Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1629 Accesses

Abstract

Turbulent thermal convection is a phenomenon of crucial importance in understanding the heat transport and dynamics of several natural and engineering flows. Real world systems such as the Earth’s atmosphere—its oceans as well as the interior—and the interior of stars such as the Sun, are all affected to various degrees by thermal convection. The simplified physical model used to understand this ubiquitous heat transport mechanism is the Rayleigh-Bénard convection, which is a fluid flow driven by a temperature difference between the top and bottom plates of an experimental cell with adiabatic sidewalls. Despite the long history of the subject and the recent progress in theoretical, numerical and experimental domains, many questions remain unresolved. We report some recent results and discuss a few open issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlers G, Grossmann S, Lohse D (2009a) Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev Mod Phys 81(2):503

    Article  Google Scholar 

  • Ahlers G, Funfschilling D, Bodenschatz E (2009b) Transitions in heat transport by turbulent convection at Rayleigh numbers up to \(10^{15}\). New J Phys 11(12):123001

    Article  Google Scholar 

  • Ahlers G, He X, Funfschilling D, Bodenschatz E (2012) Heat transport by turbulent Rayleigh-Bénard convection for \(Pr \simeq 0.8 \) and \(3 \times 10^{12} \le Ra \le 10^{15}\) : aspect ratio \(\Gamma \) = 0.50. New J Phys 14(10):103012

    Article  Google Scholar 

  • Ahlers G, Xu X (2001) Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. Phys Rev Lett 86(15):3320

    Article  Google Scholar 

  • Bailon-Cuba J, Emran MS, Schumacher J (2010) Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J Fluid Mech 655:152

    Article  Google Scholar 

  • Bodenschatz E, Pesch W, Ahlers G (2000) Recent developments in Rayleigh-Bénard convection. Annu Rev Fluid Mech 32(1):709

    Article  Google Scholar 

  • Brown E, Ahlers G (2007) Large-scale circulation model for turbulent Rayleigh-Bénard convection. Phys Rev Lett 98(13):134501

    Article  Google Scholar 

  • Buffett BA (2000) Earth’s core and the geodynamo. Science 288(5473):2007

    Article  Google Scholar 

  • Burnishev Y, Segre E, Steinberg V (2010) Strong symmetrical non-Oberbeck-Boussinesq turbulent convection and the role of compressibility. Phys Fluids 22(3):035108

    Article  Google Scholar 

  • Busse FH (1978) Non-linear properties of thermal convection. Rep Prog Phys 41(12):1929

    Article  Google Scholar 

  • Cardin P, Olson P (1994) Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys Earth Planet In 82(3–4):235

    Article  Google Scholar 

  • Castaing B, Gunaratne G, Heslot F, Kadanoff L, Libchaber A, Thomae S, Wu X-Z, Zaleski S, Zanetti G (1989) Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J Fluid Mech 204:1

    Article  Google Scholar 

  • Cattaneo F, Lenz D, Weiss N (2001) On the origin of the solar mesogranulation. Astrophys J 563(1):L91

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publications, New York

    Google Scholar 

  • Chaumat S, Castaing B, Chilla F (2002) Rayleigh-Bénard cells: influence of the plates’ properties. Advances in turbulence IX (ed. IP Castro, PE Hancock, and TG Thomas) CIMNE, Barcelona

    Google Scholar 

  • Chavanne X, Chilla F, Castaing B, Hebral B, Chabaud B, Chaussy J (1997) Observation of the ultimate regime in Rayleigh-Bénard convection. Phys Rev Lett 79(19):3648

    Article  Google Scholar 

  • Chillà F, Schumacher J (2012) New perspectives in turbulent Rayleigh-Bénard convection. Eur Phys J E 35(7):58

    Article  Google Scholar 

  • Cholemari MR, Arakeri JH (2009) Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe. J Fluid Mech 621:69

    Article  Google Scholar 

  • Ciliberto S, Cioni S, Laroche C (1996) Large-scale flow properties of turbulent thermal convection. Phys Rev E 54(6):R5901

    Article  Google Scholar 

  • Cross M, Hohenberg P (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65(3):851

    Article  Google Scholar 

  • de Bruyn JR, Bodenschatz E, Morris SW, Trainoff SP, Hu Y, Cannell DS, Ahlers G (1996) Apparatus for the study of Rayleigh-Bénard convection in gases under pressure. Rev Sci Instrum 67(6):2043

    Article  Google Scholar 

  • du Puits R, Resagk C, Thess A (2007) Breakdown of wind in turbulent thermal convection. Phys Rev E 75(1):016302

    Article  Google Scholar 

  • du Puits R, Resagk C, Thess A (2013) Thermal boundary layers in turbulent Rayleigh-Bénard convection at aspect ratios between 1 and 9. New J Phys 15(1):013040

    Article  Google Scholar 

  • Fonda E, Sreenivasan KR, Lathrop DP (2012) Liquid nitrogen in fluid dynamics: visualization and velocimetry using frozen particles. Rev Sci Instrum 83(8):085101

    Article  Google Scholar 

  • Funfschilling D, Brown E, Ahlers G (2008) Torsional oscillations of the large-scale circulation in turbulent Rayleigh-Bénard convection. J Fluid Mech 607:119

    Article  Google Scholar 

  • Funfschilling D, Brown E, Nikolaenko A, Ahlers G (2005) Heat transport by turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger. J Fluid Mech 536:145

    Article  Google Scholar 

  • Getling AV (1991) Formation of spatial structures in Rayleigh-Bénard convection. Sov Phys Usp 34(9):737

    Article  Google Scholar 

  • Gibert M, Pabiou H, Chillà F, Castaing B (2006) High-Rayleigh-number convection in a vertical channel. Phys Rev Lett 96(8):084501

    Article  Google Scholar 

  • Glazier JA, Segawa T, Naert A, Sano M (1999) Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398(6725):307

    Article  Google Scholar 

  • Grossmann S, Lohse D (2000) Scaling in thermal convection: a unifying theory. J Fluid Mech 407:27

    Article  Google Scholar 

  • Grossmann S, Lohse D (2003) On geometry effects in Rayleigh-Bénard convection. J Fluid Mech 486:105

    Article  Google Scholar 

  • Guillot T (2005) The interior of giants planets: models and outstanding questions. Annu Rev Earth Planet Sci 33(1):493

    Article  Google Scholar 

  • Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech (August 2014):137

    Google Scholar 

  • Hartlep T, Tilgner A, Busse F (2003) Large scale structures in Rayleigh-Bénard convection at high Rayleigh numbers. Phys Rev Lett 91(6):064501

    Article  Google Scholar 

  • Hartmann DL, Moy LA, Fu Q (2001) Tropical convection and the energy balance at the top of the atmosphere. J Clim 14(24):4495

    Article  Google Scholar 

  • He X, Funfschilling D, Bodenschatz E, Ahlers G (2012a) Heat transport by turbulent Rayleigh-Bénard convection for \(Pr \simeq 0.8\) and \(4 \times 10^{11} \le Ra \le 2 \times 10^{14}\): ultimate-state transition for aspect ratio \(\Gamma = 1.00\). New J Phys 14(6):063030

    Article  Google Scholar 

  • He X, Funfschilling D, Nobach H, Bodenschatz E, Ahlers G (2012b) Transition to the ultimate state of turbulent Rayleigh-Bénard convection. Phys Rev Lett 108(2):024502

    Article  Google Scholar 

  • Hof B, van Doorne CWH, Westerweel J, Nieuwstadt FTM, Faisst H, Eckhardt B, Wedin H, Kerswell RR, Waleffe F (2004) Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305(5690):1594

    Article  Google Scholar 

  • Hogg J, Ahlers G (2013) Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples. J Fluid Mech 725:664

    Article  Google Scholar 

  • Huang S-D, Kaczorowski M, Ni R, Xia K-Q (2013) Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys Rev Lett 111(10):104501

    Article  Google Scholar 

  • Koschmieder EL (1974) Bénard convection. Adv Chem Phys 26. Prigogine I, Rice SA (eds). Wiley, Hoboken

    Google Scholar 

  • Kraichnan RH (1962) Turbulent thermal convection at arbitrary Prandtl number. Phys Fluids 5(11):1374

    Article  Google Scholar 

  • Krishnamurti R, Howard LN (1981) Large-scale flow generation in turbulent convection. Proc Natl Acad Sci USA 78(4):1981

    Article  Google Scholar 

  • La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409(6823):1017

    Article  Google Scholar 

  • Lathrop DP, Fineberg J, Swinney H (1992) Transition to shear-driven turbulence in Couette-Taylor flow. Phys Rev A 46(10):6390

    Article  Google Scholar 

  • Lohse D, Toschi F (2003) Ultimate state of thermal convection. Phys Rev Lett 90(3):034502

    Article  Google Scholar 

  • Lohse D, Xia K-Q (2010) Small-scale properties of turbulent Rayleigh-Bénard convection. Annu Rev Fluid Mech 42(1):335

    Article  Google Scholar 

  • Malkus WVR (1954) The heat transport and spectrum of thermal turbulence. Proc R Soc Lond A 225(1161):196

    Article  Google Scholar 

  • Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1

    Article  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New York

    Google Scholar 

  • Niemela JJ, Skrbek L, Sreenivasan KR, Donnelly RJ (2000) Turbulent convection at very high Rayleigh numbers. Nature 404(1):837

    Article  Google Scholar 

  • Niemela JJ, Skrbek L, Sreenivasan KR, Donnelly RJ (2001) The wind in confined thermal convection. J Fluid Mech 449:169

    Article  Google Scholar 

  • Niemela JJ, Sreenivasan KR (2003) Confined turbulent convection. J Fluid Mech 481:355

    Article  Google Scholar 

  • Niemela JJ, Sreenivasan KR (2006) Turbulent convection at high Rayleigh numbers and aspect ratio 4. J Fluid Mech 557:411

    Article  Google Scholar 

  • Niemela JJ, Sreenivasan KR (2010) Does confined turbulent convection ever attain the ‘asymptotic scaling’ with 1/2 power? New J Phys 12(11):115002

    Article  Google Scholar 

  • Nordlund AK, Stein RF, Asplund M (2009) Solar surface convection. Living Rev Sol Phys 6

    Google Scholar 

  • Ouellette NT (2012) On the dynamical role of coherent structures in turbulence. C R Phys 13(9–10):866

    Article  Google Scholar 

  • Parodi A, von Hardenberg J, Passoni G, Provenzale A, Spiegel E (2004) Clustering of plumes in turbulent convection. Phys Rev Lett 92(19):194503

    Article  Google Scholar 

  • Qiu X-L, Tong P (2001) Large-scale velocity structures in turbulent thermal convection. Phys Rev E 64(3):036304

    Article  Google Scholar 

  • Rieutord M, Rincon F (2010) The suns supergranulation. Living Rev Sol Phys 7

    Google Scholar 

  • Roche P-E, Gauthier F, Kaiser R, Salort J (2010) On the triggering of the ultimate regime of convection. New J Phys 12(8):085014

    Article  Google Scholar 

  • Sano M, Wu X, Libchaber A (1989) Turbulence in helium-gas free convection. Phys Rev A 40(11):6421

    Article  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Shishkina O, Wagner C (2005) Analysis of thermal dissipation rates in turbulent Rayleigh-Bénard convection. J Fluid Mech 546:51

    Article  Google Scholar 

  • Sreenivasan K, Bershadskii A, Niemela J (2002) Mean wind and its reversal in thermal convection. Phys Rev E 65(5):056306

    Article  Google Scholar 

  • Sreenivasan K, Donnelly R (2001) Role of cryogenic helium in classical fluid dynamics basic research and model testing. Adv Appl Mech 37:239

    Article  Google Scholar 

  • Stevens RJAM, Lohse D, Verzicco R (2011) Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J Fluid Mech 688:31

    Article  Google Scholar 

  • Stevens RJAM, van der Poel EP, Grossmann S, Lohse D (2013) The unifying theory of scaling in thermal convection: the updated prefactors. J Fluid Mech 730:295

    Article  Google Scholar 

  • Stevens RJAM, Verzicco R, Lohse D (2010) Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection. J Fluid Mech 643:495

    Article  Google Scholar 

  • Tackley PJ (2000) Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 288(5473):2002

    Article  Google Scholar 

  • Tritton DJ (1988) Physical fluid dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Urban P, Hanzelka P, Musilová V, Králík T, Mantia ML, Srnka A, Skrbek L (2014) Heat transfer in cryogenic helium gas by turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1. New J Phys 16(5):053042

    Article  Google Scholar 

  • van Doorn E, Dhruva B, Sreenivasan KR, Cassella V (2000) Statistics of wind direction and its increments. Phys Fluids 12(6):1529

    Article  Google Scholar 

  • Van Dyke M (1982) An album of fluid motion. Parabolic Press, Stanford

    Google Scholar 

  • Velarde MG et al (1982) An album of fluid motion, assembled by Van Dyke M. Parabolic Press, Stanford

    Google Scholar 

  • Verdoold J, Tummers M, Hanjalić K (2006) Oscillating large-scale circulation in turbulent Rayleigh-Bénard convection. Phys Rev E 73(5):056304

    Article  Google Scholar 

  • von Hardenberg J, Parodi A, Passoni G, Provenzale A, Spiegel E (2008) Large-scale patterns in Rayleigh-Bénard convection. Phys Lett A 372(13):2223–2229

    Article  Google Scholar 

  • Wesfreid JE (2006) Scientific biography of Henri Bénard (1874–1939). In: Mutabazi I, Wesfreid JE, Guyon E (eds) Dynamics of spatio-temporal cellular structures. Springer tracts in modern physics, vol 207. Springer, New York, pp 9–37

    Google Scholar 

  • Whitehead JA, Parsons B (1977) Observations of convection at Rayleigh numbers up to 760,000 in a fluid with large Prandtl number. Geophys Astrophys Fluid Dyn 9(1):201

    Article  Google Scholar 

  • Wu X-Z, Libchaber A (1992) Scaling relations in thermal turbulence: the aspect-ratio dependence. Phys Rev A 45(2):842

    Article  Google Scholar 

  • Xi H-D, Lam S, Xia K-Q (2004) From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J Fluid Mech 503:47

    Article  Google Scholar 

  • Xia K-Q (2013) Current trends and future directions in turbulent thermal convection. Theor Appl Mech Lett 3(5):052001

    Article  Google Scholar 

  • Xia K-Q, Sun C, Zhou S-Q (2003) Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys Rev E 68(6):066303

    Article  Google Scholar 

  • Zocchi G, Moses E, Libchaber A (1990) Coherent structures in turbulent convection, an experimental study. Phys A 166(3):387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Fonda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fonda, E., Sreenivasan, K.R. (2015). Turbulent Thermal Convection. In: Klapp, J., Ruíz Chavarría, G., Medina Ovando, A., López Villa, A., Sigalotti, L. (eds) Selected Topics of Computational and Experimental Fluid Mechanics. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-11487-3_2

Download citation

Publish with us

Policies and ethics