Skip to main content

Generalization Bounds for Time Series Prediction with Non-stationary Processes

  • Conference paper
Algorithmic Learning Theory (ALT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8776))

Included in the following conference series:

Abstract

This paper presents the first generalization bounds for time series prediction with a non-stationary mixing stochastic process. We prove Rademacher complexity learning bounds for both average-path generalization with non-stationary β-mixing processes and path-dependent generalization with non-stationary ϕ-mixing processes. Our guarantees are expressed in terms of β- or ϕ-mixing coefficients and a natural measure of discrepancy between training and target distributions. They admit as special cases previous Rademacher complexity bounds for non-i.i.d. stationary distributions, for independent but not identically distributed random variables, or for the i.i.d. case. We show that, using a new sub-sample selection technique we introduce, our bounds can be tightened under the natural assumption of convergent stochastic processes. We also prove that fast learning rates can be achieved by extending existing local Rademacher complexity analysis to non-i.i.d. setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A., Duchi, J.C.: The Generalization Ability of Online Algorithms for Dependent Data. IEEE Transactions on Information Theory 59(1), 573–587 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bartlett, P.L., Bousquet, O., Mendelson, S.: Local Rademacher complexities. The Annals of Statistics 33, 1497–1537 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti, P., Rigo, P.: A Glivenko-Cantelli theorem for exchangeable random variables. Statistics and Probability Letters 32, 385–391 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doukhan, P.: Mixing: Properties and Examples. Lecture Notes in Statistics, vol. 85. Springer, New York (1989)

    Google Scholar 

  5. Eberlein, E.: Weak convergence of partial sums of absolutely regular sequences. Statistics & Probability Letters 2, 291–293 (1994)

    Article  MathSciNet  Google Scholar 

  6. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the 30th International Conference on Very Large Data Bases (2004)

    Google Scholar 

  7. Koltchinskii, V., Panchenko, D.: Rademacher processes and bounding the risk of function learning. In: High Dimensional Probability II, pp. 443–459. Birkhauser (1999)

    Google Scholar 

  8. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. In: Proceedings of the Annual Conference on Learning Theory (COLT 2009). Omnipress (2009)

    Google Scholar 

  9. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics, pp. 148–188. Cambridge University Press (1989)

    Google Scholar 

  10. Meir, R.: Nonparametric time series prediction through adaptive model selection. Machine Learning 39(1), 5–34 (2000)

    Article  MATH  Google Scholar 

  11. Mohri, M., Rostamizadeh, A.: Rademacher complexity bounds for non-i.i.d. processes. In: Advances in Neural Information Processing Systems (NIPS 2008), pp. 1097–1104. MIT Press (2009)

    Google Scholar 

  12. Mohri, M., Rostamizadeh, A.: Stability bounds for stationary ϕ-mixing and β-mixing processes. Journal of Machine Learning 11 (2010)

    Google Scholar 

  13. Mohri, M., Muñoz Medina, A.: New analysis and algorithm for learning with drifting distributions. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 124–138. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Pestov, V.: Predictive PAC learnability: A paradigm for learning from exchangeable input data. In: 2010 IEEE International Conference on Granular Computing (GrC 2010), Los Alamitos, California, pp. 387–391 (2010)

    Google Scholar 

  15. Rakhlin, A., Sridharan, K., Tewari, A.: Online learning: random averages, combinatorial parameters, and learnability. In: Advances in Neural Information Processing Systems (NIPS 2010), pp. 1984–1992 (2010)

    Google Scholar 

  16. Rakhlin, A., Sridharan, K., Tewari, A.: Sequential complexities and uniform martingale laws of large numbers. Probability Theory and Related Fields, 1–43 (2014)

    Google Scholar 

  17. Shalizi, C.R., Kontorovich, A.: Predictive PAC Learning and Process Decompositions. In: Advances in Neural Information Processing Systems (NIPS 2013), pp. 1619–1627 (2013)

    Google Scholar 

  18. Steinwart, I., Christmann, A.: Fast learning from non-i.i.d. observations. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems (NIPS 2009), pp. 1768–1776. MIT Press (2009)

    Google Scholar 

  19. Volkonskii, V.A., Rozanov, Y.A.: Some limit theorems for random functions I. Theory of Probability and Its Applications 4, 178–197 (1959)

    Article  MathSciNet  Google Scholar 

  20. Yu, B.: Rates of convergence for empirical processes of stationary mixing sequences. Annals Probability 22(1), 94–116 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kuznetsov, V., Mohri, M. (2014). Generalization Bounds for Time Series Prediction with Non-stationary Processes. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2014. Lecture Notes in Computer Science(), vol 8776. Springer, Cham. https://doi.org/10.1007/978-3-319-11662-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11662-4_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11661-7

  • Online ISBN: 978-3-319-11662-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics