Skip to main content

High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

We present a structured lighting system for creating high-resolution stereo datasets of static indoor scenes with highly accurate ground-truth disparities. The system includes novel techniques for efficient 2D subpixel correspondence search and self-calibration of cameras and projectors with modeling of lens distortion. Combining disparity estimates from multiple projector positions we are able to achieve a disparity accuracy of 0.2 pixels on most observed surfaces, including in half-occluded regions. We contribute 33 new 6-megapixel datasets obtained with our system and demonstrate that they present new challenges for the next generation of stereo algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3dMD: 3D imaging systems. http://www.3dmd.com/

  2. Acute 3D: 3D photogrammetry software. http://www.acute3d.com/

  3. Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pat. Rec. 31(7), 963–982 (1998)

    Article  Google Scholar 

  4. Besl, P.: Active optical range imaging sensors. MV&A 1(2), 127–152 (1988)

    Google Scholar 

  5. Brown, M., Burschka, D., Hager, G.: Advances in computational stereo. TPAMI 25(8), 993–1008 (2003)

    Article  Google Scholar 

  6. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: a unifying framework for depth from triangulation. TPAMI 27(2), 296–302 (2005)

    Article  Google Scholar 

  7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR, pp. 3354–3361 (2012)

    Google Scholar 

  8. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gupta, M., Agrawal, A., Veeraraghavan, A., Narasimhan, S.: A practical approach to 3D scanning in the presence of interreflections, subsurface scattering and defocus. IJCV 102(1–3), 33–55 (2013)

    Article  Google Scholar 

  10. Gupta, M., Nayar, S.: Micro phase shifting. In: CVPR, pp. 813–820 (2012)

    Google Scholar 

  11. Hansen, P., Alismail, H., Rander, P., Browning, B.: Online continuous stereo extrinsic parameter estimation. In: CVPR, pp. 1059–1066 (2012)

    Google Scholar 

  12. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  13. Hirschmüller, H., Gehrig, S.: Stereo matching in the presence of sub-pixel calibration errors. In: CVPR, pp. 437–444 (2009)

    Google Scholar 

  14. Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. TPAMI 31(9), 1582–1599 (2009)

    Article  Google Scholar 

  15. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. TPAMI 30(2), 328–341 (2008)

    Article  Google Scholar 

  16. Hirschmüller, H., Innocent, P., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. IJCV 47(1–3), 229–246 (2002)

    Article  MATH  Google Scholar 

  17. Hosni, A., Bleyer, M., Gelautz, M.: Secrets of adaptive support weight techniques for local stereo matching. CVIU 117(6), 620–632 (2013)

    Google Scholar 

  18. Hu, X., Mordohai, P.: A quantitative evaluation of confidence measures for stereo vision. TPAMI 34(11), 2121–2133 (2012)

    Article  Google Scholar 

  19. Izadi, S., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: ACM UIST, pp. 559–568 (2011)

    Google Scholar 

  20. Lazaros, N., Sirakoulis, G., Gasteratos, A.: Review of stereo vision algorithms: from software to hardware. J. Optomechatron. 2(4), 435–462 (2008)

    Article  Google Scholar 

  21. Levoy, M., et al.: The digital Michelangelo project: 3D scanning of large statues. In: SIGGRAPH, pp. 131–144 (2000)

    Google Scholar 

  22. Lourakis, M.: levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/

  23. Lourakis, M., Argyros, A.: SBA: a software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 36(1), 1–30 (2009). http://www.ics.forth.gr/~lourakis/sba/

  24. Nakamura, Y., Matsuura, T., Satoh, K., Ohta, Y.: Occlusion detectable stereo - occlusion patterns in camera matrix. In: CVPR, pp. 371–378 (1996)

    Google Scholar 

  25. Posdamer, J., Altschuler, M.: Surface measurement by space-encoded projected beam systems. CGIP 18(1), 1–17 (1982)

    Google Scholar 

  26. Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pat. Rec. 43(8), 2666–2680 (2010)

    Article  MATH  Google Scholar 

  27. Scharstein, D.: Middlebury stereo page. http://vision.middlebury.edu/stereo/

  28. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  29. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR, vol. I, pp. 195–202 (2003)

    Google Scholar 

  30. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR, vol. 1, pp. 519–528 (2006)

    Google Scholar 

  31. Strecha, C., von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  32. Will, P., Pennington, K.: Grid coding: A preprocessing technique for robot and machine vision. In: IJCAI, pp. 66–70 (1971)

    Google Scholar 

  33. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: ECCV, pp. 151–158 (1994)

    Google Scholar 

  34. Zhang, L., Curless, B., Seitz, S.: Spacetime stereo: shape recovery for dynamic scenes. In: CVPR, vol. II, pp. 367–374 (2003)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSF awards IIS-0917109 and IIS-1320715 to DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Scharstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Scharstein, D. et al. (2014). High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics