Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 45))

Abstract

Recreating realistic features of the pulmonary acinus within an experimental model system is among the great challenges of modern respiratory physiology. Intricate anatomical architecture, distinct physiological flow patterns and complex cellular functions all render limited experimental approaches, capturing only some aspects of acinar airway physiology. Microfluidic-based in vitro devices (μFIVDs) offer attractive advantages over conventional in vitro models, and thus miniaturized technologies are becoming more frequently implemented to recreate biomimetic models of the pulmonary tract. However, current μFIVDs still lack critical physiological aspects of the pulmonary acinus; models are often limited to single channels and operate under submerged conditions that are loosely reflecting the realistic acinar environment. Here, we present an anatomically-inspired and physiologically-relevant cell-based in vitro microfluidic platform that combines a multi-generation design of ductal airways and alveolar spaces and integrates confluent monolayers of alveolar epithelium, recreating either fluid-submerged or air-exposed environments. Our microfluidic platform provides robust tools to study numerous aspects of pulmonary physiology, including varying alveolar morphology during fetal development, the propagation of liquid plugs alog airways and cytotoxicity of airborne particles deposited on alveolar walls. Overall, we propose a versatile model that captures anatomical and physiological pulmonary functionalities while preserving homeostatic cellular microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tenenbaum-Katan, J., Fishler, R., Rothen-Rutishauser, B., Sznitman, J. (2015). Microfluidic in Vitro Platforms of Pulmonary Alveolar Physiology. In: Lacković, I., Vasic, D. (eds) 6th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proceedings, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-11128-5_193

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11128-5_193

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11127-8

  • Online ISBN: 978-3-319-11128-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics