Skip to main content

Computational Design of Reaction-Diffusion Patterns Using DNA-Based Chemical Reaction Networks

  • Conference paper
DNA Computing and Molecular Programming (DNA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8727))

Included in the following conference series:

Abstract

DNA self-assembly is a powerful technology for controlling matter at the nanometre to micron scale, with potential applications in high-precision organisation and positioning of molecular components. However, the ability to program DNA-only self-organisation beyond the microscopic scale is currently lacking. In this paper we propose a computational method for programming spatial organisation of DNA at the centimetre scale, by means of DNA strand displacement reaction diffusion systems. We use this method to analyse the spatiotemporal dynamics of an autocatalytic system, a predator-prey oscillator and a two-species consensus network. We find that both autocatalytic and oscillating systems can support travelling waves across centimetre distances, and that consensus in a spatial context results in the spontaneous formation of distinct spatial domains, in which one species is completely eliminated. Together, our results suggest that programmed spatial self-organisation of DNA, through a reaction diffusion mechanism, is achievable with current DNA strand displacement technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hagan, M.F., Chandler, D.: Dynamic pathways for viral capsid assembly. Biophysical J. 91, 42–54 (2006)

    Article  Google Scholar 

  2. Murray, J.D.: Mathematical biology. Springer (2003)

    Google Scholar 

  3. Sheth, R., Marcon, L., Bastida, M.F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., Ros, M.A.: Hox genes regulate digit patterning by controlling the wavelength of a turing-type mechanism. Science 338, 1476–1480 (2012)

    Article  Google Scholar 

  4. Reif, J., Chandran, H., Gopalkrishnan, N., LaBean, T.: Self-assembled DNA nanostructures and DNA devices. In: Cabrini, S., Kawata, S. (eds.) Nanofabrication Handbook, pp. 299–328. CRC Press, Taylor and Francis Group, New York (2012)

    Chapter  Google Scholar 

  5. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  6. Um, S.H., Lee, J.B., Park, N., Kwon, S.Y., Umbach, C.C., Luo, D.: Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006)

    Article  Google Scholar 

  7. Zaikin, A., Zhabotinsky, A.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    Article  Google Scholar 

  8. Bauer, G., McCaskill, J., Otten, H.: Traveling waves of in vitro evolving RNA. Proc. Natl. Acad. Sci. 86, 7937–7941 (1989)

    Article  MathSciNet  Google Scholar 

  9. Isalan, M., Lemerle, C., Serrano, L.: Engineering gene networks to emulate Drosophila embryonic pattern formation. PLoS Biology 3, e64 (2005)

    Google Scholar 

  10. Simpson, Z.B., Tsai, T.L., Nguyen, N., Chen, X., Ellington, A.D.: Modelling amorphous computations with transcription networks. J. R. Soc. Interface 6(suppl. 4), S523–S533 (2009)

    Google Scholar 

  11. Padirac, A., Fujii, T., Estvez-Torres, A., Rondelez, Y.: Spatial waves in synthetic biochemical networks. J. Am. Chem. Soc. 135, 14586–14592 (2013)

    Article  Google Scholar 

  12. Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern transformation with dna circuits. Nat. Chem. 5, 1000–1005 (2013)

    Article  Google Scholar 

  13. Allen, P.B., Chen, X., Simpson, Z.B., Ellington, A.D.: Modeling scalable pattern generation in dna reaction networks. Natural Computing, 1–13 (2012)

    Google Scholar 

  14. Scalise, D., Schulman, R.: Designing modular reaction-diffusion programs for complex pattern formation. Technology 2, 55–66 (2014)

    Article  Google Scholar 

  15. Soloveichik, D., Seelig, G., Winfree, E.: Dna as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  16. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  18. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. J. R. Soc. Interface 6 (suppl. 4), S419–S436 (2009)

    Google Scholar 

  19. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011)

    Article  Google Scholar 

  20. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  21. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)

    Article  Google Scholar 

  22. Amir, Y., Ben-Ishay, E., Levner, D., Ittah, S., Abu-Horowitz, A., Bachelet, I.: Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. (2014)

    Google Scholar 

  23. Smith, G.D.: Numerical solution of partial differential equations: finite difference methods. Oxford University Press (1985)

    Google Scholar 

  24. Stellwagen, E., Lu, Y., Stellwagen, N.C.: Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42, 11745–11750 (2003)

    Article  Google Scholar 

  25. Merkin, J., Needham, D.: Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system. J. Eng. Math. 23, 343–356 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  27. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  28. Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genet. Program. Evol. M 4, 111–122 (2003)

    Article  Google Scholar 

  29. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21, 87–102 (2008)

    Article  MATH  Google Scholar 

  30. Lakin, M.R., Stefanovic, D.: Pattern formation by spatially organized approximate majority reactions. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 254–266. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  31. Gardner, R.A.: Existence and stability of travelling wave solutions of competition models: A degree theoretic approach. J. Differential Equations 44, 343–364 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kan-on, Y.: Global bifurcation structure of positive stationary solutions for a classical Lotka-Volterra competition model with diffusion. Japan J. Indust. Appl. Math. 20(3), 285–310 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dalchau, N., Seelig, G., Phillips, A. (2014). Computational Design of Reaction-Diffusion Patterns Using DNA-Based Chemical Reaction Networks. In: Murata, S., Kobayashi, S. (eds) DNA Computing and Molecular Programming. DNA 2014. Lecture Notes in Computer Science, vol 8727. Springer, Cham. https://doi.org/10.1007/978-3-319-11295-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11295-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11294-7

  • Online ISBN: 978-3-319-11295-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics