Skip to main content

Complexity Bounds for Ordinal-Based Termination

(Invited Talk)

  • Conference paper
Reachability Problems (RP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8762))

Included in the following conference series:

Abstract

‘What more than its truth do we know if we have a proof of a theorem in a given formal system?’ We examine Kreisel’s question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times.

Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.

1998 ACM Subject Classification. F.2.0 Analysis of Algorithms and Problem Complexity; F.3.1 Logics and Meanings of Programs

Work funded in part by the ANR grant 11-BS02-001-01 ReacHard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abriola, S., Figueira, S., Senno, G.: Linearizing bad sequences: Upper bounds for the product and majoring well quasi-orders. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 110–126. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, program termination, and complexity bounds of flowchart programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Ben-Amram, A.M.: General size-change termination and lexicographic descent. The Essence of Computation, pp. 3–17. Springer (2002)

    Google Scholar 

  4. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops (2013), http://arxiv.org/abs/1208.4041

  5. Ben-Amram, A.M., Vainer, M.: Bounded termination of monotonicity-constraint transition systems (preprint, 2014), http://arxiv.org/abs/1202.4281

  6. Blass, A., Gurevich, Y.: Program termination and well partial orderings. ACM Trans. Comput. Logic 9(3) (2008)

    Google Scholar 

  7. Bonfante, G., Cichoń, A.E., Marion, J.Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. J. Funct. Programming 11, 33–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buchholz, W., Cichoń, E.A., Weiermann, A.: A uniform approach to fundamental sequences and hierarchies. Math. Logic Quart. 40(2), 273–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucholz, W.: Proof-theoretic analysis of termination proofs. Ann. Pure App. Logic 75(1–2), 57–65 (1995)

    Article  Google Scholar 

  10. Cichoń, E.A.: Termination orderings and complexity characterisations. Proof Theory, pp. 171–194. Cambridge University Press (1993)

    Google Scholar 

  11. Cichoń, E.A., Tahhan Bittar, E.: Ordinal recursive bounds for Higman’s Theorem. Theor. Comput. Sci. 201(1-2), 63–84 (1998)

    Article  MATH  Google Scholar 

  12. Clote, P.: On the finite containment problem for Petri nets. Theor. Comput. Sci. 43, 99–105 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  14. Cook, B., See, A., Zuleger, F.: Ramsey vs. Lexicographic termination proving. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 47–61. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dershowitz, N., Okada, M.: Proof-theoretic techniques for term rewriting theory. In: LICS 1988, pp. 104–111 (1988)

    Google Scholar 

  17. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s Lemma. In: LICS 2011., pp. 269–278. IEEE (2011)

    Google Scholar 

  18. Floyd, R.W.: Assigning meaning to programs. Mathematical Aspects of Computer Science. In: Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32. AMS (1967)

    Google Scholar 

  19. Gulwani, S.: SPEED: Symbolic complexity bound analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive recursive derivation lengths. Theor. Comput. Sci. 105(1), 129–140 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Indag. Math. 39(3), 195–207 (1977)

    Article  MathSciNet  Google Scholar 

  23. Jouannaud, J.P., Lescanne, P.: On multiset orderings. Inf. Process. Lett. 15(2), 57–63 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL 2001, pp. 81–92. ACM (2001)

    Google Scholar 

  25. Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders. Theor. Comput. Sci. 269(1-2), 433–450 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lepper, I.: Simply terminating rewrite systems with long derivations. Arch. Math. Logic 43(1), 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Löb, M.H., Wainer, S.S.: Hierarchies of number theoretic functions, I. Arch. Math. Logic 13, 39–51 (1970)

    Article  MATH  Google Scholar 

  28. McAloon, K.: Petri nets and large finite sets. Theor. Comput. Sci. 32(1-2), 173–183 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moser, G.: KBOs, ordinals, subrecursive hierarchies and all that. J. Logic Comput. (to appear, 2014)

    Google Scholar 

  30. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004. pp. 32–41. IEEE (2004)

    Google Scholar 

  31. Schmitz, S.: Complexity hierarchies beyond Elementary (2013), http://arxiv.org/abs/1312.5686 (preprint)

  32. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with higman’s lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Schmitz, S., Schnoebelen, P.: Algorithmic aspects of wqo theory. Lecture notes (2012), http://cel.archives-ouvertes.fr/cel-00727025

  34. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 5–24. Springer, Heidelberg (2013), http://arxiv.org/abs/1402.2908

    Chapter  Google Scholar 

  35. Schwichtenberg, H., Wainer, S.S.: Proofs and Computation. Perspectives in Logic. Cambridge University Press (2012)

    Google Scholar 

  36. Turing, A.M.: Checking a large routine. In: EDSAC 1949, pp. 67–69 (1949)

    Google Scholar 

  37. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 412–431. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  38. Weiermann, A.: Complexity bounds for some finite forms of Kruskal’s Theorem. J. Symb. Comput. 18(5), 463–488 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Weiermann, A.: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply recursive derivation lengths. Theor. Comput. Sci. 139(1-2), 355–362 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmitz, S. (2014). Complexity Bounds for Ordinal-Based Termination. In: Ouaknine, J., Potapov, I., Worrell, J. (eds) Reachability Problems. RP 2014. Lecture Notes in Computer Science, vol 8762. Springer, Cham. https://doi.org/10.1007/978-3-319-11439-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11439-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11438-5

  • Online ISBN: 978-3-319-11439-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics