Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 36))

Abstract

A robust optimization technique is developed for the aerodynamic shape optimization of a helicopter rotor airfoil considering uncertain operating conditions. Both a CFD model and a coupled panel/integral boundary layer model of the aerodynamics are coupled with an optimization code based on Genetic Algorithms. In order to reduce the computational cost of the robust optimization, a multi-fidelity strategy is developed which employs both aerodynamic models inside the optimization loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    Article  MATH  MathSciNet  Google Scholar 

  2. Biava M (2007) RANS computations of rotor/fuselage unsteady interactional aerodynamics. PhD Thesis, Politecnico di Milano

    Google Scholar 

  3. Celi R (1999) Recent applications of design optimization to rotorcraft—a survey. J Aircr 36:176–189

    Article  Google Scholar 

  4. Choi S, Alonso JA, Kroo I (2005) Two-level multi-fidelity design optimization studies for supersonic jets. In: 43rd AIAA aerospace sciences meeting and exhibit

    Google Scholar 

  5. Congedo PM, Corre C, Martinez JM (2011) Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties. Comput Methods Appl Mech Eng 200:216–232

    Article  Google Scholar 

  6. Jones BR, Crossley WA, Lyrintzis AS (2000) Aerodynamic and aeroacoustic optimization of rotorcraft airfoils via a parallel genetic algorithm. J Aircr 37:1088–1096

    Article  Google Scholar 

  7. Srinivas N, Deb K (1995) Multiobjective function optimization using nondominated sorting genetic algorithms. Evol Comput 2:221–248

    Article  Google Scholar 

  8. Drela M (1989) XFOIL: An analysis and design system for low reynolds number airfoils. In: Conference on low Reynolds number airfoil aerodynamics, University of Notre Dame

    Google Scholar 

  9. Drela M (1998) Pros and cons of airfoil optimization. In: Caughey DA, Hafez MM (eds) Frontiers of computational fluid dynamics. World Scientific, Singapore, pp 363–382

    Google Scholar 

  10. Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary optimization with approximate fitness functions. IEEE Trans Evol Comput 5:481–494

    Google Scholar 

  11. Kulfan BM, Bussoletti JE (2006) Fundamental parametric geometry representation for aircraft component shapes. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conference

    Google Scholar 

  12. Leishman JG (2002) Principles of helicopter aerodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  13. Massaro A, Bennini E (2012) Multi-objective optimization of helicopter airfoils using surrogate-assisted memetic algorithm. J Aircr 49:375–383

    Article  Google Scholar 

  14. Minisci E, Vasile M (2013) Robust design of a re-entry unmanned space vehicle by multi-fidelity evolution control. AIAA J 51:1284–1295

    Article  Google Scholar 

  15. Robinson TD, Willcox KE, Eldred MS, Haimes R (2006) Multifidelity optimization for variable-complexity design. In: 11th AIAA/ISSMO multidisciplinary analysis and optimization conference

    Google Scholar 

  16. Sun H, Lee S (2005) Response surface approach to aerodynamic optimization design of helicopter rotor blade. Int J Numer Meth Eng 64:125–142

    Article  MATH  Google Scholar 

  17. Venkatakrishnan V, Mavriplis DJ (1996) Implicit method for the computation of unsteady flows on unstructured grids. J Comput Phys 127:380–397

    Article  MATH  Google Scholar 

  18. Vu NA, Lee JW, Byun YH, Kim S (2010) Aerodynamic design optimization of helicopter rotor blades including airfoil shapes. In: 66th annual forum of the American helicopter society

    Google Scholar 

  19. van der Wall BG (2003) 2nd HHC aeroacoustic rotor test (HART II)—Part I: test documentation. Braunschweig, Germany

    Google Scholar 

  20. Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 47:450–479

    Article  Google Scholar 

  21. Witteveen J (2009) Explicit mesh deformation using inverse distance weighting interpolation. In: 47th AIAA aerospace sciences meeting

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fusi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fusi, F., Congedo, P.M., Guardone, A., Quaranta, G. (2015). Robust Optimization of a Helicopter Rotor Airfoil Using Multi-fidelity Approach. In: Greiner, D., Galván, B., Périaux, J., Gauger, N., Giannakoglou, K., Winter, G. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-319-11541-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11541-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11540-5

  • Online ISBN: 978-3-319-11541-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics