Skip to main content

Abstract

The rat, a mammal of the Rodentia order that encompasses several species with the most ubiquitous being the brown rat (Rattus norvegicus) and the black rat (Rattus rattus), is present in all latitudes of the globe. Thanks to their tremendous ability to withstand and survive adverse conditions, the rat has been used in biological experimentation for a 100 years. In the first half of the twentieth century, several breeds and strains were created through successive breeding between males and females that possessed specific characteristics. These have been utilized in distinct fields of research because of their known genetic properties. Today, the most widely used experimental animal is the albino rat, selected at the Wistar Institute of Philadelphia, whose fur is entirely white (hence the name albino rat or the Wistar rat). This strain, called Rattus norvegicus albinus, is characterized by the complete absence of melanin in the fur and in the iris. The word albino derives from the Latin adjective albus, meaning white.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian ED. Electrical activity of the nervous system. Arch Neurol. 1934;32:1125–36.

    Article  Google Scholar 

  • Aeschbach D, Borbély AA. All-night dynamics of the human sleep EEG. J Sleep Res. 1993;2:70–81.

    Article  PubMed  Google Scholar 

  • Andersen ML, Valle AC, Iaria CT, Tufik S. Implantação de eletrodos para o estudo eletrofisiológico do ciclo vigília-sono do rato. 1st ed. São Paulo: Universidade Federal de São Paulo-UNIFESP/EPM; 2001. 62p.

    Google Scholar 

  • Benington JH, Kodali SK, Heller HC. Scoring transitions to REM sleep in rats based on the EEG phenomena of pre-REM sleep: an improved analysis of sleep structure. Sleep. 1994;17:28–36.

    CAS  PubMed  Google Scholar 

  • Berger H. Über das elektrenkephalogramm des menschen. Arch Psychiatr Nervenkr. 1930;87:527–70.

    Article  Google Scholar 

  • Bjorvatn B, Fagerland S, Ursin R. EEG power densities (0.5–20 Hz) in different sleep-wake stages in rats. Physiol Behav. 1997;63:413–7.

    Article  Google Scholar 

  • Borbély AA, Neuhaus HU. Sleep-deprivation: effects on sleep and EEG in the rat. J Comp Neurol. 1979;133:71–87.

    Google Scholar 

  • Borbély AA, Tobler I, Hanagasioglu M. Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res. 1984;14:171–82.

    Article  PubMed  Google Scholar 

  • Campbell IG, Feinberg I. A cortical EEG frequency with a REM specific increase in amplitude. J Neurophysiol. 1993;69:1368–71.

    CAS  PubMed  Google Scholar 

  • Cao Y, D’Olhaberriague L, Vikingstad BS, Levine SR, Welch KMA. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemisparesis. Stroke. 1998;29:112–22.

    Article  CAS  PubMed  Google Scholar 

  • Crouzier D, Baubichon D, Bourbon F, Testylier G. Acetylcholine release, EEG spectral analysis, sleep staging and body temperature studies: a multiparametric approach on freely moving rats. J Neurosci Methods. 2006;151:159–67.

    Article  CAS  PubMed  Google Scholar 

  • Deboer T, Vansteensel MJ, Detari L, Meijer JH. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci. 2003;6:1086–90.

    Article  CAS  PubMed  Google Scholar 

  • Friedman L, Bergmann BM, Rechtschaffen A. Effects of sleep deprivation on sleepness, sleep intensity, and subsequent sleep in the rat. Sleep. 1979;1:369–91.

    CAS  PubMed  Google Scholar 

  • Gottesman C, Juan de Mendonza JL, Lacoste G, Lallement B, Rodrigues L, Tasset M. Etude sur l’analyse et la quantification automatiques des differents états de veille et de sommeil chez rat. C R Acad Sci. 1971;272:301–2.

    Google Scholar 

  • Gottesmann C. Theta rhythm: the brain stem involvement. Neurosci Biobehav Rev. 1992;16:25–30.

    Article  CAS  PubMed  Google Scholar 

  • Gottesmann C, Gandolfo G. A massive but short lasting forebrain deafferentation during sleep in the rat and cat. Arch Ital Biol. 1986;124:257–69.

    CAS  PubMed  Google Scholar 

  • Hoshino K. Estágios de manifestação neocortical do estado dessincronizado de sono no rato. Tese. Botucatu: Universidade Estadual Paulista; 1977.

    Google Scholar 

  • Hoshino K. Electrocortical patterns of REM-sleep in mesencephalic reticular formation lesioned rats. Rev Cienc Biomed. 1980;1:31–40.

    Google Scholar 

  • Hoshino K, Toloi Jr G. Neocortical spindling during wakefulness in the rat. Braz J Med Biol Res. 1995;28:337–42.

