Skip to main content

Analytical Expression of Molecular Integrals over Slater-Type Functions for Generating Their Polynomial Expressions

  • Chapter
  • First Online:
The DV-Xα Molecular-Orbital Calculation Method
  • 502 Accesses

Abstract

A method to generate analytical expressions with respect to atomic distance and orbital exponent of STF for all types of one-center and two-center molecular integrals over Slater-type functions is presented. The analytical integral obtained in this study is intended to generate approximate polynomial expressions of molecular integrals by which the algebraic molecular orbital equation is defined. As an example, formulation of two-center overlap integral and Coulomb-type electron repulsion integral is demonstrated in detail. Diatomic molecule is a minimum quantum system in which electrons and nuclei coexist with nonadiabatic interactions. To solve the dynamical coupling of nuclei and electrons as a multivariable problem is a fundamental problem in chemistry. Analytical molecular integral over STFs for diatomic molecules is indispensable to a revolutionary step for the construction of algebraic quantum chemistry. Symbolic calculation system is competent to formulate the molecular integrals in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avery J (2000) Hyperspherical harmonics and generalized Sturmians. Kluwer Academic Publishers, Dordrecht/Boston

    Google Scholar 

  • Barnett MP, Coulson CA (1951) The evaluation of integrals occurring in the theory of molecular structure. Parts I & II. Phil Trans Roy Soc London A243:221–249

    Article  CAS  Google Scholar 

  • Barnett MP, Capitani JF, von zur Gathen J, Gerhard J (2004) Symbolic calculation in chemistry, selected examples. Int J Quant Chem 100:80–104

    Article  CAS  Google Scholar 

  • Buehler RJ, Hirschfelder JO (1951) Bipolar expansion of Coulombic potentials. Phys Rev 83:628–633

    Article  Google Scholar 

  • Christoffersen RE, Ruedenberg K (1968) Hybrid integrals over Slater‐type atomic orbitals. J Chem Phys 49:4285–4292

    Article  CAS  Google Scholar 

  • Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc Roy Soc Lond A 123:714–733

    Article  CAS  Google Scholar 

  • Fernández Rico J, López R, Ramírez G, Tablero C (1994) Molecular integrals with Slater basis. V. Recurrence algorithm for the exchange integrals. J Chem Phys 101:9807–9816

    Article  Google Scholar 

  • Guseinov II (2007) Expansion formulae for two-center integer and noninteger n STO charge densities and their use in evaluation of multi-center integrals. J Math Chem 42:415–422

    Article  CAS  Google Scholar 

  • Hierse W, Oppeneer PM (1994) Fast and stable algorithm for the analytical computation of 2-center coulomb and overlap integrals over Slater-type orbitals. Int I Quant Chem 52:1249–1265

    Article  CAS  Google Scholar 

  • Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. Cambridge U. P, Cambridge, Sec. 89

    Google Scholar 

  • Huzinaga S (1980, 2000) Molecular orbital method [Japanese]. Iwanami Book Publisher, Tokyo. Cambridge University Press

    Google Scholar 

  • Jones HW (1980) Computer-generated formulas for overlap integrals of Slater-type orbitals. Int J Quant Chem 18:709–713

    Article  CAS  Google Scholar 

  • Jones HW (1988) Analytical evaluation of multicenter molecular integrals over Slater-type orbitals using expanded Lowdin alpha functions. Phys Rev A 38:1065–1068

    Article  CAS  Google Scholar 

  • Jones HW (1994) Development in multicenter molecular integrals over STOs using expansions in spherical-harmonics. Int I Quant Chem 51:417–423

    Article  CAS  Google Scholar 

  • Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun Pure Appl Math 10:151–177

    Article  Google Scholar 

  • Kohn W, Sham LL (1964) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138

    Article  Google Scholar 

  • Kotani M, Amemiya A, Ishiguro AE, Kimura T (1955) Table of molecular integrals. Maruzen, Tokyo

    Google Scholar 

  • Löwdin PO (1956) Quantum theory of cohesive properties of solids. Adv Phys 5:1–172

    Article  Google Scholar 

  • Milleur MB, Twerdochlib M, Hirschfelder JO (1966) Bipolar angle averages and two‐center, two‐particle integrals involving r 12. J Chem Phys 45:13–20

    Article  CAS  Google Scholar 

  • Mukoyama T, Hock G (1994) L2 approximation of atomic continuum wave functions. Bull Inst Chem Res, Kyoto Univ 72:195–201

    CAS  Google Scholar 

  • Mukoyama T, Kagawa T (1983) On the momentum representation of the relativistic Hartree-Fock-Roothaan wavefunctions. J Phys B: Atom Mol Phys 16:1875–1880

    Article  CAS  Google Scholar 

  • Mukoyama T, Yasui J (1992) Analytical expression of the Hartree-Fock wave functions. Bull Inst Chem Res, Kyoto Univ 70:385–391

    CAS  Google Scholar 

  • Reinhardt P, Hoggan PE (2009) Cusps and derivatives for wave-functions expanded in Slater orbitals: a density study. Int J Quantum Chem 109:3191–3198

    Article  CAS  Google Scholar 

  • Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89

    Article  CAS  Google Scholar 

  • Sharma RR (1976) Expansion of a function about a displaced center for multicenter integrals: a general and closed expression of a Slater orbital and for overlap integrals. Phys Rev A13:517–527

    Article  Google Scholar 

  • Shibuya T, Wulfman CE (1965) Molecular orbitals in momentum space. Proc Roy Soc A 286:376–389

    Article  Google Scholar 

  • Silver DM (1971) Unified treatment of diatomic electron interaction integrals over Slater-type atomic orbitals. J Math Phys 12:1937–1943

    Article  CAS  Google Scholar 

  • Slater JC (1951) A simplification of the Hartree-Fock method. Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  • Slater JC (1974) Quantum theory of molecules and solids. McGraw-Hill, New York

    Google Scholar 

  • Slater JC (1979) The calculation of molecular orbitals. Wiley, New York

    Google Scholar 

  • Wojnecki R, Modrak P (1993) Calculation of two-center integrals between Slater-type orbitals. Comput Chem 17:287–290

    Article  Google Scholar 

  • Yasui J (2010) Polynomial expressions of molecular integral functionals over Slater-type-orbitals and its application to the extension of Hartree-Fock-Roothaan equation. Bull Soc DV-Xα 23:54–59

    Google Scholar 

  • Yasui J (2011) Algebraic molecular orbital equation. Bull Soc DV-Xα 24:47–54

    Google Scholar 

  • Yasui J, Saika A (1982) Unified analytical evaluation of two-center, two-electron integrals over Slater-type orbitals. J Chem Phys 76:468–472

    Article  CAS  Google Scholar 

  • Yasui J, Mukoyama T, Shibuya T (1996) Analytical expressions of atomic wave functions and molecular integrals for the x-ray transition probabilities of molecules. Adv X-Ray Chem Anal Jpn 27:329–338

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to express my heartfelt thanks to the following people. The late Professor A. Saika gave me the theme of molecular integrals over STFs to study the electron correlation effect in NMR chemical shifts by MBPT in my graduate school. He perceived the important nature of STF. For a long time from my graduate school, I have being inspired by Professor Shigeru Huzinaga. His book sparked my interest in molecular orbital theory. I got many ideas in reading his book. Professor Takeshi Mukoyama showed us the versatile advantage of STF in his study of electron excitation process and atomic collision. He has been supported me for a long time. Professor Tsutomu Watanabe has discussed this work enthusiastically with me for a long time. I have derived much from his discussion about slow atomic collision in which electron charge transfer and nonadiabatic transition occur. Professor Hirohiko Adachi introduced me the DV-Xα calculation method. I noticed the importance of nonlinear optimization of basis function from the DV-Xα calculation. Professor Tai-Ichi Shibuya introduced me Shibuya-Wolfman integral defined in momentum space. He has been encouraging me for a long time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yasui .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix A: Real Spherical Harmonic Function

This appendix contains many relations with respect to normalized real spherical harmonics used in this article. Some duplicates in the body are shown to help following formulations.

$$ {Y}_l^m\left({\theta}_A,\;{\phi}_A\right)={p}_l^m\left( \cos\;{\theta}_A\right)\;{f}_m\left(\phi \right) $$
(3.A1)

1.1.1 Normalized Real Function with Respect to ϕ

$$ {f}_m\left(\phi \right)={N}_{\phi }(m)\left\{\begin{array}{c}\hfill \cos m\phi \hfill \\ {}\hfill \sin \left|m\right|\phi \hfill \end{array}\right\}\begin{array}{c}\hfill for\hfill \\ {}\hfill for\hfill \end{array}\begin{array}{c}\hfill m\ge 0\hfill \\ {}\hfill m<0\hfill \end{array} $$
(3.A2)
$$ {N}_{\phi }(m)={\left(-1\right)}^m{\left[\pi \left(1+{\delta}_{m,0}\right)\right]}^{-\frac{1}{2}} $$
(3.A3)
$$ {\displaystyle {\int}_0^{2\pi }d\phi }{f}_{m_a}\left(\phi \right){f}_{m_b}\left(\phi \right)={\delta}_{m_a,{m}_b} $$
(3.A4)
$$ {\displaystyle {\int}_0^{2\pi }d\phi }{f}_m\left(\phi \right)=\sqrt{2\pi }{\delta}_{m,0} $$
(3.A5)
$$ \Phi \left({m}_a,{m}_b,{m}_c\right)\equiv {\displaystyle {\int}_0^{2\pi }d\phi }{f}_{m_a}\left(\phi \right){f}_{m_b}\left(\phi \right){f}_{m_c}\left(\phi \right) $$
(3.A6)
$$ \begin{array}{l}I\left({m}_a,{m}_b,{m}_c\right)\\ {}\kern1em ={\displaystyle {\int}_0^{2\pi }d\phi}\left\{\begin{array}{c}\hfill \cos {m}_a\phi \hfill \\ {}\hfill \sin \left|{m}_a\right|\phi \hfill \end{array}\right\}\left\{\begin{array}{c}\hfill \cos {m}_b\phi \hfill \\ {}\hfill \sin \left|{m}_b\right|\phi \hfill \end{array}\right\}\left\{\begin{array}{c}\hfill \cos {m}_c\phi \hfill \\ {}\hfill \sin \left|{m}_c\right|\phi \hfill \end{array}\right\}\end{array} $$
(3.A7)
$$ \Phi \left({m}_a,{m}_b,{m}_c\right)={N}_{\phi}\left({m}_a\right){N}_{\phi}\left({m}_b\right){N}_{\phi}\left({m}_c\right)I\left({m}_a,{m}_b,{m}_c\right) $$
(3.A8)

1.1.2 Normalized Associated Legendre Function

$$ {p}_l^m(x)={N}_x\left(l,m\right){P}_l^m(x) $$
(3.A9)
$$ {N}_x\left(l,m\right)={\left[\frac{2l+1}{2}\frac{\left(l-\left|m\right|\right)!}{\left(l+\left|m\right|\right)!}\right]}^{1/2} $$
(3.A10)
$$ {P}_l^m(x)={\left(1-{x}^2\right)}^{\frac{\left|m\right|}{2}}{\displaystyle \sum_{\nu =0}^{\left[\frac{l-\left|m\right|}{2}\right]}{\omega}_{\nu}^{l,m}}{x}^{l-\left|m\right|-2\nu } $$
(3.A11)
$$ {\omega}_{\nu}^{l,m}=\frac{{\left(-1\right)}^{\nu}\left(2l-2\nu -1\right)!}{\nu !{2}^{\nu}\left(l-\left|m\right|-2\nu \right)!} $$
(3.A12)
$$ {\displaystyle {\int}_{-1}^1dx}{p}_{l_a}^{m_a}(x){p}_{l_b}^{m_b}(x)={\delta}_{m_a,{m}_b}{\delta}_{l_a,{l}_b} $$
(3.A13)
$$ {\displaystyle {\int}_{-1}^1dx}{p}_l^0(x)={\delta}_{l, even}2{N}_x\left(l,0\right){\displaystyle \sum_{\nu =0}^{\left[\frac{l}{2}\right]}\frac{\omega_{\nu}^{l,0}}{l-2\nu +1}} $$
(3.A14)
$$ \Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill \end{array}\right)\equiv {\displaystyle {\int}_{-1}^1{p}_{l_a}^{m_a}(x){p}_{l_b}^{m_b}(x){p}_{l_c}^{m_c}(x)dx} $$
(3.A15)
$$ \left|{m}_a\right|+\left|{m}_b\right|+\left|{m}_c\right|=2m $$
(3.A16)
$$ \begin{array}{l}{\displaystyle {\int}_{-1}^1{x}^{l_a+{l}_b+{l}_c-2m-2\left({\nu}_a+{\nu}_b+{\nu}_c\right)+2i}}dx\\ {}\begin{array}{cc}\hfill \kern1em =\frac{2}{l_a+{l}_b+{l}_c-2m-2\left({\nu}_a+{\nu}_b+{\nu}_c\right)+2i+1}\hfill & \hfill for\; \mod \left({l}_a+{l}_b+{l}_c,2\right)=0\hfill \end{array}\end{array} $$
(3.A17)
$$ {\displaystyle {\int}_{-1}^1{x}^{l_a+{l}_b+{l}_c-2m-2\left({\nu}_a+{\nu}_b+{\nu}_c\right)+2i}}\kern0.5em dx=0\begin{array}{cc}\hfill \hfill & \hfill for\hfill \end{array} \mod \left({l}_a+{l}_b+{l}_c,2\right)\ne 0 $$
(3.A18)
$$ \begin{array}{l}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill \end{array}\right)={N}_x\left({l}_a,{m}_a\right){N}_x\left({l}_b,{m}_b\right){N}_x\left({l}_c,{m}_c\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern1em \times {\displaystyle \sum_{\nu_a=0}^{\left[\frac{l_a-\left|{m}_a\right|}{2}\right]}{\omega}_{\nu_a}^{l_a,{m}_a}}{\displaystyle \sum_{\nu_b=0}^{\left[\frac{l_b-\left|{m}_b\right|}{2}\right]}{\omega}_{\nu_b}^{l_b,{m}_b}}{\displaystyle \sum_{\nu_c=0}^{\left[\frac{l_c-\left|{m}_c\right|}{2}\right]}{\omega}_{\nu_c}^{l_c,{m}_c}}{\displaystyle \sum_i^m\left(\begin{array}{c}\hfill m\hfill \\ {}\hfill i\hfill \end{array}\right)}{\left(-1\right)}^i\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern1em \times {\displaystyle {\int}_{-1}^1{x}^{l_a+{l}_b+{l}_c-2m-2\left({\nu}_a+{\nu}_b+{\nu}_c\right)+2i}}dx\hfill \end{array}\end{array} $$
(3.A19)

1.1.3 Normalized Real Spherical Harmonic Function

$$ {\displaystyle \int d\Omega}{Y}_l^m\left(\theta, \phi \right)=\sqrt{2\pi }{\delta}_{m,0}{\displaystyle {\int}_{-1}^1dx}{p}_l^0(x) $$
(3.A20)
$$ {\displaystyle \int d\Omega}{Y}_{l_a}^{m_a}\left(\theta, \phi \right){Y}_{l_a}^{m_a}\left(\theta, \phi \right)={\delta}_{l_a,{l}_b}{\delta}_{m_a,{m}_b} $$
(3.A21)
$$ {Y}_{l_a}^{m_a}\left(\theta, \phi \right){Y}_{l_b}^{m_{{}_b}}\left(\theta, \phi \right)={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}{Y}_{l_{ab}}^{m_{ab}}\left(\theta, \phi \right) $$
(3.A22)

where

$$ \max \left(\left|m\right|,\left|{l}_a-{l}_b\right|\right)+n\le {l}_{ab}\le {l}_a+{l}_b $$
(3.A23)
$$ n=\left\{\begin{array}{c}\hfill 0,\hfill \\ {}\hfill 1,\hfill \end{array}\begin{array}{c}\hfill \left(m\equiv \left|{l}_a-{l}_b\right|\left( \mod 2\right)\right)\hfill \\ {}\hfill (otherwise)\hfill \end{array}\right. $$
(3.A24)
$$ \begin{array}{l}G\left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill \equiv {\displaystyle \int d\Omega}{Y}_{l_a}^{m_a}\left(\theta, \phi \right){Y}_{l_b}^{m_{{}_b}}\left(\theta, \phi \right){Y}_{l_c}^{m_c}\left(\theta, \phi \right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right){\displaystyle \int d\Omega {Y}_{l_{ab}}^{m_{ab}}\left(\theta, \phi \right){Y}_{l_c}^{m_c}\left(\theta, \phi \right)}}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right){\delta}_{m_{ab},{m}_c}{\delta}_{l_{ab},{l}_c}}\hfill \end{array}\end{array} $$
(3.A25)

1.1.4 Triple Product of Normalized Real Spherical Harmonic Function (1)

$$ \begin{array}{l}{Y}_{l_a}^{m_a}\left(\theta, \phi \right){Y}_{l_b}^{m_{{}_b}}\left(\theta, \phi \right){Y}_{l_c}^{m_c}\left(\theta, \phi \right)\\ {}\kern1em ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\\ {}\kern2.35em {\displaystyle \sum_{m_{abc}}\Phi \left({m}_a,{m}_b,{m}_{abc}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{abc}\\ {}{l}_{abc}\end{array}\hfill \end{array}\right){Y}_{l_{abc}}^{m_{abc}}\left(\theta, \phi \right)}\end{array} $$
(3.A26)
$$ \begin{array}{l}{\displaystyle \int d\Omega}{Y}_{l_a}^{m_a}\left(\theta, \phi \right){Y}_{l_b}^{m_{{}_b}}\left(\theta, \phi \right){Y}_{l_c}^{m_c}\left(\theta, \phi \right)\\ {}\kern1em ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\\ {}\kern2.35em {\displaystyle \sum_{m_{abc}}\Phi \left({m}_a,{m}_b,{m}_{abc}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{abc}\\ {}{l}_{abc}\end{array}\hfill \end{array}\right)}\\ {}\kern2.35em {\displaystyle \int d\Omega}{Y}_{l_{abc}}^{m_{abc}}\left(\theta, \phi \right)\end{array} $$
(3.A27)
$$ \begin{array}{l}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.78em \times {\displaystyle \sum_{m_{abc}}\Phi \left({m}_a,{m}_b,{m}_{abc}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{abc}\\ {}{l}_{abc}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern-3.9em \times {\delta}_{l_{abc}, even}2{N}_x\left({l}_{abc},0\right){\displaystyle \sum_{\nu =0}^{\left[\frac{l_{abc}}{2}\right]}\frac{\omega_{\nu}^{l_{abc},0}}{l_{abc}-2\nu +1}}\hfill \end{array}\end{array} $$
(3.A28)

1.1.5 Transfer of Origin of Spherical Harmonics from B to A

$$ {Y}_l^m\left({\theta}_B,\;\phi \right)={\displaystyle \sum_{k=\left|m\right|}^l{T}_k^{lm}\;{R}^{l-k}\;{r}_A^k{r}_B^{-l}{Y}_k^m}\left({\theta}_A,\;\phi \right) $$
(3.A29)
$$ {T}_k^{lm}={\left(-1\right)}^{k+m}\frac{N_x\left(l,m\right)}{N_x\left(k,m\right)}\frac{\left(l+\left|m\right|\right)!}{\left(l-k\right)!\left(k+\left|m\right|\right)!} $$
(3.A30)

1.1.6 Triple Product of Normalized Real Spherical Harmonic Function (2)

$$ \begin{array}{l}{Y}_{l_a}^{m_a}\left({\theta}_A,\phi \right){Y}_{l_b}^{m_{{}_b}}\left({\theta}_B,\phi \right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{k_b=\left|{m}_b\right|}^{l_b}{T}_{k_b}^{l_b{m}_b}}{\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{k}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \times {R}^{l_b-{k}_b}{r}_A^{k_b}{r}_B^{-{l}_b}{Y}_{l_{ab}}^{m_{ab}}\left({\theta}_A,\phi \right)\hfill \end{array}\end{array} $$
(3.A31)
$$ \begin{array}{l}{Y}_{l_a}^{m_a}\left({\theta}_A,\phi \right){Y}_{l_b}^{m_{{}_b}}\left({\theta}_B,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{k_b=\left|{m}_b\right|}^{l_b}{T}_{k_b}^{l_b{m}_b}}{R}^{l_b-{k}_b}{r}_A^{k_b}{r}_B^{-{l}_b}{Y}_{l_a}^{m_a}\left({\theta}_A,\phi \right){Y}_{k_b}^{m_{{}_b}}\left({\theta}_A,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{k_b=\left|{m}_b\right|}^{l_b}{T}_{k_b}^{l_b{m}_b}}{R}^{l_b-{k}_b}{r}_A^{k_b}{r}_B^{-{l}_b}{\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{k}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \times {\displaystyle \sum_{m_{abc}}\Phi \left(\begin{array}{ccc}\hfill {m}_{ab}\hfill & \hfill {m}_c\hfill & \hfill {m}_{abc}\hfill \end{array}\right)}{\displaystyle \sum_{l_{abc}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill & \hfill \begin{array}{l}{m}_{abc}\\ {}{l}_{abc}\end{array}\hfill \end{array}\right)}{Y}_{l_{abc}}^{m_{abc}}\left({\theta}_A,\phi \right)\hfill \end{array}\end{array} $$
(3.A32)
$$ \begin{array}{l}{\displaystyle {\int}_0^{2\pi }d\phi }{Y}_{l_a}^{m_a}\left({\theta}_A,\phi \right){Y}_{l_b}^{m_{{}_b}}\left({\theta}_B,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{k_b=\left|{m}_b\right|}^{l_b}{T}_{k_b}^{l_b{m}_b}}{R}^{l_b-{k}_b}{r}_A^{k_b}{r}_B^{-{l}_b}{\displaystyle {\int}_0^{2\pi }d\phi }{Y}_{l_a}^{m_a}\left({\theta}_A,\phi \right){Y}_{k_b}^{m_{{}_b}}\left({\theta}_A,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill =2\pi {N}_{\phi }(0){\displaystyle \sum_{k_b=\left|{m}_b\right|}^{l_b}{T}_{k_b}^{l_b{m}_b}}{R}^{l_b-{k}_b}{r}_A^{k_b}{r}_B^{-{l}_b}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\kern0.55em \times {\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{k}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\kern0.55em \times {\displaystyle \sum_{m_{abc}}\Phi \left(\begin{array}{ccc}\hfill {m}_{ab}\hfill & \hfill {m}_c\hfill & \hfill {m}_{abc}\hfill \end{array}\right)}{\displaystyle \sum_{l_{abc}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill & \hfill \begin{array}{l}{m}_{abc}\\ {}{l}_{abc}\end{array}\hfill \end{array}\right)}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}\kern-0.45em \times {p}_{l_{abc}}^0\left( \cos {\theta}_A\right)\end{array} $$
(3.A33)

