Skip to main content

Modeling of Testosterone Regulation by Pulse-Modulated Feedback

  • Chapter
  • First Online:
Signal and Image Analysis for Biomedical and Life Sciences

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 823))

Abstract

The continuous part of a hybrid (pulse-modulated) model of testosterone (Te) feedback regulation in the human male is extended with infinite-dimensional and nonlinear blocks, to obtain the dynamics that better agree with the hormone concentration profiles observed in clinical data. A linear least-squares based optimization algorithm is developed for the purpose of detecting impulses of gonadotropin-releasing hormone (GnRH) from measured concentration of luteinizing hormone (LH). The estimated impulse parameters are instrumental in evaluating the frequency and amplitude modulation functions parameterizing the pulse-modulated feedback. The proposed approach allows for the identification of all model parameters from the hormone concentrations of Te and LH. Simulation results of the complete estimated closed-loop system exhibiting similar to the clinical data behavior are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.H. Abraham, H. Kocak, W.R. Smith, Chaos and intermittency in an endocrine system model, in Chaos, Fractals, and Dynamics, ed. by P. Fischer, W.R. Smith, vol. 98 (Marcel Dekker, New York, 1985), pp. 33–70

    Google Scholar 

  2. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004)

    Book  MATH  Google Scholar 

  3. M. Cartwright, M. Husain, A model for the control of testosterone secretion. J. Theor. Biol. 123(2), 239–250 (1986)

    Article  Google Scholar 

  4. F. Chang, R. Luus, A noniterative method for identification using Hammerstein model. IEEE Trans. Autom. Contr. 16(5), 464–468 (1971)

    Article  Google Scholar 

  5. A. Churilov, A. Medvedev, P. Mattsson, Analysis of a pulse-modulated model of endocrine regulation with time-delay, in IEEE 51st Annual Conference on Decision and Control (CDC), Maui (2012), pp. 362–367

    Google Scholar 

  6. A. Churilov, A. Medvedev, P. Mattsson, On finite-dimensional reducibility of time-delay systems under pulse-modulated feedback, in IEEE 52nd Annual Conference on Decision and Control (CDC), Firenze (2013), pp. 362–367

    Google Scholar 

  7. A. Churilov, A. Medvedev, A. Shepeljavyi, Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback. Automatica 45(1), 78–85 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Clément, J.-P. Françoise, Mathematical modeling of the GnRH-pulse and surge generator. SIAM J. Appl. Dyn. Syst. 6(2), 441–456 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. D.J. Dierschke, A.N. Bhattacharya, L.E. Atkinson, E. Knobil, Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87, 850–853 (1970)

    Article  Google Scholar 

  10. F. Ding, X.P. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)

    Article  Google Scholar 

  11. D. Efimov, A. Fradkov, Oscillatority conditions for nonlinear systems with delay. J. Appl. Math. (2007). article ID 72561

    Google Scholar 

  12. G. Enciso, E.D. Sontag, On the stability of a model of testosterone dynamics. J. Math. Biol. 49, 627–634 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. L.S. Farhy, Modeling of oscillations in endocrine networks with feedback, in Numerical Computer Methods, Part E, ed. by M.L. Johnson, L. Brand. Methods in Enzymology, vol. 384 (Academic, San Diego,2004), pp. 54–81

    Google Scholar 

  14. T. Glad, L. Ljung, Control Theory: Multivariable and Nonlinear Methods (Taylor and Francis, New York/London, 2000)

    Google Scholar 

  15. W.J. Heuett, H. Qian, A stochastic model of oscillatory blood testosterone levels. Bull. Math. Biol. 68(6), 1383–1399 (2006)

    Article  MathSciNet  Google Scholar 

  16. E. Hidayat, A. Medvedev, Identification of a pulsatile endocrine model from hormone concentration data, in IEEE International Conference on Control Applications (CCA), Dubrovnik (2012), pp. 356–363

    Google Scholar 

  17. E. Hidayat, A. Medvedev, Laguerre domain identification of continuous linear time-delay systems from impulse response data. Automatica 48(11), 2902–2907 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. M.L. Johnson, L. Pipes, P.P. Veldhuis, L.S. Farhy, R. Nass, M.O. Thorner, W.S. Evans, AutoDecon: a robust numerical method for the quantification of pulsatile events, in Computer Methods, Volume A, ed. by M.L. Johnson, L. Brand. Methods in Enzymology, vol. 454 (Elsevier, Amsterdam, 2009), pp. 367–404

    Google Scholar 

  19. D.M. Keenan, J.D. Veldhuis, A biomathematical model of time-delayed feedback in the human male hypothalamic-pituitary-leydig cell axis. Am. J. Physiol. Endocrinol. Metab. 275(1), E157–E176 (1998)

    Google Scholar 

  20. D.M. Keenan, S. Chattopadhyay, J.D. Veldhuis, Composite model of time-varying appearance and disappearance of neurohormone pulse signals in blood. J. Theor. Biol. 236(3), 242–255 (2005)

    Article  MathSciNet  Google Scholar 

  21. D.M. Keenan, I. Clarke, J.D. Veldhuis, Non-invasive analytical estimation of endogenous gonadotropin-releasing hormone (GnRH) drive: analysis using graded competitive GnRH-receptor antagonism and a calibrating pulse of exogenous GnRH. Endocrinology 152(12), 4882–4893 (2011)

    Article  Google Scholar 

  22. D.M. Keenan, W. Sun, J.D. Veldhuis, A stochastic biomathematical model of male reproductive hormone systems. SIAM J. Appl. Math. 61(3), 934–965 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. B.P. Kovatchev, M. Breton, C. Dalla Man, C. Cobelli, In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 3(1), 44–55 (2009)

    Article  Google Scholar 

  24. P. Mattsson, A. Medvedev, Estimation of input impulses by means of continuous finite memory observers, in American Control Conference, Montreal, June 2012, pp. 6769–6774

    Google Scholar 

  25. P. Mattsson, A. Medvedev, Modeling of testosterone regulation by pulse-modulated feedback: an experimental data study, in International Symposium on Computational Models for Life Sciences, ed. by C. Sun, T. Bednarz, T.D. Pham, P. Vallotton, D. Wang. AIP Conference Proceedings, Sydney, vol. 1559 (2013), pp. 333–342

    Google Scholar 

  26. A. Medvedev, A. Churilov, P. Mattsson, Periodical solutions in a pulse-modulated model of endocrine regulation with time-delay. IEEE Trans. Autom. Contr. 59(3), 728–733 (2014)

    Article  MathSciNet  Google Scholar 

  27. J.D. Murray, Mathematical Biology, I: An Introduction, 3rd edn. (Springer, New York, 2002)

    Google Scholar 

  28. N.L. Rasgon, L. Pumphrey, P. Prolo, S. Elman, A.B. Negrao, J. Licinio, A. Garfinkel, Emergent oscillations in mathematical model of the human menstrual cycle. CNS Spectr. 8(11), 805–814 (2003)

    Google Scholar 

  29. W.R. Smith, Hypothalamic regulation of pituitary secretion of luteinizing hormone. II. Feedback control of gonadotropin secretion. Bull. Math. Biol. 42(1), 57–78 (1980)

    MATH  Google Scholar 

  30. T. Söderström, P. Stoica, System Identification (Prentice-Hall, Upper Saddle River, 1988)

    Google Scholar 

  31. C.T. Sparrow, Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function. J. Math. Anal. Appl. 83(1), 275–291 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Tibshirani, Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    Google Scholar 

  33. J.D. Veldhuis, Recent insights into neuroendocrine mechanisms of aging of the human male hypothalamic-pituitary-gonadal axis. J. Androl. 20(1), 1–18 (1999)

    Google Scholar 

  34. J.D. Veldhuis, J.C. King, R.J. Urban, A.D. Rogol, W.S. Evans, L.A. Kolp, M.L. Johnson, Operating characteristics of the male hypothalamo-pituitary-gonadal axis: pulsatile release of testosterone and follicle-stimulating hormone and their temporal coupling with luteinizing hormone. J. Clin. Endocrinol. Metab. 65(5), 929–41 (1987)

    Article  Google Scholar 

  35. J.J. Walker, J.R. Terry, K. Tsaneva-Atanasova, S.P. Armstrong, C.A. McArdle, S.L. Lightman, Encoding and decoding mechanisms of pulsatile hormone secretion. J. Neuroendocr. 22, 1226–1238 (2009)

    Article  Google Scholar 

  36. Z.T. Zhusubaliyev, A.N. Churilov, A. Medvedev, Bifurcation phenomena in an impulsive model of non-basal testosterone regulation. Chaos Interdiscip. J. Nonlinear Sci. 22(1), 013121 (2012)

    Google Scholar 

  37. M. Zitzmann, E. Nieschlag, Testosterone levels in healthy men and the relation to behavioural and physical characteristics: facts and constructs. Eur. J. Endocr. 144(3), 183–197 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part financed by the European Research Council, Advanced Grant 247035 (SysTEAM) and Grant 2012-3153 from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Mattsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mattsson, P., Medvedev, A. (2015). Modeling of Testosterone Regulation by Pulse-Modulated Feedback. In: Sun, C., Bednarz, T., Pham, T., Vallotton, P., Wang, D. (eds) Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-10984-8_2

Download citation

Publish with us

Policies and ethics