    CAS  PubMed  Google Scholar 

  • Jouvet M. Recherches sur les structures nerveuses et les mécanismes reponsables des differentes phases du sommeil physiologique. Arch Ital Biol. 1962;100:125–206.

    CAS  PubMed  Google Scholar 

  • Jouvet M. Neurophysiology of the states of sleep. Physiol Rev. 1967;47:117–77.

    CAS  PubMed  Google Scholar 

  • Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972;64:166–307.

    CAS  PubMed  Google Scholar 

  • Jouvet M. Paradoxical sleep mechanisms. Sleep. 1994;17:7–83.

    Google Scholar 

  • Junqueira LF, Krieger EM. Blood pressure and sleep in the rat in normotension and in neurogenic hypertension. J Physiol. 1976;259:725–35.

    Article  Google Scholar 

  • Kleinlogel H. The female rat’s sleep during oestrous cycle. Neuropsychobiology. 1983a;10:228–37.

    Article  CAS  PubMed  Google Scholar 

  • Kleinlogel H. Sleep in various species of laboratory animals. Neuropsychobiology. 1983b;9:174–7.

    Article  CAS  PubMed  Google Scholar 

  • Krieger EM. Arterial baroreceptor ressetting in hypertension (the J.W. McCubbin memorial lecture). Clin Exp Pharmacol Physiol. 1989;15(Suppl):3–17.

    Article  CAS  Google Scholar 

  • Kudoh M, Takahashi S, Yonezawa H. Correlation between quantitative EEG and cerebral blood flow and oxygen metabolism in patients with dementia of Alzheimer type. Rinsho Shinkeigaku. 1997;37:359–65.

    CAS  PubMed  Google Scholar 

  • Landis CA, Levine JD, Robinson CR. Decreased slow-wave and paradoxical sleep in the rat chronic pain model. Sleep. 1989;12:167–77.

    CAS  PubMed  Google Scholar 

  • Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci. 2001a;21:4864–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu X-C, Williams AJ, Tortella FC. Quantative electroencephalography spectral analysis and topographic mapping in a rat model of middle cerebral artery occlusion. Neuropathol Appl Neurobiol. 2001b;27:481–95.

    Article  CAS  PubMed  Google Scholar 

  • Mann K, Backer P, Roschke J. Dynamical properties of the sleep EEG in different frequency bands. Int J Neurosci. 1993;73:161–9.

    Article  CAS  PubMed  Google Scholar 

  • Marrosu F, Cozzolino A, Puligheddu M, Giagheddu M, Di Chiara G. Hippocampal theta activity after systemic administration of a non-peptide delta-opioid agonist in freely-moving rats: relationship to D1 dopamine receptors. Brain Res. 1997;776:24–9.

    Article  CAS  PubMed  Google Scholar 

  • Mistelberger RE, Bergmann BM, Waldenar W, Rechtschaffen A. Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep. 1983;6:217–33.

    Google Scholar 

  • Moruzzi G. The sleep-waking system. Ergeb Physiol. 1972;64:1–165.

    CAS  PubMed  Google Scholar 

  • Nagata K, Tagawa K, Hiroi S, Shishido F, Uemura K. Electroencephalografic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroenceph Clin Neurophysiol. 1989;72:16–30.

    Article  CAS  PubMed  Google Scholar 

  • Neckelmann D, Ursin R. Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep. 1993;16:467–77.

    CAS  PubMed  Google Scholar 

  • Neckelmann D, Olsen OE, Fagerland S, Ursin R. The reliability and functional validity of visual and semiautomatic sleep/wake scoring in the Moll-Wistar rat. Sleep. 1994;17:120–31.

    CAS  PubMed  Google Scholar 

  • Nuñez A, Amzica F, Steriade M. Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30–70 Hz) events. Neuroscience. 1992;51:269–84.

    Article  PubMed  Google Scholar 

  • Radek T, Decker MW, Jarvis MF. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats. Brain Res. 2004;1026:74–83.

    Article  CAS  PubMed  Google Scholar 

  • Rocha LRM, Hoshino K. Some aspects of the sleep of lactating rat dams. Hypnos Magazine 2004;1–9. http://www.flass.icb.usp.br/hypnos/artigos.html

  • Sandrin MFN, Hoshino K. Sono de ratos confinados em alta densidade populacional. Dissertação de mestrado. Instituto de Biociências, UNESP, Botucatu; 1996.

    Google Scholar 

  • Schmidek WR, Hoshino K, Schmidek M, Timo-Iaria C. Influence of environmental temperature on the sleep-wakefulness cycle in the rat. Physiol Behav. 1972;8:363–71.

