Skip to main content

Minimum Energy Dissipation Rate Theory and Its Applications for Water Resources Engineering

  • Chapter
  • First Online:
Advances in Water Resources Engineering

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 14))

Abstract

Minimum energy dissipation rate principle can be derived from minimum entropy production principle. Minimum entropy production principle is equivalent to the minimum energy dissipation rate principle. The concept of minimum energy dissipation rate principle is that, when an open system is at a steady nonequilibrium state, the energy dissipation rate is at its minimum value. The minimum value depends on the constraints applied to the system. If the system deviates from the steady nonequilibrium state, it will adjust itself to reach a steady nonequilibrium state. The energy dissipation rate will reach a minimum value again. In order to verify the fluid motion following minimum energy dissipation rate principle, re-normalisation group (RNG) k -ε turbulence model and general moving object (GMO) model of Flow-3D were applied to simulate fluid motion in a straight rectangular flume. The results show that fluid motion satisfies the minimum energy dissipation rate principle. Variations of energy dissipation rate of alluvial rivers have been verified with field data. When a river system is at a relative equilibrium state, the value of its energy dissipation rate is at minimum. The minimum value depends on the constraints applied to the river system. However, due to the dynamic nature of a river, the minimum value may vary around its average value. When a river system evolves from a relative state of equilibrium to another state, the process is very complicated. The energy dissipation rate does not necessarily decrease monotonically with respect to time. When a system is at a new relative state of equilibrium, the energy dissipation rate must be at a minimum value compatible with the constraints applied to the system. Hydraulic geometry relationships can be derived from the minimum energy dissipation rate principle. Combining the minimum energy dissipation rate principle with optimization technology as the objective function under the given constraints, the optimum design mathematical models can be developed for a diversion headwork bend structure and stable channel design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Cross-sectional area of flow (m2)

\({{A}_{k}}\) :

Chemical affinity (J/mol)

B :

River width (m)

b :

Channel bottom width (m)

C :

Chezy coefficient (m1/2/s)

\({{C}_{\text{H}}}\) :

Nonsilting sediment concentration (kg/m3)

\({{C}_{\max }}\) :

Maximum permissible sediment concentration (kg/m3)

\({{C}_{\text{r}}}\) :

Criterion of circulation intensity (dimensionless)

\({{C}_{\text{s}}}\) :

Sediment concentration (kg/m3)

\({{C}_{\text{V}}}\) :

Sediment concentration by volume (dimensionless)

\({{C}_{*}}\) :

Sediment transport capacity (kg/m3)

\({{d}_{50}}\) :

Sediment median diameter (m or mm)

\({{\text{d}}_{\text{e}}}E/\text{d}t\) :

The entropy flux (W/K)

\({{\text{d}}_{\text{i}}}E/\text{d}t\) :

The entropy production (W/K)

\(E\) :

Entropy (J/K)

\({{E}_{\text{V}}}\) :

Local entropy, also known as unit volume entropy or entropy density (J/(K·m3))

e :

Internal energy (J/kg)

\(F\) :

Mass force acting on a unit of fluid mass (N/kg)

\({{G}_{\text{b}}}\) :

Cross-sectional rate of bed-load transport (kg/s)

g :

Acceleration of gravity (m/s2)

h :

Average water depth (m)

\({{J}_{i}}\) :

Generalized flows (no unique units)

\({{L}_{kl}}\) :

Phenomenological coefficients (dimensionless)

m :

Mass or bankside slope (kg or dimensionless)

n :

Roughness (s/m1/3)

\(n\) :

The outward unit vector (dimensionless)

\(P\) :

Second-order stress tensor (Pa)

P :

Entropy production (W/K)

p :

Pressure (Pa)

Q :

Water discharge (kg/m3)

\({{q}_{\lambda }}\) :

Thermal transport vector (W/m2)

\({{q}_{\text{R}}}\) :

Thermal radiation per unit mass (W/kg)

R :

Hydraulic radius (m)

S :

Slope (dimensionless)

T :

Absolute temperature (K)

t :

Time (s)

U :

Velocity (m/s)

\({{U}_{\text{c}}}\) :

Incipient velocity (m/s)

\(u\) :

Velocity vector (m/s)

\({{u}_{i}}\) :

Component of velocity (m/s)

\(V\) :

Volume (m3)

\({{X}_{i}}\) :

Generalized forces (no unique units)

\({{z}_{\text{b}}}\) :

Elevation at the bottom of cross section (m)

\(\Gamma \) :

Permissible ratio (dimensionless)

\(\gamma \) :

Specific weight of water (N/m3)

\(\delta \) :

Second-order unit tensor (dimensionless)

\(\nu \) :

Molecular viscosity (m2/s)

\({{\nu }_{t}}\) :

Turbulent viscosity (m2/s)

\(\Pi \) :

Tangential stress tensor (Pa)

\(\rho \) :

Concentration or density (kg/m3)

\({{{\rho }'}_{\text{s}}}\) :

Dry density of sediment (kg/m3)

\(\sigma \) :

Local entropy production (W/(K·m3))

\(\Phi \) :

Energy dissipation rate per unit length (W/m)

\({{\Phi }_{V}}\) :

Energy dissipation rate per unit fluid volume (W/m3)

\(\varphi \) :

Energy dissipation function per unit volume of energy in unit time (W/m3)

\(\chi \) :

Wetted perimeter (m)

\(\omega \) :

Sediment particle fall velocity (m/s or mm/s)

References

  1. Yang, C. T. (1971). Potential energy and stream morphology. Water Resources Research, 7(2), 311–322.

    Article  Google Scholar 

  2. Yang, C. T. (1971). Formation of riffles and pools. Water Resources Research, 7(6), 1567–1574.

    Article  Google Scholar 

  3. Yang, C. T. (1972). Unit stream power and sediment transport. Journal of the Hydraulics Division, 98(HY10), 1805–1826.

    Google Scholar 

  4. Yang, C. T. (1973). Incipient motion and sediment transport. Journal of the Hydraulics Division, 99(HY10), 1679–1704.

    Google Scholar 

  5. Yang, C. T., & Stall, J. B. (1976). Applicability of unit stream power equation. Journal of the Hydraulics Division, 102(HY5), 559–568.

    Google Scholar 

  6. Yang, C. T. (1976). Minimum unit stream power and fluvial hydraulics. Journal of the Hydraulics Division, 102(HY7), 919–934.

    Google Scholar 

  7. Yang, C. T., & Song, C. C. S. (1979). Theory of minimum rate of energy dissipation. Journal of the Hydraulics Division, 105(HY7), 769–784.

    Google Scholar 

  8. Song, C. C. S., & Yang, C. T. (1979). Velocity profiles and minimum stream power. Journal of the Hydraulics Division, 105(HY8), 981–998.

    Google Scholar 

  9. Yang, C. T., & Song, C. C. S. (1979). Dynamic adjustments of alluvial channels. In D. D. Rhodes & G. P. Williams (Eds.), Adjustments of the fluvial systems (pp. 55–67). Dubuque: Kendall/Hunt Publishing Company.

    Google Scholar 

  10. Song, C. C. S., & Yang, C. T. (1980). Minimum stream power: Theory. Journal of the Hydraulics Division, 106(HY9), 1477–1487.

    Google Scholar 

  11. Yang, C. T., Song, C. C. S., & Woldenberg, M. J. (1981). Hydraulic geometry and minimum rate of energy dissipation. Water Resources Research, 17(4), 1014–1018.

    Article  Google Scholar 

  12. Song, C. C. S., & Yang, C. T. (1982). Minimum energy and energy dissipation rate. Journal of the Hydraulics Division, 108(HY5), 690–706.

    Google Scholar 

  13. Yang, C. T., & Molinas, A. (1982). Sediment transport and unit stream power function. Journal of the Hydraulics Division, 108(HY6), 774–793.

    Google Scholar 

  14. Yang, C. T. (1984). Unit stream power equation for gravel. Journal of Hydraulic Engineering, 110(HY12), 1783–1797.

    Article  Google Scholar 

  15. Molinas, A., & Yang, C. T. (1985). Generalized water surface profile computation. Journal of Hydraulic Engineering, 111(HY3), 381–397.

    Article  Google Scholar 

  16. Yang, C. T., & Song, C. C. S. (1986). Theory of minimum energy and energy dissipation rate. In Encyclopedia of fluid mechanics (Vol. 1, Chapter ll, pp. 353–399) Houston: Gulf Publishing Company.

    Google Scholar 

  17. Yang, C. T., & Kong, X. (1991). Energy dissipation rate and sediment transport. Journal of Hydraulic Research, 29(4), 457–474.

    Article  Google Scholar 

  18. Yang, C. T. (1994). Variational theories in hydrodynamics and hydraulics. Journal of Hydraulic Engineering, 120(6), 737–756.

    Article  Google Scholar 

  19. Chang, H. H., & Hill, J. C. (1977). Minimum stream power for rivers and deltas. Journal of the Hydraulics Division, 103(HY12), 1375–1389.

    Google Scholar 

  20. Chang, H. H. (1979a). Geometry of river in regime. Journal of the Hydraulics Division, 105(HY6), 691–706.

    Google Scholar 

  21. Chang, H. H. (1979b). Minimum stream power and river channel patterns. Journal of Hydrology, 41(3/4), 303–327.

    Article  Google Scholar 

  22. Chang, H. H. (1980). Stable alluvial canal design. Journal of the Hydraulics Division, 106(5), 873–891.

    Google Scholar 

  23. Chang, H. H. (1983). Energy expenditure in curved open channels. Journal of Hydraulic Engineering, 109(HY7), 1012–1022.

    Article  Google Scholar 

  24. Chang, H. H. (1984). Analysis of river meanders. Journal of Hydraulic Engineering, 110(HY1), 37–50.

    Article  Google Scholar 

  25. Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: Wiley-Interscience.

    Google Scholar 

  26. Wisniewski, S., Staniszewski, B., & Szymanik. R. (1988). Thermodynamics of nonequilibrium processes. [In Chinese.] (trans: J. Chen, K. Yin, H. Li). Beijing: Higher Education Press.

    Google Scholar 

  27. Li, R. (1986). Non-equilibrium thermodynamics and dissipative structures. [In Chinese.] Beijing: Tsinghua University Press.

    Google Scholar 

  28. Gong, M. (1998). Thermodynamics. [In Chinese.] Wu Han: Wuhan University Press.

    Google Scholar 

  29. Xu, G., & Lian, J. (2003). Theories of the minimum rate of energy dissipation and the minimum entropy production of flow (I). [In Chinese.] Journal of Hydraulic Engineering, 5, pp. 35–40.

    Google Scholar 

  30. Xu, G., & Lian, J. (2003). Theories of the minimum rate of energy dissipation and the minimum entropy production of flow (II). [In Chinese.] Journal of Hydraulic Engineering, 6, pp. 43–47.

    Google Scholar 

  31. Wu, W. (2004). Fluid mechanics. [In Chinese.] Beijing: University Press.

    Google Scholar 

  32. Chang, M., & Xu, G. (2013). Numerical simulation of fluid motion in flume based on theory of minimum rate of energy dissipation. [In Chinese.] Journal of Sediment Research, 2, pp. 67–71.

    Google Scholar 

  33. Qian, N., Zhang, R., & Zhou, Z. (1987). Fluvial process. [In Chinese.] Beijing: Science Press.

    Google Scholar 

  34. Xu, G., & Lian, J. (2008). Principle of the minimum rate of energy dissipation for fluid based on the theory of thermodynamics. [In Chinese.] Advances in Science and Technology of Water Resources, 28(5), pp. 16–20.

    Google Scholar 

  35. Xu, G., & Yang, C. T. (2012). Analysis of river bed changes based on the theories of minimum entropy production dissipative structure and chaos. [In Chinese.] Journal of Hydraulic Engineering, 43(8), pp. 948–956.

    Google Scholar 

  36. Leopold, L. B., & Langbein, W. B. (1962). The concept of entropy in landscape evolution. U.S. Geological Survey Professional Paper 500–A, pp. 1–20.

    Google Scholar 

  37. Xu, G., & Lian, J. (2004). Changes of the entropy, the entropy production and the rate of energy dissipation in river adjustment. [In Chinese.] Advances in Water Science, 15(1), pp. 1–5.

    Google Scholar 

  38. Xie, J. (1997). Fluvial process and regulation (2 nd version). [In Chinese.] Beijing: Water Resources and Electric Power Press.

    Google Scholar 

  39. Xu, G. (2011). River engineering. [In Chinese.] Beijing: China Science and Technology Press.

    Google Scholar 

  40. Huang, H., He, J., & Wang, X., etal. (2008). Research on influencing factors and criterion of channel patterns in alluvial rivers. [In Chinese.] Journal of Xinjiang Agricultural University, 31(6), pp. 76–79.

