Skip to main content

Coupling Fall Detection and Tracking in Omnidirectional Cameras

  • Conference paper
Human Behavior Understanding (HBU 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8749))

Included in the following conference series:

Abstract

Omnidirectional cameras have many advantages for action and activity detection in indoor scenarios, but computer vision approaches that are developed for conventional cameras require extension and modification to work with such cameras. In this paper we use multiple omnidirectional cameras to observe the inhabitants of a room, and use Hierarchical Hidden Markov Models for detecting falls. To track the people in the room, we extend a generative approach that uses probabilistic occupancy maps to omnidirectional cameras. To speed up computation, we also propose a novel method to approximate the integral image over non-rectangular shapes. The resulting system is tested successfully on a database with severe noise and frame loss conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yasushi, Y.: Omnidirectional sensing and its applications. IEICE Transactions on Information and Systems 82(3), 568–579 (1999)

    Google Scholar 

  2. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 267–282 (2008)

    Article  Google Scholar 

  3. Roggen, D., Calatroni, A., Rossi, M.: Collecting complex activity datasets in highly rich networked sensor environments. In: Networked Sensing Systems (2010)

    Google Scholar 

  4. Behera, A., Hogg, D.C., Cohn, A.G.: Egocentric Activity Monitoring and Recovery. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 519–532. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Salah, A., Gevers, T., Sebe, N., Vinciarelli, A.: Computer vision for ambient intelligence. Journal of Ambient Intelligence and Smart Environments 3(3), 187–191 (2011)

    Google Scholar 

  6. Bourke, A.K., O’Brien, J.V., Lyons, G.M.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2), 194–199 (2007)

    Article  Google Scholar 

  7. Noury, N., Fleury, A., Rumeau, P., Bourke, A.K., Laighin, G.O., Rialle, V., Lundy, J.E.: Fall detection-principles and methods. Engineering in Medicine and Biology Society 2007, 1663–1666 (2007)

    Google Scholar 

  8. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: Principles and approaches. Neurocomputing 100, 144–152 (2013)

    Article  Google Scholar 

  9. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Fall Detection from Human Shape and Motion History Using Video Surveillance. In: Advanced Information Networking and Applications Workshops, pp. 875–880. IEEE (2007)

    Google Scholar 

  10. Nait-Charif, H., McKenna, S.: Activity Summarisation and Fall Detection in a Supportive Home Environment. In: ICPR, vol. 4, pp. 323–326. IEEE (2004)

    Google Scholar 

  11. Töreyin, B.U., Dedeoğlu, Y., Çetin, A.E.: HMM based falling person detection using both audio and video. In: Sebe, N., Lew, M., Huang, T.S. (eds.) HCI/ICCV 2005. LNCS, vol. 3766, pp. 211–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Miaou, S.G., Sung, P.H., Huang, C.Y.: A Customized Human Fall Detection System Using Omni-Camera Images and Personal Information. In: Distributed Diagnosis and Home Healthcare, pp. 39–42. IEEE (2006)

    Google Scholar 

  13. Cucchiara, R., Prati, A., Vezzani, R.: A multi-camera vision system for fall detection and alarm generation. Expert Systems 24(5), 334–345 (2007)

    Article  Google Scholar 

  14. Hazelhoff, L., Han, J., de With, P.H.N.: Video-based fall detection in the home using principal component analysis. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 298–309. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Thome, N., Miguet, S., Ambellouis, S.: A real-time, multiview fall detection system: A LHMM-based approach. Circuits and Systems for Video Technology 18(11), 1522–1532 (2008)

    Article  Google Scholar 

  16. Kwolek, B., Kepski, M.: Fall detection using kinect sensor and fall energy image. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS, vol. 8073, pp. 294–303. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Nater, F., Grabner, H., Van Gool, L.: Exploiting simple hierarchies for unsupervised human behavior analysis. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2014–2021. IEEE (2010)

    Google Scholar 

  18. Huang, Y.C., Rd, C.P., Li, C.: A human fall detection system using an omni-directional camera in practical environments for health care applications. In: Machine Vision Applications, pp. 455–458 (2009)

    Google Scholar 

  19. Forney Jr., G.D.: The Viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  20. Demiröz, B., Eroğlu, O., Salah, A., Akarun, L.: Feature-Based Tracking on a Multi-Omnidirectional Camera Dataset. In: ISCCSP (2012)

    Google Scholar 

  21. Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: International Conference on Intelligent Robots and Systems, pp. 5695–5701. IEEE (October 2006)

    Google Scholar 

  22. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems, vol. 25, pp. 1–5 (2001)

    Google Scholar 

  23. Keni, B., Rainer, S.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP Journal on Image and Video Processing 2008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Demiröz, B.E., Salah, A.A., Akarun, L. (2014). Coupling Fall Detection and Tracking in Omnidirectional Cameras. In: Park, H.S., Salah, A.A., Lee, Y.J., Morency, LP., Sheikh, Y., Cucchiara, R. (eds) Human Behavior Understanding. HBU 2014. Lecture Notes in Computer Science, vol 8749. Springer, Cham. https://doi.org/10.1007/978-3-319-11839-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11839-0_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11838-3

  • Online ISBN: 978-3-319-11839-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics