Skip to main content

Wavelength of Luminescence and Energy Level Structure of Binuclear Copper(I) Complex

  • Chapter
  • First Online:
The DV-Xα Molecular-Orbital Calculation Method

Abstract

We investigate the mechanism of strong fluorescence and phosphorescence observed in the binuclear copper complexes by means of a discrete variational (DV)-Xα molecular orbital calculation. Comparing to the energy differences among a occupied and unoccupied molecular orbitals, we can reveal the photon energy of the light of the luminescence in a quantitative way. We also obtained the strong relationship between the observed and the calculated photon energies with according to the conservation of energy principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H, Taniguchi K (1978) Discrete variational Xα cluster calculations. IV. Application to X-ray emission study. J Phys Soc Jpn 49(5):1944–1953

    Article  Google Scholar 

  • Adachi H, Tsukada M, Satoko C (1978a) Discrete variational Xα cluster calculations. I. Application to metal clusters. J Phys Soc Jpn 45(3):875–883

    Article  CAS  Google Scholar 

  • Adachi H, Shiokawa S, Tsukada M, Satoko C, Sugano S (1978b) Discrete variational X α cluster calculations. III. Application to transition metal complexes. J Phys Soc Jpn 47(5):1528–1537

    Article  Google Scholar 

  • Adachi H, Mukoyama T, Kawai J (2005) Hartree–Fock–Slater method for materials science, the DV-Xα method for design and characterization of materials, vol 84, Springer series in materials science. Springer, Berlin/Heidelberg/New York. ISBN 978–3540245087

    Google Scholar 

  • Allen FH (2002) The Cambridge structural database, a quarter of a million crystal structures and rising. Acta Crystallogr Sect B Struct Sci 58:380–388

    Article  Google Scholar 

  • Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Luminescence ranging from red to blue: a series of copper(I) − halide complexes having rhombic {Cu2(μ-X)2} (X = Br and I) units with N-heteroaromatic ligands. Inorg Chem 44:9667–9675

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G, Gaus PL (1994) Basic inorganic chemistry, 3rd edn. Wiley, New York. ISBN 978–0471505327

    Google Scholar 

  • Cotton FA, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley-Interscience, New York. ISBN 978–0471199571

    Google Scholar 

  • Figgis BN, Hitchman MA (1999) Ligand field theory and its applications. Wiley-VCH, New York. ISBN 978–0471317760

    Google Scholar 

  • Ishii T, Tsuboi S, Sakane G, Yamashita M, Breedlove BK (2009) Universal spectrochemical series of six-coordinate octahedral metal complexes for modifying the ligand field splitting. Dalton Trans (4):680–687

    Google Scholar 

  • Jørgensen CK (1958) The interelectronic repulsion and partly covalent bonding in transition-group complexes. Discuss Faraday Soc 26:110–115

    Article  Google Scholar 

  • Miyasaka H, Julve M, Yamashita M, Clérac R (2009) Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain. Magnets Inorg Chem 48(8):3420–3437

    Article  CAS  Google Scholar 

  • Mulliken RS (1955a) Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys 23:1841

    Article  CAS  Google Scholar 

  • Mulliken RS (1955b) Electronic population analysis on LCAO‐MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J Chem Phys 23:2338

    Article  CAS  Google Scholar 

  • Mulliken RS (1955c) Electronic population analysis on LCAO‐MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence‐bond theories. J Chem Phys 23:2343

    Article  CAS  Google Scholar 

  • Mulliken RS (1955d) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  • Ozawa Y, Terashima M, Mitsumi M, Toriumi K, Yasuda N, Uekusa H, Ohashi Y (2003) Photoexcited crystallography of diplatinum complex by multiple-exposure IP method. Chem Lett 32(1):62–63

    Article  CAS  Google Scholar 

  • Ozawa Y, Yoshida S, Kitayama N, Mitsumi M, Toriumi K, Tsuge K, Araki H, Sasaki Y (2008) Single-crystal structure analysis of photo-excited state of halogen-bridged dicopper(I) complexes. Acta Cryst A64:C615–C616

    Google Scholar 

  • Rosén A, Ellis DE (1975) Relativistic molecular calculations in the Dirac–Slater model. J Chem Phys 62(8):3039

    Article  Google Scholar 

  • Satoko C, Tsukada M, Adachi HJ (1978) Discrete variational Xα cluster calculations. II. Application to the surface electronic structure of MgO. Phys Soc Jpn 45(4):1333–1340

    Article  CAS  Google Scholar 

  • Schönherr T (2004a) Optical spectra and chemical bonding in inorganic compounds: special volume I dedicated to Professor Jørgensen (structure and bonding). Springer, Berlin/Heidelberg/New York. ISBN 978–3540008538