1.1.7 Triple Product of Normalized Real Spherical Harmonic Function (3)

$$ \begin{array}{l}{Y}_{l_a}^{m_a}\left({\theta}_B,\phi \right){Y}_{l_b}^{m_b}\left({\theta}_B,\phi \right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ad}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{k_{cd}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}{Y}_{l_{ab}}^{m_{ab}}\left({\theta}_B,\phi \right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ad}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{k_{cd}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.25em \times {\displaystyle \sum_{k_{ab}=\left|{m}_{ab}\right|}^{l_{ab}}{T}_{k_c}^{l_{ab}{m}_{ab}}}{R}^{l_{ab}-{k}_{ab}}{r}_A^{k_{ab}}{r}_B^{-{l}_{ab}}{Y}_{k_{ab}}^{m_{ab}}\left({\theta}_A,\phi \right)\hfill \end{array}\end{array} $$
(3.A34)
$$ \begin{array}{l}{Y}_{l_a}^{m_a}\left({\theta}_B,\phi \right){Y}_{l_b}^{m_b}\left({\theta}_B,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}{Y}_{l_{ab}}^{m_{ab}}\left({\theta}_B,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.25em \times {\displaystyle \sum_{k_{ab}=\left|{m}_{ab}\right|}^{l_{ab}}{T}_{k_c}^{l_{ab}{m}_{ab}}}{R}^{l_{ab}-{k}_{ab}}{r}_A^{k_{ab}}{r}_B^{-{l}_{ab}}{Y}_{k_{ab}}^{m_{ab}}\left({\theta}_A,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\hfill \end{array}\end{array} $$
(3.A35)
$$ \begin{array}{l}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{m_{ab}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{l_{ab}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \begin{array}{l}\kern-0.43em \times {\displaystyle \sum_{k_{ab}=\left|{m}_{ab}\right|}^{l_{ab}}{T}_{k_c}^{l_{ab}{m}_{ab}}}{R}^{l_{ab}-{k}_{ab}}{r}_A^{k_{ab}}{r}_B^{-{l}_{ab}}\\ {}\kern-0.43em \times {\displaystyle \sum_{m_{abc}}\Phi \left({m}_{ab},{m}_c,{m}_{abc}\right)}{\displaystyle \sum_{l_{abc}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_{ab}\\ {}{k}_{ab}\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill & \hfill \begin{array}{l}{m}_{abc}\\ {}{l}_{abc}\end{array}\hfill \end{array}\right)}\\ {}\kern-0.43em \times {Y}_{l_{abc}}^{m_{abc}}\left({\theta}_A,\phi \right)\end{array}\hfill \end{array}\\ {}\end{array} $$
(3.A36)
$$ \begin{array}{l}{\displaystyle \int d\Omega}{Y}_{l_a}^{m_a}\left({\theta}_B,\phi \right){Y}_{l_b}^{m_b}\left({\theta}_B,\phi \right){Y}_{l_c}^{m_c}\left({\theta}_A,\phi \right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill =2\pi {N}_{\phi }(0){\displaystyle \sum_{m_{ad}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{k_{cd}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.3em \times {\displaystyle \sum_{k_{ab}=\left|{m}_{ab}\right|}^{l_{ab}}{T}_{k_c}^{l_{ab}{m}_{ab}}}{R}^{l_{ab}-{k}_{ab}}{r}_A^{k_{ab}}{r}_B^{-{l}_{ab}}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.3em \times {\displaystyle \sum_{m_{abc}}\Phi \left({m}_{ab},{m}_c,{m}_{abc}\right)}{\displaystyle \sum_{l_{abc}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_{ab}\\ {}{k}_{ab}\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill & \hfill \begin{array}{l}{m}_{abc}\\ {}{l}_{abc}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.3em \times {\displaystyle {\int}_0^{\pi } \sin {\theta}_Ad{\theta}_A}\hfill \end{array}{p}_{l_{abc}}^0\left( \cos {\theta}_A\right)\end{array} $$
(3.A37)
$$ \begin{array}{l}\begin{array}{cc}\hfill \hfill & \hfill =2\pi {N}_{\phi }(0){\displaystyle \sum_{m_{ad}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{k_{cd}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.3em \times {\displaystyle \sum_{k_{ab}=\left|{m}_{ab}\right|}^{l_{ab}}{T}_{k_c}^{l_{ab}{m}_{ab}}}{R}^{l_{ab}-{k}_{ab}}{r}_A^{k_{ab}}{r}_B^{-{l}_{ab}}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.3em \times {\displaystyle \sum_{m_{ab c}}\Phi \left({m}_{ab},{m}_c,{m}_{ab c}\right)}{\displaystyle \sum_{l_{ab c}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_{ab}\\ {}{k}_{ab}\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab c}\\ {}{l}_{ab c}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.3em \times {\displaystyle {\int}_0^{\pi } \sin {\theta}_Ad{\theta}_A}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\kern0.55em \times {\displaystyle \sum_{\nu =0}^{\left[\frac{l_{ab c}}{2}\right]}{\displaystyle \sum_{i=0}^{l_{ab c}-2\nu}\kern0.20em {\displaystyle \sum_{j=0}^{l_{ab c}-2\nu -i}\mathrm{P}\left({l}_{ab c},\nu, i,j\right)}}}{R}^{-{l}_{ab c}+2\left(\nu +i\right)}{r}_A^{l_{ab c}-2\left(\nu +i+j\right)}{r}_B^{2i}\end{array} $$
(3.A38)
$$ \begin{array}{l}{\displaystyle \int d\Omega {Y}_{l_a}^{m_a}\left({\theta}_B,\;\phi \right)}\;{Y}_{l_b}^{m_b}\left({\theta}_B,\;\phi \right)\;{Y}_{l_c}^{m_c}\left({\theta}_A,\;\phi \right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill =2\pi {N}_{\phi }(0){\displaystyle \sum_{m_{ad}}\Phi \left({m}_a,{m}_b,{m}_{ab}\right)}{\displaystyle \sum_{k_{cd}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_a\\ {}{l}_a\end{array}\hfill & \hfill \begin{array}{l}{m}_b\\ {}{l}_b\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab}\\ {}{l}_{ab}\end{array}\hfill \end{array}\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \kern0.7em \times {\displaystyle \sum_{k_{ab}=\left|{m}_{ab}\right|}^{l_{ab}}{T}_{k_c}^{l_{ab}{m}_{ab}}}{\displaystyle \sum_{m_{ab c}}\Phi \left({m}_{ab},{m}_c,{m}_{ab c}\right)}{\displaystyle \sum_{l_{ab c}}\Theta \left(\begin{array}{ccc}\hfill \begin{array}{l}{m}_{ab}\\ {}{k}_{ab}\end{array}\hfill & \hfill \begin{array}{l}{m}_c\\ {}{l}_c\end{array}\hfill & \hfill \begin{array}{l}{m}_{ab c}\\ {}{l}_{ab c}\end{array}\hfill \end{array}\right)}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \kern0.7em \times {\displaystyle {\int}_0^{\pi } \sin {\theta}_Ad{\theta}_A}\hfill & \hfill \hfill \end{array}\\ {}\kern1.86em \times {\displaystyle \sum_{\nu =0}^{\left[\frac{l_{ab c}}{2}\right]}{\displaystyle \sum_{i=0}^{l_{ab c}-2\nu}\kern0.20em {\displaystyle \sum_{j=0}^{l_{ab c}-2\nu -i}\mathrm{P}\mathrm{P}\left({l}_{ab c},\nu, i,j\right)}}}{R}^{l_{ab}-{k}_{ab}-{l}_{ab c}+2\left(\nu +i\right)}{r}_A^{k_{ab}+{l}_{ab c}-2\left(\nu +i+j\right)}{r}_B^{2i-{l}_{ab}}\end{array} $$
(3.A39)

