien KP, Seroussi E, Dal Cin P, Sciot R, Mandahl N, Fletcher JA, et al. Various regions within the α-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Gene Chrom Cancer. 1998;23(2):187–93.

    Google Scholar 

  992. Simon M-P, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre J-M, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15(1):95–8.

    CAS  PubMed  Google Scholar 

  993. Shimizu A, O’Brien KP, Sjöblom T, Pietras K, Buchdunger E, Collins VP, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59(15):3719–23.

    CAS  PubMed  Google Scholar 

  994. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin C-H, Westermark B, et al. Platelet-derived growth factor and its receptors in human glioma tissue: Expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 1992;52:3213–9.

    CAS  PubMed  Google Scholar 

  995. Pietras K, Pahler J, Bergers G, Hanahan D. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 2008; 5(1):e19.

    PubMed Central  PubMed  Google Scholar 

  996. Heldin C-H, Rubin K, Pietras K, Östman A. High interstitial fluid pressure: an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–13.

    CAS  PubMed  Google Scholar 

  997. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–9.

    CAS  PubMed  Google Scholar 

  998. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95. Epub 2005/04/22.

    CAS  PubMed  Google Scholar 

  999. Demetri GD. Differential properties of current tyrosine kinase inhibitors in gastrointestinal stromal tumors. Semin Oncol. 2011;38 Suppl 1:S10–S9. Epub 2011/04/01.

    CAS  PubMed  Google Scholar 

  1000. Pietras K, Sjöblom T, Rubin K, Heldin C-H, Östman A. PDGF receptors as cancer drug targets. Cancer Cell. 2003;3:439–43.

    CAS  PubMed  Google Scholar 

  1001. Catena R, Luis-Ravelo D, Anton I, Zandueta C, Salazar-Colocho P, Larzabal L, et al. PDGFR signaling blockade in marrow stroma impairs lung cancer bone metastasis. Cancer Res. 2010;71(1):164–74. Epub 2010/11/26.

    PubMed  Google Scholar 

  1002. Chintalgattu V, Ai D, Langley RR, Zhang J, Bankson JA, Shih TL, et al. Cardiomyocyte PDGFR-β signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest. 2010;120(2):472–84. Epub 2010/01/15.

    CAS  PubMed Central  PubMed  Google Scholar 

  1003. Jayson GC, Parker GJ, Mullamitha S, Valle JW, Saunders M, Broughton L, et al. Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol. 2005;23(5):973–81. Epub 2004/10/07.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Section 10.1

We thank Dr. Cristina Caescu for critically reviewing the manuscript. We thank Drs. Jamie Rossjohn, Savas Savvides, Carsten Schubert, Melissa Starovasnik, and Andrew Wilks for permission to reproduce their high-resolution figures. This work was supported by NIH grants PO1 CA100324 and CA 32551 (to ERS), K01AR 054486 (to VC), and 5P30-CA13330 (a cancer center grant to the Albert Einstein College of Medicine).

Section 10.2

We thank Dr. Violeta Chitu for critically reviewing the manuscript. We thank Dr. James Griffith and Dr. Savas Savvides for permission to reproduce their high-resolution figures. This work was supported by NIH grants PO1 CA100324 and CA 32551 (to ERS) and 5P30-CA13330 (a cancer center grant to the Albert Einstein College of Medicine).

Section 10.4

Ingegärd Schiller is thanked for valuable help in the preparation of this manuscript.

Receptor at a glance: CSF-1R (human)

Chromosome location

5q32

Gene size (bp)

60,077

Intron/exon numbers

21/22

Amino acid number

972

kDa

Mr 130 (the immature, high mannose-containing form)

Mr 165 (the mature, N-glycosylated form)

Posttranslational modifications

Glycosylation, phosphorylation, ubiquitination

Domains

ECD (D1–D5), TM, ICD (JM, KD, IK, CT)

Ligands

CSF-1, IL-34

Known dimerizing partners

CSF-1R

Pathways activated

MAPK, PI3K, Rac, Rho, JAK/STAT

Tissues expressed

Hematopoietic stem cells and myeloid progenitors (e.g., CFU-GM, CFU-M), monocytes, tissue macrophages, microglia, osteoclasts, dendritic, Kupffer and Langerhans cells, neuronal subsets, neural progenitors, mammary epithelial cells, Paneth cells, renal proximal tubule epithelial cells, trophoblasts, oocytes

Human diseases

Activating CSF-1R mutations in myeloid malignancies, including acute megakaryoblastic leukemia, AML, CML

Inactivating mutations in ALSP

Knockout mouse phenotype

Late embryonic/early postnatal lethality. Osteopetrosis, toothlessness, growth impairment, neurological and reproductive defects

Receptor at a glance: FLT3 (human)

Chromosome location

13q12.2 (minus strand)

Gene size (bp)

96,982

Intron/exon numbers

23/24

mRNA size (5′, ORF, 3′)

3.7 kb (5′ 700 bp; ORF 2979 bp, 3′ 21 bp)

Amino acid number

993

KDa

Mr 130 (the immature, high mannose-containing form)

Mr 155/160 (the mature, N-glycosylated form)

Posttranslational modifications

Glycosylation, phosphorylation, ubiquitination

Domains

ECD (D1-D5), TM, ICD (JM, KD, IK, CT)

Ligands

FL

Known dimerizing partners

FLT3

Pathways activated

RAS/RAF/MAPK, PI3K/AKT/mTOR

Tissues expressed

Hematopoietic stem cells and early committed progenitors, such as lin-kit+sca-1+ (LSK) bone marrow cells and lin-AA4.1+ fetal liver cells, some B lymphocyte subsets, with lower expression on monocytes; placenta, gonads, and brain; blast cells from most ANLL and B-ALL

Human diseases

Activating FLT3 mutations in ALL, CML

Knockout mouse phenotype

Normal mature hematopoietic populations, deficient in primitive B-lymphoid progenitors. flt3  −/− HSCs have a reduced capacity to reconstitute T cells and myeloid cells

Receptor at a glancve: KIT

Chromosome location

4

Gene size (bp)

82,797 bp

Intron/exon numbers

20 introns, 21 exons

mRNA size (5′, ORF, 3′)

5 kbp

Amino acid number

976 amino acids

kDa

109,685 unglycosylated, 145 kDa as the mature, glycosylated form

Posttranslational modifications

glycosylation, phosphorylation, ubiquitylation

Domains

extracellular domain, transmembrane domain, juxtamembrane domain, kinase domain with kinase insert, carboxyterminal tail

Ligands

KITLG

Known dimerizing partners

 

Pathways activated

Ras/Erk pathway, PI3-kinase/Akt pathway, p38, Src family kinases, Cbl, Grb10, Gab10, Grb7, Crk, CrkL, SLAP, APS, Lnk, SHP1, SHP2

Tissues expressed

Mast cells, interstitial cells of Cajal, bone marrow stem cells, melanocytes, spermatogonia, oocytes

Human diseases

Mastocytosis, acute myeloid leukemia (in particular core factor binding leukemia), testicular seminoma, ovarian dysgerminoma, teratoma, small-cell lung cancer, gastrointestinal stroma tumors, malignant melanoma, allergy, asthma

Knockout mouse phenotype

Loss of pigment cells in skin, anemia, sterility, loss of intestinal cells of Cajal with resulting constipation, sometimes loss of hearing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Richard Stanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chitu, V., Caescu, C.I., Stanley, E.R., Lennartsson, J., Rönnstrand, L., Heldin, CH. (2015). The PDGFR Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_10

Download citation

Publish with us

Policies and ethics