    Google Scholar 

  41. Xu, G., & Zhao, L. (2013). Analysis of fluvial process based on information entropy. [In Chinese.] Journal of Tianjin University, 46(4), pp. 347–353.

    Google Scholar 

  42. Xu, G., & Zhao, L. (2013). Analysis of channel pattern changes in the lower Yellow River based on the rate of energy dissipation. [In Chinese.] Journal of Hydraulic Engineering, 44(5), pp. 622–626.

    Google Scholar 

  43. Hu, Y., Zhang, H., & Liu, G., et al. (1998). River training in the wandering reach in the lower Yellow River. [In Chinese.] Zhengzhou: Yellow River Conservancy Press.

    Google Scholar 

  44. Zhang, R. (1998). River sediment dynamics (2 nd Version). [In Chinese.] Beijing: China WaterPower Press.

    Google Scholar 

  45. Xu, G. (1993). Calculation of the outlet sluice width in low dam diversion works. [In Chinese.] Journal of Sediment Research, 4, pp. 65–71.

    Google Scholar 

  46. Xu, G. (1992). Optimized design of bend in bend-type water diversion headworks. [In Chinese.] Journal of Sediment Research, 3, pp. 65–69.

    Google Scholar 

  47. Song, Z., Xu, X., & Zhang, S. (1989). Headworks (2 nd Version). [In Chinese.] Beijing: Water Resources and Electric Power Press.

    Google Scholar 

  48. Yan, X., Liu, X., & Li, G. (1990). Sediment control of low-head diversion work. [In Chinese.] Beijing: Water Resources and Electric Power Press.

    Google Scholar 

  49. Zhang, K. (1982). The judgment for circulation strength and using spiral stream for sediment ejection. [In Chinese.] Journal of Xinjiang Water Conservancy Science and Technology, 4, pp. 35–43.

    Google Scholar 

  50. Xie, Z. (1982). Bend-type diversion headworks experience in Xin Jiang. [In Chinese.] Journal of Sediment Research, 3, pp. 84–88.

    Google Scholar 

  51. Quarteroni, A., Sacco, R., & Saleri, F. (2006) Numerical mathematics. Foreign famous math book series (Photocopy Edition) 5. Beijing: Science Press.

    Google Scholar 

  52. Xi, S., & Zhao, F. (1983). Optimization methods. [In Chinese.] Shanghai: Shanghai Science and Technology Press.

    Google Scholar 

  53. Xu, G. (1993). An optimum design method of the regime channel. [In Chinese.] Journal of Hydrodynamics, 8(B12), pp. 567–570.

    Google Scholar 

  54. Xu, G. (1996). An optimum design method for stable canals. [In Chinese.] Journal of Hydraulic Engineering, 7, pp. 61–66.

    Google Scholar 

  55. Sha, Y. (1959). A method of sedimentation balance and stable channel design. [In Chinese.] Journal of Hydraulic Engineering, 4, pp. 23–42.

    Google Scholar 

  56. Northwest Institute of Hydraulic Research. (1959). The canal sediment and channel design. [In Chinese.] Shaanxi People’s Publishing House, Xi’an, China.

    Google Scholar 

  57. Hyper-concentrated sediment muddy water irrigation experience summary of Yin Luo channel. (1987). Selected from Book One of the First Series of Yellow River Sediment Research Report, Yellow River Sediment Research Work Coordination Group, Zhengzhou, China, pp. 139–157 [In Chinese.].

    Google Scholar 

  58. Hyper-concentrated sediment diversion experimental group in Shaanxi Province. (1976). Hyper-concentrated sediment diversion preliminary summary in Jing River, Luo River and Baojixia Irrigation Districts of Wei River, Selected from the Third Series of Yellow River Sediment Research Report, Yellow River Sediment Research Work Coordination Group, Xi’an, China, pp. 107–137 [In Chinese.].

    Google Scholar 

  59. Sha, Y. (1965). Introduction of sediment kinematics. [In Chinese.] Beijing: China Industry Press.

    Google Scholar 

  60. Qian, N., & Wan, Z. (1983). Mechanics of sediment transport. [In Chinese.] Beijing: Science Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Xu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, G., Yang, C., Zhao, L. (2015). Minimum Energy Dissipation Rate Theory and Its Applications for Water Resources Engineering. In: Yang, C., Wang, L. (eds) Advances in Water Resources Engineering. Handbook of Environmental Engineering, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-11023-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11023-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11022-6

  • Online ISBN: 978-3-319-11023-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics