Skip to main content

Systemic Risk and Default Clustering for Large Financial Systems

  • Conference paper
  • First Online:
Large Deviations and Asymptotic Methods in Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 110))

Abstract

As it is known in the finance risk and macroeconomics literature, risk-sharing in large portfolios may increase the probability of creation of default clusters and of systemic risk. We review recent developments on mathematical and computational tools for the quantification of such phenomena. Limiting analysis such as law of large numbers and central limit theorems allow to approximate the distribution in large systems and study quantities such as the loss distribution in large portfolios. Large deviations analysis allow us to study the tail of the loss distribution and to identify pathways to default clustering. Sensitivity analysis allows to understand the most likely ways in which different effects, such as contagion and systematic risks, combine to lead to large default rates. Such results could give useful insights into how to optimally safeguard against such events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meinerding, C.: Asset allocation and asset pricing in the face of systemic risk: a literature overview and assessment. Int. J. Theor. Appl. Financ. (IJTAF) 15(03), 1250023-1–1250023-27 (2012)

    MathSciNet  Google Scholar 

  2. Vasicek, O.: Limiting loan loss probability distribution. Technical Report, KMV Corporation (1991)

    Google Scholar 

  3. Lucas, A., Klaassen, P., Spreij, P., Straetmans, S.: An analytic approach to credit risk of large corporate bond and loan portfolios. J. Bank. Financ. 25, 1635–1664 (2001)

    Article  Google Scholar 

  4. Schloegl, L., O’Kane, D.: A note on the large homogeneous portfolio approximation with the student-t copula. Financ. Stoch. 9(4), 577–584 (2005)

    Article  MathSciNet  Google Scholar 

  5. Gordy, M.B.: A risk-factor model foundation for ratings-based bank capital rules. J. Financ. Intermed. 12, 199–232 (2003)

    Article  Google Scholar 

  6. Bush, N., Hambly, B., Haworth, H., Jin, L., Reisinger, C.: Stochastic evolution equations in portfolio credit modelling. SIAM J. Financ. Math. 2, 627–664 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dembo, A., Deuschel, J.-D., Duffie, D.: Large portfolio losses. Financ. Stoch. 8, 3–16 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glasserman, P., Kang, W., Shahabuddin, P.: Large deviations in multifactor portfolio credit risk. Math. Financ. 17(3), 345–379 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Spiliopoulos, K., Sowers, R.: Recovery rates in investment-grade pools of credit assets: a large deviations analysis. Stoch. Process. Appl. 121(12), 2861–2898 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giesecke, K., Weber, S.: Credit contagion and aggregate losses. J. Econ. Dyn. Control 30, 741–767 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai Pra, P., Runggaldier, W., Sartori, E., Tolotti, M.: Large portfolio losses: a dynamic contagion model. Ann. Appl. Probab. 19, 347–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dai Pra, P., Tolotti, M.: Heterogeneous credit portfolios and the dynamics of the aggregate losses. Stoch. Process. Appl. 119, 2913–2944 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cvitanić, J., Ma, J., Zhang, J.: The law of large numbers for self-exciting correlated defaults. Stoch. Process. Appl. 122(8), 2781–2810 (2012)

    Article  MATH  Google Scholar 

  14. Sircar, R., Zariphopoulou, T.: Utility valuation of credit derivatives and application to CDOs. Quant. Financ. 10(2), 195–208 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garnier, J., Papanicolaou, G., Yang, T.-W.: Large deviations for a mean field model of systemic risk. SIAM J. Financ. Math. 4, 151–184 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fouque, J.-P., Ichiba, T.: Stability in a model of inter-bank lending. SIAM J. Financ. Math. 4, 784–803 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ait-Sahalia, Y., Cacho-Diaz, J., Laeven, R.: Modeling financial contagion using mutually exciting jump processes. To appear in Journal of Financial Economics

    Google Scholar 

  18. Duan, J.-C.: Maximum likelihood estimation using price data of the derivative contract. Math. Financ. 4, 155–167 (1994)

    Article  MATH  Google Scholar 

  19. Bielecki, T., Crépey, S., Herbertsson, A.: Markov chain models of portfolio credit risk. Oxford Handbook of Credit Derivatives. Oxford University Press, New York (2011)

    Google Scholar 

  20. Giesecke, K., Spiliopoulos, K., Sowers, R.: Default clustering in large portfolios: typical events. Ann. Appl. Probab. 23(1), 348–385 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Azizpour, S., Giesecke, K., Schwenkler, G.: Exploring the sources of default clustering. Working paper, Stanford University (2010)

    Google Scholar 

  22. Duffie, D., Saita, L., Wang, K.: Multi-period corporate default prediction with stochastic covariates. J. Financ. Econ. 83(3), 635–665 (2006)

    Article  Google Scholar 

  23. Bo, L., Capponi, A.: Bilateral credit valuation adjustment for large credit derivatives portfolios. Financ. Stoch. 18(2), 431–482 (2014)

    Google Scholar 

  24. Giesecke, K., Spiliopoulos, K., Sowers, R., Sirignano, J.A.: Large portfolio asymptotics for loss from default. Math. Financ. 25(1), 77–114 (2015)

    Google Scholar 

  25. Spiliopoulos, K., Sirignano, J.A., Giesecke, K.: Fluctuation analysis for the loss from default. Stoch. Process. Appl. 124(7), 2322–2362 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Spiliopoulos, K., Sowers, R.: Default clustering in large pools: large deviations. SIAM J. Financ. Math. 6, 86–116 (2015)

    Google Scholar 

  27. Sirignano, J.A., Schwenkler, G., Giesecke, K.: Likelihood estimation for large financial systems. Working paper, Stanford University (2013)

    Google Scholar 

  28. Glasserman, P., Wang, Y.: Counterexamples in importance sampling for large deviations probabilities. Ann. Appl. Probab. 7, 731–746 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Carmona, R., Fouque, J.-P., Douglas, V.: Interacting particle systems for the computation of rare credit portfolio losses. Financ. Stoch. 13(4), 613–633 (2009)

    Article  MATH  Google Scholar 

  30. Deng, S., Giesecke, K., Lai, T.L.: Sequential importance sampling and resampling for dynamic portfolio credit risk. Oper. Res. 60(1), 78–91 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kotelenez, P.M., Kurtz, T.G.: Macroscopic limits for stochastic partial differential equations of Mckeanvlasov type. Probab. Theory Relat. Fields 146(1–2), 189–222 (2010)

    Article  MathSciNet  Google Scholar 

  32. Kurtz, T.G., Xiong, J.: A stochastic evolution equation arising from the fluctuations of a class of interacting particle systems. Commun. Math. Sci. 2(3), 325–358 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Purtukhia, O.G.: On the equations of filtering of multi-dimensional diffusion processes (unbounded coefficients). Thesis, Moscow, Lomonosov University 1984 (in Russian) (1984)

    Google Scholar 

  34. Sadowsky, S.J.: On Monte Carlo estimation of large deviations probabilities. Ann. Appl. Probab. 6, 399–722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Dawson, D.A., Hochberg, K.J.: Wandering random measures in the Fleming-Viot model. Ann. Probab. 10(3), 554–580 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  38. Fleming, W.H., Viot, M.: Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28(5), 817–843 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gartner, J.: On the Mckean-Vlasov limit for interacting diffusions. Mathematische Nachrichten 137(1), 197–248 (1988)

    Article  MathSciNet  Google Scholar 

  40. Fernandez, B., Mélèard, S.: A Hilbertian approach for fluctuations on the Mckean-Vlasov model. Stoch. Process. Appl. 71, 33–53 (1997)

    Article  MATH  Google Scholar 

  41. Gyöngy, I., Krylov, N.: Stochastic partial differential equations with unbounded coefficients and applications, I. Stoch. Stoch. Rep. 32, 53–91 (1990)

    Article  MATH  Google Scholar 

  42. Freidlin, M., Wentzell, A.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1984)

    Book  MATH  Google Scholar 

  43. Varadhan, S.R.S.: Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 46. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1984)

    Book  Google Scholar 

  44. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1988)

    Google Scholar 

  45. Bassamboo, A., Jain, S.: Efficient importance sampling for reduced form models in credit risk. In: Proceedings of the 2006 Winter Simulation Conference, pp. 741–748 (2006)

    Google Scholar 

  46. Juneja, S., Bassamboo, A., Zeevi, A.: Portfolio credit risk with extremal dependence: asymptotic analysis and efficient simulation. Oper. Res. 56(3), 593–606 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Carmona, R., Crépey, S.: Particle methods for the estimation of Markovian credit portfolio loss distributions. Int. J. Theor. Appl. Financ. 13(4), 577–602 (2010)

    Article  MATH  Google Scholar 

  48. Giesecke, K., Kakavand, H., Mousavi, M., Takada, H.: Exact and efficient simulation of correlated defaults. SIAM J. Financ. Math. 1, 868–896 (2010)

    Article  MathSciNet  Google Scholar 

  49. Glasserman, P., Li, J.: Importance sampling for portfolio credit risk. Manag. Sci 51(11), 1643–1656 (2005)

    Article  MATH  Google Scholar 

  50. Glasserman, P.: Tail approximations for portfolio credit risk. J. Deriv. 12(2), 24–42 (2004)

    Article  Google Scholar 

  51. Zhang, X., Blanchet, J., Giesecke, K., Glynn, P.: Affine point processes: asymptotic analysis and efficient rare-event simulation. Working paper, Stanford University (2011)

    Google Scholar 

  52. Asmussen, S., Peter Glynn, W.: Stochastic Simulation: Algorithms and Analysis. Grundlehren der Mathematischen Wissenschaften. Springer, New York (2007)

    Google Scholar 

  53. Bucklew, J.: Introduction to Rare Event Simulation. Grundlehren der Mathematischen Wissenschaften. Springer, New York (2004)

    Book  Google Scholar 

  54. Dupuis, P., Spiliopoulos, K., Wang, H.: Importance sampling for multiscale diffusions. Multiscale Model. Simul. 12, 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  55. Dupuis, P., Wang, H.: Importance sampling, large deviations and differential games. Stoch. Stoch. Rep. 76, 481–508 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  56. Dupuis, P., Wang, H.: Subsolutions of an Isaacs equation and efficient schemes for importance sampling. Math. Oper. Res. 32, 723–757 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. Giesecke, K., Shkolnik, A.: Asymptotic optimal importance sampling of default times. Working paper, Stanford University (2011)

    Google Scholar 

Download references

Acknowledgments

The author was partially supported by the National Science Foundation (DMS 1312124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Spiliopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Spiliopoulos, K. (2015). Systemic Risk and Default Clustering for Large Financial Systems. In: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds) Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-11605-1_19

Download citation

Publish with us

Policies and ethics