Skip to main content

Molecular Imaging of Serotonin Synthesis in the Brain

  • Chapter
Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

Tracer kinetic analysis of 11C-labeled alpha-methyl-tryptophan (AMT) allows quantitative assessment of serotonin synthesis using positron emission tomography (PET) imaging in human brain. The obtained K-complex represents an index of serotonin synthesis (termed serotonin synthesis capacity) that is well suited to study serotonergic mechanisms in the developing brain. Assessment of global and local developmental changes of serotonin synthesis capacity in brains of autistic children indicates impaired serotonin metabolism that affects neuronal differentiation of serotonergic neurons during critical developmental periods. Moreover, increased serotonin synthesis capacity in various supratentorial regions of children with alternating hemiplegia is observed during ictal and postictal periods, suggesting increased regional serotonergic activity associated with hemiplegic attacks in extended neural networks. Finally, children with Tourette syndrome show decreased serotonin synthesis capacity in the bilateral dorsolateral prefrontal cortex and increased serotonin synthesis capacity in the bilateral thalamus and caudate, suggesting abnormal tryptophan metabolism in the fronto-striato-thalamic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HIAA:

5-Hydroxyindoleacetic acid

5-RIAA:

5-Hydroxyindole acetic acid

ADHD:

Attention-deficit hyperactivity disorder

AMHT:

Alpha-methyl-5-hydroxytryptophan

AMS:

Alpha-methylserotonin

AMT:

Alpha-[11C]methyl-l-tryptophan

OCD:

Obsessive-compulsive disorder

PET:

Positron emission tomography

TS:

Tourette syndrome

References

  1. Roth BL. Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry. 1994;6:67–78.

    Article  CAS  PubMed  Google Scholar 

  2. Lane JD, Co CT, Smith IE. Determination of simultaneous turnover of serotonin, dopamine and norepinephrine in the telencephalon of unrestrained, behaving rats. Life Sci. 1977;21:1101–08.

    Article  CAS  PubMed  Google Scholar 

  3. Lin RC, Costa E, Netf NH, Wang ET, Ngai SH. In vivo measurement of 5-hydroxytryptamine turnover rate in the rat brain from the conversion of [C-14Jtryptophan to [C-14]5- hydroxytryptamine. J Pharmacol Exp Ther. 1966;1(70):232–38.

    Google Scholar 

  4. Costa E, Neff NH. Estimation of turnover rates to study the metabolic regulation of the steady-state level of neuronal mono amines. Handbook of neurochemistry. New York: Plenum Press; 1970.

    Google Scholar 

  5. Neff NH, Spano PF, Groppe HA, Wang CT, Costa E. A simple procedure for calculating the synthesis rate of norepinephrine, dopamine and serotonin in rat brain. J Pharmacol Exp Ther. 1971;176:701–10.

    CAS  PubMed  Google Scholar 

  6. Tracqui P, Morot-Gaudry Y, Staub JF, Brezillon P, Perault-Staub AM, Burgoin S, et al. Model of brain serotonin metabolism. II. Physiological interpretation. Am J Physiol. 1983;244:R206–15.

    CAS  PubMed  Google Scholar 

  7. Diksic M, Nagahiro S, Sourkes T, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. 1. Theory and basic data for a biological model. J Cereb Blood Flow Metab. 1990;9:1–12.

    Article  Google Scholar 

  8. Missala K, Sourkes TL. Functional cerebral activity of an analogue of serotonin formed in situ. Neurochem Int. 1988;12:209–14.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen Z, Tsuiki K, Takada A, Beaudet A, Diksic M, Hamel E. In vivo-synthesis of radioactively labeled alpha-methyl-serotonin as a selective tracer for visualization of brain serotonin neurons. Synapse. 1995;21:21–8.

    Article  CAS  PubMed  Google Scholar 

  10. Madras BK, Sourkes TL. Metabolism of alpha-methyltryptophan. Biochem Pharmacol. 1965;14(11):1499–506.

    Article  CAS  PubMed  Google Scholar 

  11. Nagahiro S, Takada A, Diksic M, Sourkes TL, Missala K, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. II. A practical autoradiographic method tested in normal and lithium-treated rats. J Cereb Blood Flow Metab. 1990;10:13–21.

    Article  CAS  PubMed  Google Scholar 

  12. Sokoloff L, Reivich M, Kennedy C, Des Rosier MH, Patlak CS, Pettigrew KO, et al. The [C-14]deoxy glucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anaesthetized albino rat. J Neurochem. 1977;28:897–916.

    Article  CAS  PubMed  Google Scholar 

  13. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980;238:E69–82.

    CAS  PubMed  Google Scholar 

  14. Schmall B, Shoaf SE, Carson RE, Herscovitch P, Sha L, Eckelman WC, editors. Separation of racemic alpha-methyl-tryptophan into its L and D-isomers and synthesis of alpha-[C-II]-L-tryptophan. Eleventh international symposium on radiopharmaceutical chemistry. BC, Canada: Vancouver; 1995.

    Google Scholar 

  15. Shoaf SE, Schmal lB. Pharmacokinetics of alpha-methyl -Ltryptophan in rhesus monkeys and calculation of the lumped constant for estimating the rate of serotonin synthesis. J Pharmcol Exp Therap. 1996;277:217–24.

    Google Scholar 

  16. Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugani HT. Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metab. 1997;17(6):659–69.

    Article  CAS  PubMed  Google Scholar 

  17. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lund-Andersen H. Transport of glucose from blood to brain. Physiol Rev. 1979;59:305–52.

    CAS  PubMed  Google Scholar 

  19. Pardridg WM. Kinetics of competitive inhibition of neutral amino acid transport across the blood–brain barrier. J Neurochem. 1977;28:103–8.

    Article  Google Scholar 

  20. Smith QR, Monna S, Aoyagi M, Rapoport SI. Kinetics of neutral amino acid transport across the blood–brain barrier. J Neurochem. 1987;49:1651–8.

    Article  CAS  PubMed  Google Scholar 

  21. Oldendorf WH. Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol. 1971;221:1629–39.

    CAS  PubMed  Google Scholar 

  22. Shoaf SE, Carson RE, Hommer D, Williams W, Higley JD, Schmall B, et al. Brain serotonin synthesis rates in rhesus monkeys determined by [IICla-methyl L-tryptophan and positron emission tomography compared to CSF 5-hydroxyindole-3-acetic acid concentrations. Neurapsychopharmacology. 1998;19:345–53.

    Article  CAS  Google Scholar 

  23. Chugani DC, Chugani HT, Muzik O, Shah JR, Shah AK, Canady A, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858–66.

    Article  CAS  PubMed  Google Scholar 

  24. Goldman-Rakic PS, Brown RM. Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Dev Brain Res. 1982;4:339–49.

    Article  CAS  Google Scholar 

  25. Lidow MS, Goldman-Rakic PS, Rakic P. Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc Natl Acad Sci USA. 1991;88:10218–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Seifert WE, Foxx JL, Butler II. Age effect on dopamine and serotonin metabolite levels in cerebrospinal fluid. Ann Neurol. 1980;8:38–42.

    Article  CAS  PubMed  Google Scholar 

  27. Redner A, Grabowski E, Al-Katib A, Andreeff M. Common acute lymphoblastic leukemia characterized by four different DNA stemlines with heterogeneity in RNA content, antigen expression and sensitivity to chemotherapy. Leuk Res. 1986;10(6):671–6.

    Article  CAS  PubMed  Google Scholar 

  28. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol. 1999;45(3):287–95.

    Article  CAS  PubMed  Google Scholar 

  29. Tanner JM, Whitehouse RH, Marubini E, Resele LF. The adolescent growth spurt of boys and girls of the Harpenden growth. Ann Hum Biol. 1976;3:109–26.

    Article  CAS  PubMed  Google Scholar 

  30. Cook EH, Leventhal BL. The serotonin system in autism. Curr Opin Pediatr. 1996;8:348–54.

    Article  CAS  PubMed  Google Scholar 

  31. Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, et al. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol. 1997;42(4):666–9.

    Article  CAS  PubMed  Google Scholar 

  32. Chandana SR, Behen ME, Juhasz C, Muzik O, Rothermel RD, Mangner TJ, et al. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int J Dev Neurosci. 2005;23(2–3):171–82.

    Article  CAS  PubMed  Google Scholar 

  33. Seldon HL. Structure of human auditor cortex. I. Cytoarchitectonics and dendritic distributions. Brain Res. 1981;229:277–94.

    Article  CAS  PubMed  Google Scholar 

  34. Seldon HL. Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res. 1981;229:295–310.

    Article  CAS  PubMed  Google Scholar 

  35. Buxhoeveden DP, Switala AE, Roy E, Litaker M, Casanova MF. Morphological differences between minicolumns in human and nonhuman primate cortex. Am J Phys Anthropol. 2001;115(4):361–71.

    Article  CAS  PubMed  Google Scholar 

  36. Hutsler JJ. The specialized structure of human language cortex: pyramidal cell size asymmetries within auditory and language-associated regions of the temporal lobes. Brain Lang. 2003;86:226–42.

    Article  PubMed  Google Scholar 

  37. Galuske RA, Schlote W, Bratzke H, Singer W. Interhemispheric asymmetries of the modular structure in human temporal cortex. Science. 2000;289:1946–9.

    Article  CAS  PubMed  Google Scholar 

  38. Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann NY Acad Sci. 1977;299:355–69.

    Article  CAS  PubMed  Google Scholar 

  39. Muller RA, Rothermel RD, Behen ME, Muzik O, Chakraborty PK, Chugani HT. Language organization in patients with early and late left-hemisphere lesion: a PET study. Neuropsychologia. 1999;37(5):545–57.

    Article  CAS  PubMed  Google Scholar 

  40. Curtiss S, de Bode S. How normal is grammatical development in the right hemisphere following hemispherectomy? The root infinite stage and beyond. Brain Lang. 2003;86:193–206.

    Article  PubMed  Google Scholar 

  41. Pfund Z, Chugani DC, Muzik O, Juhasz C, Behen ME, Lee J, et al. Alpha[11C] methyl-L-typtophan positron emission tomography in patients with alternating hemiplegia of childhood. J Child Neurol. 2002;17(4):253–60.

    Article  PubMed  Google Scholar 

  42. Behen M, Chugani HT, Juhasz C, Helder E, Ho A, Maqbool M, et al. Abnormal brain tryptophan metabolism and clinical correlates in Tourette syndrome. Mov Disord. 2007;22(15):2256–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Muzik Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muzik, O., Mittal, S., Juhász, C. (2015). Molecular Imaging of Serotonin Synthesis in the Brain. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_27

Download citation

Publish with us

Policies and ethics