1.2 Appendix B: Half Definite Integral, H and Hh

We define a definite integral, H and Hh, in this appendix.

$$ H\left[X,n,\alpha \right]\equiv {\displaystyle {\int}^X{x}^n} \exp \left(-\alpha x\right)dx $$
(3.B1)

We begin formulation for H in case a ≠ 0.

$$ H\left[X,n,\alpha \Big|n\ge 0,\alpha \ne 0\right]=-{\displaystyle \sum_{k=0}^nA\left(n,k\right)}{\alpha}^{-\left(k+1\right)}{X}^{n-k} \exp \left(-\alpha X\right) $$
(3.B2)
$$ A\left(n,k\right)=\frac{n!}{\left(n-k\right)!} $$
(3.B3)
$$ \left\langle H\left[0,n,\alpha \Big|n\ge 0,\alpha \ne 0\right]\right\rangle =-n!{\alpha}^{-\left(n+1\right)} $$
(3.B4)
$$ \left\langle H\left[\infty, n,\alpha \Big|n\ge 0,\alpha \ne 0\right]\right\rangle =0 $$
(3.B5)
$$ \left\langle H\left[0,n,\alpha \Big|n\ge 0,\alpha \ne 0\right]\right\rangle =-n!{\alpha}^{-\left(n+1\right)} $$
(3.B6)
$$ \left\langle H\left[1,n,\alpha \Big|n\ge 0,\alpha \ne 0\right]\right\rangle =-{\displaystyle \sum_{k=0}^nA\left(n,k\right)}{\alpha}^{-\left(k+1\right)} \exp \left(-\alpha \right) $$
(3.B7)
$$ \left\langle H\left[R,n,\alpha \Big|n\ge 0,\alpha \ne 0\right]\right\rangle =-{\displaystyle \sum_{k=0}^nA\left(n,k\right)}{\alpha}^{-\left(k+1\right)}{R}^{n-k} \exp \left(-\alpha R\right) $$
(3.B8)

For n = − 1

$$ H\left[X,n,\alpha \Big|n=-1,\alpha \ne 0\right]=Ei\left(-\alpha X\right) $$
(3.B9)
$$ Ei\left(-\alpha X\right)={\displaystyle {\int}^X\frac{1}{x}} \exp \left(-\alpha x\right)dx $$
(3.B10)

For n ≤ − 2,

$$ \begin{array}{l}H\left[X,n,\alpha \Big|n\le -2,\alpha \ne 0\right]\\ {}\kern0.5em =\frac{{\left(-\alpha \right)}^{-\left(n+1\right)}}{\left(-\left(n+1\right)\right)!}\kern0.5em Ei\left(-\alpha X\right)\\ {}\kern1.6em -{\displaystyle \sum_{k=0}^{-\left(n+1\right)}{\left(-1\right)}^{k-1}\frac{\left(-\left(n+1+k\right)\right)}{\left(-\left(n+1\right)\right)!}}\kern0.5em {\alpha}^{k-1}{X}^{n+k} \exp \left(-\alpha X\right)\end{array} $$
(3.B11)

In case α = 0 and n ≠ − 1,

$$ H\left[X,n,\alpha \Big|n\ne -1,\alpha =0\right]={\displaystyle {\int}^X{x}^n}dx=\frac{1}{n+1}{X}^{n+1} $$
(3.B12)

In case α = 0 and n = − 1,

$$ H\left[X,n,\alpha \Big|n=-1,\alpha =0\right]={\displaystyle {\int}^X{x}^{-1}}dx= \log \kern0.20em X $$
(3.B13)

The half definite integral Hh is defined using H as follows,

$$ \begin{array}{l}Hh\left[X,{n}_1,{\alpha}_1,{n}_2,{\alpha}_2\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)}\hfill & \hfill {\displaystyle {\int}^{r_1}d{r}_2{r}_2^{n_2} \exp \left(-{\alpha}_2{r}_2\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)}\hfill & \hfill H\left[{r}_1,{n}_2,{\alpha}_2\right]\hfill \end{array}\end{array} $$
(3.B14)
$$ \begin{array}{l}Hh\left[X,{n}_1,{\alpha}_1,{n}_2,{\alpha}_2\Big|{n}_2\ge 0,{\alpha}_2\ne 0\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)H\left[{r}_1,{n}_2,{\alpha}_2\Big|{n}_2\ge 0,{\alpha}_2\ne 0\right]}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill =-{\displaystyle \sum_{k_2=0}^{n_2}A\left({n}_2,{k}_2\right)}{\alpha_2}^{-\left({k}_2+1\right)}{\displaystyle {\int}^Xd{r}_1{r}_1^{n_1+{n}_2-{k}_2} \exp \left(-\left({\alpha}_1+{\alpha}_2\right){r}_1\right)}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill =-{\displaystyle \sum_{k_2=0}^{n_2}A\left({n}_2,{k}_2\right)}{\alpha_2}^{-\left({k}_2+1\right)}H\left[X,{n}_1+{n}_2-{k}_2,{\alpha}_1+{\alpha}_2\right]\hfill & \hfill \hfill \end{array}\end{array} $$
(3.B15)
$$ \begin{array}{l}Hh\left[X,{n}_1,{\alpha}_1,{n}_2,{\alpha}_2\Big|{n}_1+{n}_2\ge 0,{n}_2\ge 0,{\alpha}_2\ne 0\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill =-{\displaystyle \sum_{k_2=0}^{n_2}A\left({n}_2,{k}_2\right)}{\alpha_2}^{-\left({k}_2+1\right)}H\left[X,{n}_1+{n}_2-{k}_2,{\alpha}_1+{\alpha}_2\right]\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{k_2=0}^{n_2}A\left({n}_2,{k}_2\right)}{\alpha_2}^{-\left({k}_2+1\right)}{\displaystyle \sum_{k_1=0}^{n_1+{n}_2-{k}_2}A\left({n}_1+{n}_2-{k}_2,{k}_1\right)}{\left({\alpha}_1+{\alpha}_2\right)}^{-\left({k}_1+1\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.2em \times {X}^{n_1+{n}_2-\left({k}_1+{k}_2\right)} \exp \left(-\left({\alpha}_1+{\alpha}_2\right)X\right)\hfill \end{array}\end{array} $$
(3.B16)
$$ \begin{array}{l}Hh\left[X,{n}_1,{\alpha}_1,{n}_2,{\alpha}_2\Big|{n}_2=-1,{\alpha}_2\ne 0\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)H\left[{r}_1,-1,{\alpha}_2\Big|{\alpha}_2\ne 0\right]}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)Ei\left(-{\alpha}_2{r}_1\right)}\hfill & \hfill \hfill \end{array}\end{array} $$
(3.B17)
$$ \begin{array}{l}Hh\left[X,{n}_1,{\alpha}_1,{n}_2,{\alpha}_2\Big|{n}_2\le 2,{\alpha}_2\ne 0\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)H\left[{r}_1,{n}_2,{\alpha}_2\Big|{n}_2\le 2,{\alpha}_2\ne 0\right]}\hfill & \hfill \hfill \end{array}\end{array} $$
(3.B18)
$$ \begin{array}{l}Hh\left[X,{n}_1,{\alpha}_1,{n}_2,{\alpha}_2\Big|{n}_2\ne -1,{\alpha}_2=0\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)H\left[{r}_1,{n}_2,{\alpha}_2\Big|{n}_2\ne -1,{\alpha}_2=0\right]}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill =\frac{1}{n_2+1}{\displaystyle {\int}^Xd{r}_1{r}_1^{n_1+{n}_2+1} \exp \left(-{\alpha}_1{r}_1\right)}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill =\frac{1}{n_2+1}H\left[X,{n}_1+{n}_2+1,{\alpha}_1\right]\hfill & \hfill \hfill \end{array}\end{array} $$
(3.B19)
$$ \begin{array}{l}Hh\left[X,{n}_1,{\alpha}_1,{n}_2,{\alpha}_2\Big|{n}_2=-1,{\alpha}_2=0\right]\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right)H\left[{r}_1,{n}_2,{\alpha}_2\Big|{n}_2=-1,{\alpha}_2=0\right]}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_1{r}_1^{n_1} \exp \left(-{\alpha}_1{r}_1\right) \log {r}_1}\hfill & \hfill \hfill \end{array}\end{array} $$
(3.B20)

1.3 Appendix C: B Function

We define B function in this appendix. B function is an integral in which STF centered on B center is looked from A center.

$$ \begin{array}{l}B\left(n,\zeta, R,{r}_A\right)\equiv {\displaystyle {\int}_0^{\pi } \sin {\theta}_Ad{\theta}_A}{r}_B^n \exp \left(-\zeta {r}_B\right)\\ {}\begin{array}{cccc}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}\kern1.87em ={\displaystyle {\int}_{-1}^1J\left({r}_A,R\right)dx}{r}_B^n \exp \left(-\zeta {r}_B\right)\end{array} $$
(3.C1)

If r A  ≤ R, r B  = R + r A x. We obtain B function in Eq. (3.C1) as follows

$$ \begin{array}{l}{r}_B^n \exp \left(-\zeta {r}_B\right)={r}_B^n \exp \left(-\zeta {r}_B\right)\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}\kern2.95em = \exp \left(-\zeta R\right){\displaystyle \sum_{s=0}^n\left(\begin{array}{c}\hfill n\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^s{r}_A^{n-s}\left\{{x}^{n-s} \exp \left(-\zeta {r}_Ax\right)\right\}\end{array} $$
(3.C2)
$$ \begin{array}{l}J\left({r}_A,R\Big|{r}_A\le R\right){r}_B^n \exp \left(-\zeta {r}_B\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}={R}^{-1}{r}_B{r}_B^n \exp \left(-\zeta {r}_B\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}= \exp \left(-\zeta R\right){\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1}{r}_A^{n+1-s}\left\{{x}^{n+1-s} \exp \left(-\zeta {r}_Ax\right)\right\}\end{array} $$
(3.C3)
$$ \begin{array}{l}B\left(n,\zeta, R,{r}_A\Big|{r}_A\le R\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill = \exp \left(-\zeta R\right){\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1}{r}_A^{n+1-s}\left\{{\displaystyle {\int}_{-1}^1dx}{x}^{n+1-s} \exp \left(-\zeta {r}_Ax\right)\right\}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1} \exp \left(-\zeta R\right){r}_A^{n+1-s}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \left\{H\left[1,n+1-s,\zeta {r}_A\right]-H\left[-1,n+1-s,\zeta {r}_A\right]\right\}\hfill \end{array}\end{array} $$
(3.C4)
$$ H\left[1,n+1-s,\zeta {r}_A\right]=-{\displaystyle \sum_{k=0}^{n+1-s}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}{r}_A^{-\left(k+1\right)} \exp \left(-\zeta {r}_A\right) $$
(3.C5)
$$ \begin{array}{l}H\left[-1,n+1-s,\zeta {r}_A\right]=-{\displaystyle \sum_{k=0}^{n+1-s}{\left(-1\right)}^{n+1-\left(s+k\right)}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}\\ {}\begin{array}{cccc}\hfill \begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}\times {r_A}^{-\left(k+1\right)} \exp \left(\zeta {r}_A\right)\end{array} $$
(3.C6)

If r A  ≥ R, we obtain B function in Eq. (3.C1) as follows

$$ {r}_B^n \exp \left(-\zeta {r}_B\right)= \exp \left(-\zeta {r}_A\right){\displaystyle \sum_{s=0}^n\left(\begin{array}{c}\hfill n\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{n-s}{r}_A^s\left\{{x}^{n-s} \exp \left(-\zeta Rx\right)\right\} $$
(3.C7)
$$ \begin{array}{l}J\left({r}_A,R\Big|{r}_A\ge R\right){r}_B^n \exp \left(-\zeta {r}_B\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={r}_A^{-1}{r}_B{r}_B^n \exp \left(-\zeta {r}_B\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill = \exp \left(-\zeta {r}_A\right){\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{n+1-s}{r}_A^{s-1}\left\{{x}^{n+1-s} \exp \left(-\zeta Rx\right)\right\}\hfill \end{array}\end{array} $$
(3.C8)
$$ \begin{array}{l}B\left(n,\zeta, R,{r}_A\Big|{r}_A\ge R\right)\\ {}\kern1em = \exp \left(-\zeta {r}_A\right){\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{n+1-s}{r}_A^{s-1}\left\{{\displaystyle {\int}_{-1}^1dx}{x}^{n+1-s} \exp \left(-\zeta Rx\right)\right\}\\ {}\kern1em ={\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{n+1-s}{r}_A^s \exp \left(-\zeta {r}_A\right)\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}\kern-0.35em \times \left\{\left\langle H\left[1,n+1-s,\zeta R\right]\right\rangle -\left\langle H\left[-1,n+1-s,\zeta R\right]\right\rangle \right\}\end{array} $$
(3.C9)
$$ \left\langle H\left[1,n+1-s,\zeta R\right]\right\rangle =-{\displaystyle \sum_{k=0}^{n+1-s}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}{R}^{-\left(k+1\right)} \exp \left(-\zeta R\right) $$
(3.C10)
$$ \begin{array}{l}\left\langle H\left[-1,n+1-s,\zeta R\right]\right\rangle \\ {}\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}=-{\displaystyle \sum_{k=0}^{n+1-s}{\left(-1\right)}^{n+1-\left(s+k\right)}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}{R}^{-\left(k+1\right)} \exp \left(\zeta R\right)\end{array} $$
(3.C11)

where <……. > means a definite integral. We obtain B function in Eq. (3.C1) as

$$ \begin{array}{l}B\left(n,\zeta, R,{r}_A\Big|{r}_A\le R\right)\\ {}=-{\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1} \exp \left(-\zeta R\right){\displaystyle \sum_{k=0}^{n+1-s}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}{r}_A^{n-\left(s+k\right)} \exp \left(-\zeta {r}_A\right)\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-1.32em +{\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1} \exp \left(-\zeta R\right){\displaystyle \sum_{k=0}^{n+1-s}{\left(-1\right)}^{n+1-\left(s+k\right)}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.4em \times {r}_A^{n-\left(s+k\right)} \exp \left(\zeta {r}_A\right)\hfill \end{array}\end{array} $$
(3.C12)
$$ \begin{array}{l}B\left(n,\zeta, R,{r}_A\Big|{r}_A\ge R\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill =-{\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{\displaystyle \sum_{k=0}^{n+1-s}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}{R}^{n-\left(s+k\right)} \exp \left(-\zeta R\right)\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.25em \times {r}_A^s \exp \left(-\zeta {r}_A\right)\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.15em +{\displaystyle \sum_{s=0}^{n+1}\left(\begin{array}{c}\hfill n+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{\displaystyle \sum_{k=0}^{n+1-s}{\left(-1\right)}^{n+1-\left(s+k\right)}A\left(n+1-s,k\right)}{\zeta}^{-\left(k+1\right)}{R}^{n-\left(s+k\right)} \exp \left(\zeta R\right)\hfill \end{array}\end{array} $$
(3.C13)

1.4 Appendix D: Half Definite Integral, Hb, Hbhb and Hhb

We define three half definite integrals, Hb, Hbhb and Hhb in this appendix.

$$ \begin{array}{l}Hb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill \equiv {\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right){\displaystyle {\int}_0^{\pi } \sin {\theta}_Ad{\theta}_A}{r}_B^{n_2} \exp \left(-{\zeta}_b{r}_B\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right){\displaystyle {\int}_{-1}^1J\left({r}_A,R\right)dx}{r}_B^{n_2} \exp \left(-{\zeta}_b{r}_B\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right)B\left({n}_2,{\zeta}_b,R,{r}_A\right)\hfill \end{array}\end{array} $$
(3.D1)

If X ≤ R,

$$ \begin{array}{l}Hb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|{\zeta}_a\ne {\zeta}_b,X\le R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1} \exp \left(-{\zeta}_bR\right)\left[{\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\right.\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times {\displaystyle \sum_{t=0}^{n_1+{n}_2-\left(s+k\right)}A\left({n}_1+{n}_2-\left(s+k\right),t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times \left.{X}^{n_1+{n}_2-\left(s+k\right)-t} \exp \left(-\left({\zeta}_a+{\zeta}_b\right)X\right)\right]\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.75em -{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1} \exp \left(-{\zeta}_bR\right){\displaystyle \sum_{k=0}^{n_2+1-s}{\left(-1\right)}^{n_2+1-\left(s+k\right)}A\left({n}_2+1-s,k\right)}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times {\displaystyle \sum_{t=0}^{n_1+{n}_2-\left(s+k\right)}A\left({n}_1+{n}_2-\left(s+k\right),t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times {X}^{n_1+{n}_2-\left(s+k\right)-t} \exp \left(-\left({\zeta}_a+{\zeta}_b\right)X\right)\hfill \end{array}\end{array} $$
(3.D2)
$$ \begin{array}{l}Hb\left[R,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|{\zeta}_a\ne {\zeta}_b,X\le R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill = \exp \left(-\left({\zeta}_a+2{\zeta}_b\right)R\right)\left[{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right){\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}}\right.\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times \left.{\displaystyle \sum_{t=0}^{n_1+{n}_2-\left(s+k\right)}A\left({n}_1+{n}_2-\left(s+k\right),t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}{R}^{n_1+{n}_2-\left(k+t+1\right)}\right]\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.75em - \exp \left(-\left({\zeta}_a+2{\zeta}_b\right)R\right)\left[{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right){\displaystyle \sum_{k=0}^{n_2+1-s}{\left(-1\right)}^{n_2+1-\left(s+k\right)}A\left({n}_2+1-s,k\right)}}\right.\hfill \end{array}\\ {}\left.\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times {\displaystyle \sum_{t=0}^{n_1+{n}_2-\left(s+k\right)}A\left({n}_1+{n}_2-\left(s+k\right),t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}{R}^{n_1+{n}_2-\left(k+t+1\right)}\hfill \end{array}\right]\end{array} $$
(3.D3)
$$ \begin{array}{l} Hb\left[0,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|{\zeta}_a\ne {\zeta}_b,X\le R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill = \exp \left(-{\zeta}_bR\right)\left[{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1}{\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\right.\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill & \hfill \kern-2.65em \times \left({n}_1+{n}_2-\left(s+k\right)\right)!{\left({\zeta}_a+{\zeta}_b\right)}^{n_1+{n}_2+1-\left(s+k\right)}]\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.75em - \exp \left(-{\zeta}_bR\right)\left[{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1}{\displaystyle \sum_{k=0}^{n_2+1-s}{\left(-1\right)}^{n_2+1-\left(s+k\right)}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\right.\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times \left({n}_1+{n}_2-\left(s+k\right)\right)!{\left({\zeta}_a-{\zeta}_b\right)}^{n_1+{n}_2+1-\left(s+k\right)}]\hfill \end{array}\end{array} $$
(3.D4)
$$ \begin{array}{l}Hb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|{\zeta}_a={\zeta}_b,X\le R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1} \exp \left(-{\zeta}_bR\right)\left[{\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\right.\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \times {\displaystyle \sum_{t=0}^{n_1+{n}_2+2-\left(s+k\right)}A\left({n}_1+{n}_2-\left(s+k\right),t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}\hfill \end{array}{X}^{n_1+{n}_2-\left(s+k+t\right)}\\ {}\left.\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\kern0.5em \times \exp \left(-\left({\zeta}_a+{\zeta}_b\right)X\right)\right]+{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{R}^{s-1} \exp \left(-{\zeta}_bR\right)\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.32em \times {\displaystyle \sum_{k=0}^{n_2+1-s}{\left(-1\right)}^{n_2+1-\left(s+k\right)}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\frac{1}{n_1+{n}_2+1-\left(s+k\right)}X\hfill \end{array}\end{array} $$
(3.D5)
$$ \begin{array}{l} Hb\left[R,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|{\zeta}_a={\zeta}_b,X\le R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill = \exp \left(-\left({\zeta}_a+2{\zeta}_b\right)R\right)\left[{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\right.\hfill \end{array}\\ {}\begin{array}{cc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \kern-0.6em \times \left[{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}{\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\right.\hfill \end{array}\\ {}\begin{array}{ccc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \kern-0.6em \times \left.{\displaystyle \sum_{t=0}^{n_1+{n}_2+2-\left(s+k\right)}A\left({n}_1+{n}_2-\left(s+k\right),t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}{R}^{n_1+{n}_2-\left(k+t+1\right)}\right]\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{cc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \kern0.65em + \exp \left(-{\zeta}_bR\right){\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}\hfill \end{array}\hfill & \hfill \hfill \end{array}\\ {}\begin{array}{ccc}\hfill \hfill & \hfill \hfill & \hfill \kern-0.26em \times {\displaystyle \sum_{k=0}^{n_2+1-s}{\left(-1\right)}^{n_2+1-\left(s+k\right)}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}\frac{1}{n_1+{n}_2+1-\left(s+k\right)}{R}^{n_1+{n}_2+1-\left(k+1\right)}\hfill \end{array}\end{array} $$
(3.D6)
$$ Hb\left[0,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|{\zeta}_a={\zeta}_b,X\le R\right]=0 $$
(3.D7)
$$ \begin{array}{l}Hb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|X\ge R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill \equiv {\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right){\displaystyle {\int}_0^{\pi } \sin {\theta}_Ad{\theta}_A}{r}_B^n\kern0.20em \exp \left(-{\zeta}_b{r}_B\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right){\displaystyle {\int}_{-1}^1J\left({r}_A,R\Big|{r}_A\ge R\right)dx}{r}_B^n\kern0.20em \exp \left(-{\zeta}_b{r}_B\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right)B\left({n}_2,{\zeta}_b,R,{r}_A\Big|{r}_A\ge R\right)\hfill \end{array}\end{array} $$
(3.D8)
$$ \begin{array}{l} Hb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|X\ge R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}\left\{{\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}{R}^{n_2-\left(s+k\right)} \exp \left(-{\zeta}_bR\right)\right\}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.66em \times {\displaystyle \sum_{t=0}^{n_1+s}A\left({n}_1+s,t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}{X}^{n_1+s-t} \exp \left(-\left({\zeta}_a+{\zeta}_b\right)X\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.7em -{\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}\left\{{\displaystyle \sum_{k=0}^{n_2+1-s}{\left(-1\right)}^{n_2+1-\left(s+k\right)}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}{R}^{n_2-\left(s+k\right)} \exp \left({\zeta}_bR\right)\right\}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.65em \times {\displaystyle \sum_{t=0}^{n_1+s}A\left({n}_1+s,t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}{X}^{n_1+s-t} \exp \left(-\left({\zeta}_a+{\zeta}_b\right)X\right)\hfill \end{array}\end{array} $$
(3.D9)
$$ \begin{array}{l} Hb\left[R,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|X\ge R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill = \exp \left(-\left({\zeta}_a+2{\zeta}_b\right)R\right){\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}\hfill \end{array}\left\{{\displaystyle \sum_{k=0}^{n_2+1-s}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}{R}^{n_2-\left(s+k\right)}\right\}\\ {}\begin{array}{ccc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \kern0.68em \left\{{\displaystyle \sum_{t=0}^{n_1+s}A\left({n}_1+s,t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}{R}^{n_1+s-t}\right\}\hfill \end{array}\hfill & \hfill \hfill & \hfill \hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern0.75em - \exp \left(-{\zeta}_aR\right){\displaystyle \sum_{s=0}^{n_2+1}\left(\begin{array}{c}\hfill {n}_2+1\hfill \\ {}\hfill s\hfill \end{array}\right)}\hfill \end{array}\left\{{\displaystyle \sum_{k=0}^{n_2+1-s}{\left(-1\right)}^{n_2+1-\left(s+k\right)}A\left({n}_2+1-s,k\right)}{\zeta}_b^{-\left(k+1\right)}{R}^{n_2-\left(s+k\right)}\right\}\\ {}\begin{array}{ccc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \kern0.7em \left\{{\displaystyle \sum_{t=0}^{n_1+s}A\left({n}_1+s,t\right)}{\left({\zeta}_a+{\zeta}_b\right)}^{-\left(t+1\right)}{R}^{n_1+s-t}\right\}\hfill \end{array}\hfill & \hfill \hfill & \hfill \hfill \end{array}\end{array} $$
(3.D10)
$$ \begin{array}{l}Hb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b\Big|X\ge R\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill \equiv {\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right){\displaystyle {\int}_0^{\pi } \sin {\theta}_Ad{\theta}_A}{r}_B^n\kern0.20em \exp \left(-{\zeta}_b{r}_B\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right){\displaystyle {\int}_{-1}^1J\left({r}_A,R\Big|{r}_A\ge R\right)dx}{r}_B^n\kern0.20em \exp \left(-{\zeta}_b{r}_B\right)\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill ={\displaystyle {\int}^Xd{r}_A}{r}_A^{n_1} \exp \left(-{\zeta}_a{r}_A\right)B\left({n}_2,{\zeta}_b,R,{r}_A\Big|{r}_A\ge R\right)\hfill \end{array}\end{array} $$
(3.D11)
$$ \begin{array}{l}Hhb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b,{n}_3,{\zeta}_c\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill \begin{array}{l}\equiv {\displaystyle {\int}^Xd{r}_{A_1}}{r}_{A_1}^{n_1} \exp \left(-{\zeta}_a{r}_{A_1}\right){\displaystyle {\int}^{r_{A_1}}d{r}_{A_2}}{r}_{A_2}^{n_2}\kern0.20em \exp \left(-{\zeta}_a{r}_{A_2}\right)\\ {}\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\kern-0.6em \times {\displaystyle {\int}_0^{\pi } \sin {\theta}_{A_2}d{\theta}_{A_2}}{r}_{B_2}^{n_3} \exp \left(-{\zeta}_c{r}_{B_2}\right)\end{array}\hfill \end{array}\\ {}\begin{array}{cc}\hfill \hfill & \hfill \kern-0.15em ={\displaystyle {\int}^Xd{r}_A}{r}_A^n \exp \left(-{\zeta}_a{r}_A\right)Hb\left[{r}_A,{n}_2,{\zeta}_b,{n}_3,{\zeta}_c\right]\hfill \end{array}\end{array} $$
(3.D12)
$$ \begin{array}{l} Hbhb\left[X,{n}_1,{\zeta}_a,{n}_2,{\zeta}_b,{n}_3,{\zeta}_c,{n}_4,{\zeta}_d\right]\\ {}\begin{array}{cc}\hfill \hfill & \hfill \equiv {\displaystyle {\int}^Xd{r}_{A_1}}{r}_{A_1}^{n_1} \exp \left(-{\zeta}_a{r}_{A_1}\right)B\left({n}_2,{\zeta}_b,R,{r_A}_{1_1}\right)Hb\left[{r}_{A_1},{n}_3,{\zeta}_c,{n}_4,{\zeta}_d\right]\hfill \end{array}\end{array} $$
(3.D13)

In some cases of multiple integral, two types of integral appear.

$$ {\displaystyle {\int}^X{x}^n} \exp \left(- ax\right) \log\;x $$
(3.D14)

and

$$ {\displaystyle {\int}^X{x}^n} \exp \left(- ax\right)Ei\left(-bx\right) $$
(3.D15)

These integrals are expressed by the exponential integral function, the Euler gamma function, the generalized hypergeometric function, and log x.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yasui, J. (2015). Analytical Expression of Molecular Integrals over Slater-Type Functions for Generating Their Polynomial Expressions. In: Ishii, T., Wakita, H., Ogasawara, K., Kim, YS. (eds) The DV-Xα Molecular-Orbital Calculation Method. Springer, Cham. https://doi.org/10.1007/978-3-319-11185-8_3

Download citation

Publish with us

Policies and ethics