    Google Scholar 

  • Schönherr T (2004b) Optical spectra and chemical bonding in transition metal complexes: special volume II, dedicated to Professor Jørgensen (structure and bonding). Springer, Berlin/Heidelberg/New York. ISBN 978–3540008545

    Book  Google Scholar 

  • Shimura Y, Tsuchida R (1956) Absorption spectra of Co(III) complexes. II. Redetermination of the spectrochemical series. Bull Chem Soc Jpn 29(3):311–316

    Article  CAS  Google Scholar 

  • Tsuchida R (1938a) Absorption spectra of co-ordination compounds. I. Bull Chem Soc Jpn 13(5):388–400

    Article  CAS  Google Scholar 

  • Tsuchida R (1938b) Absorption spectra of co-ordination compounds. II. Bull Chem Soc Jpn 13(6):436–450

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors express their thanks to Drs. F. Izumi and K. Momma (Nat’l Inst. for Materials Sci., Japan) for permission to use the 3D visualization program “VESTA”. The authors express their gratitude to Prof. H. Adachi (Kyoto Univ.) for permission to use his computational program. The authors also thank Drs. R. Sekine (Shizuoka Univ.), Y. Kowada (Hyogo Univ. of Teacher Edu.), and M. Mizuno (Osaka Univ.) for fruitful discussions and useful technical advice. The authors also thank to Profs. K. Toriumi and Y. Ozawa (Univ. of Hyogo) for fruitful discussions about the molecular structure in the excited state.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiko Ishii .

Editor information

Editors and Affiliations

Electronic Supporting Information (ESI)

Electronic Supporting Information (ESI)

Fig. 14.19
figure 19

Expected molecular structural deformation of Cu2(μ-Br)2(PPh3)2L2 after irradiating with an ultraviolet light (model 5)

Fig. 14.20
figure 20

Ligand (L) dependence of the energy level structures of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L = dmap, 3-bzpy, bpy, 1,5-nap, 1,6-nap, quina, 4-bzpy, and pyz) (model 1). Solid and dashed lines denote the occupied and the unoccupied molecular orbitals, respectively. The colors used in this figure correspond to the observed luminescence wavelengths

Fig. 14.21
figure 21

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top) and L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L-M-L) (model 2) (bottom) (L = bpy)

Fig. 14.22
figure 22

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top) and L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L-M-L) (model 2) (bottom) (L = quina)

Fig. 14.23
figure 23

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top) and L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L-M-L) (model 2) (bottom) (L = 1,6-nap)

Fig. 14.24
figure 24

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top) and L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L-M-L) (model 2) (bottom) (L = 1,5-nap)

Fig. 14.25
figure 25

Partial density of states (p-DOS) near the Fermi energy level after 0, 2, 5, and 10 % structural deformation of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (L = 1,5-nap)

Fig. 14.26
figure 26

Partial density of states (p-DOS) near the Fermi energy level after 0, 2, 5, and 10 % structural deformation of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (L = bpy)

Fig. 14.27
figure 27

Partial density of states (p-DOS) near the Fermi energy level after 0, 2, 5, and 10 % structural deformation of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (L = 3-bzpy)

Fig. 14.28
figure 28

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top), Cu(μ-Br)2Cu-L-Cu(μ-Br)2Cu (model 3) (middle), and CuBr2-L-CuBr2 (model 4) (bottom) (L = quina)

Fig. 14.29
figure 29

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top), Cu(μ-Br)2Cu-L-Cu(μ-Br)2Cu (model 3) (middle), and CuBr2-L-CuBr2 (model 4) (bottom) (L = 1,6-nap)

Fig. 14.30
figure 30

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top), Cu(μ-Br)2Cu-L-Cu(μ-Br)2Cu (model 3) (middle), and CuBr2-L-CuBr2 (model 4) (bottom) (L = 1,5-nap)

Fig. 14.31
figure 31

Partial density of states (p-DOS) near the Fermi energy level of L-Cu(PPh3)(μ-Br)2Cu(PPh3)-L (L-M-L) (model 1) (top), Cu(μ-Br)2Cu-L-Cu(μ-Br)2Cu (model 3) (middle), and CuBr2-L-CuBr2 (model 4) (bottom) (L = bpy)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ishii, T. et al. (2015). Wavelength of Luminescence and Energy Level Structure of Binuclear Copper(I) Complex. In: Ishii, T., Wakita, H., Ogasawara, K., Kim, YS. (eds) The DV-Xα Molecular-Orbital Calculation Method. Springer, Cham. https://doi.org/10.1007/978-3-319-11185-8_14

Download citation

Publish with us

Policies and ethics