    Article  CAS  PubMed  Google Scholar 

  • Schmidek WR, Timo-Iaria C, Schmidek M. Influence of loxapine on the sleep-wakefulness cycle of the rat. Pharmacol Biochem Behav. 1974;2:747–51.

    Article  CAS  PubMed  Google Scholar 

  • Schwierin B, Borbley AA, Tobler I. Sleep homeostasis in the female rat during the estrous cycle. Brain Res. 1998;811:96–104.

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Amzica F, Contreras D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci. 1996;16:392–417.

    CAS  PubMed  Google Scholar 

  • Terrier G, Gosttesamnn C. Study of cortical spindles during sleep in the rat. Brain Res Bull. 1978;3:701–6.

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva OA, Gordon CJ. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine. Brain Res. 2001;893:165–77.

    Article  CAS  PubMed  Google Scholar 

  • Timo-Iaria C. O sono. Ciência Hoje. 1985;4:66–76.

    Google Scholar 

  • Timo-Iaria C, Negrao N, Schmidek WR, Hoshino K, Lobato de Menezes CE, Leme da Rocha T. Phases and states of sleep in the rat. Physiol Behav. 1970;5:1057–62.

    Article  CAS  PubMed  Google Scholar 

  • Timo-Iaria C, Yamashita R, Hoshino K, Melo AS. Rostrum movements in desynchronized sleep as a prevalent manifestation of dreaming activity in Wistar rats. Braz J Med Biol Res. 1990;23:617–20.

    CAS  PubMed  Google Scholar 

  • Tolonen U, Sulg IA. Comparison of quantitative EEG parameters from four different analysis techniques in evaluation of relationships between EEG and CBF in brain infarction. Electroencephalogr Clin Neurophysiol. 1981;51:177–85.

    Article  CAS  PubMed  Google Scholar 

  • Trachsel L, Tobler I, Achermann P, Borbely AA. Sleep continuity and the REM-nonREM cycle in the rat under baseline conditions and after sleep deprivation. Physiol Behav. 1991;49:575–80.

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Jefferys JG, Whittington MA. Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J Comput Neurosci. 1997;4:141–50.

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Maloney T, Feinberg I. Beta (20–28 Hz) and delta (0.3–3 Hz) EEGs oscillate reciprocally across NREM and REM sleep. Sleep. 1992;15:352–8.

    CAS  PubMed  Google Scholar 

  • Ursin R. The two stages of slow sleep in the cat and their relation to REM sleep. Brain Res. 1968;11:347–56.

    Article  CAS  PubMed  Google Scholar 

  • Ursin R, Larsen M. Increased sleep following intracerebroventricular injection of the delta sep-inducing peptide in rats. Neurosci Lett. 1983;40:145–9.

    Article  CAS  PubMed  Google Scholar 

  • Ursin R, Bjorvatn B, Sommerfelt L, Underland G. Increased waking as well as increased synchronization following administration of selective 5-HT uptake inhibitors to rats. Behav Brain Res. 1989;34:117–30.

    Article  CAS  PubMed  Google Scholar 

  • Valle AC. Estudo comparativo de algumas manifestações equivalentes do alerta e do sono dessincronizado no rato. Dissertação. São Paulo: Universidade Federal de São Paulo/EPM; 1992.

    Google Scholar 

  • Valle AC, Timo-Iaria C, Sameshima K, Yamashita R. Theta waves and behavioral manifestations of alertness and dreaming activity in the rat. Braz J Med Biol Res. 1992;25:745–50.

    CAS  PubMed  Google Scholar 

  • Van Gool WA, Mirmiran MA. Age-related changes in the sleep pattern of male adult rats. Brain Res. 1983;279:394–8.

    Article  PubMed  Google Scholar 

  • Van Luijtelaar ELJM, Coenen AML. An EEG averaging technique for automated sleep-wake stage identification in the rat. Physiol Behav. 1983;33:837–41.

    Article  Google Scholar 

  • Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26:407–81.

    Article  CAS  PubMed  Google Scholar 

  • Vanderwolf CH, Kramis R, Robinson T. Hippocampal electrical activity during waking behaviour and sleep: analyses using centrally acting drugs. Ciba Found Symp. 1977;58:199–226.

    PubMed  Google Scholar 

  • Vyazovskiy VV, Tobler I. Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res. 2005;1050:64–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumasa Hoshino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoshino, K., Andersen, M.L., Papale, L.A., Alvarenga, T.A.F. (2016). Sleep Patterns in Rats. In: Andersen, M., Tufik, S. (eds) Rodent Model as Tools in Ethical Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11578-8_22

Download citation

Publish with us

Policies and ethics