Skip to main content

Conventional and Molecular Cytogenetics in Plasma Cell Neoplasms

  • Chapter
  • First Online:
Plasma Cell Neoplasms
  • 1034 Accesses

Abstract

Plasma cell neoplasms are clinically and pathologically heterogeneous disorders, due in part to the complexity of their underlying genetic abnormalities. These neoplasms have been studied since the early days of cancer cytogenetics, and as genetic techniques have advanced, so has understanding of the biology of myeloma and its precursor lesions, monoclonal gammopathy of uncertain significance (MGUS) and smoldering myeloma (SMM). Evaluation of patients with plasma cell neoplasms now involves multiple genetic tests, the most widely used of which are G-banding and fluorescence in situ hybridization (FISH). Newer technologies, such as oligonucleotide- and single nucleotide polymorphism (SNP)-based microarray testing and next-generation sequencing, are becoming more widely used and are giving genomic testing an even greater role in risk stratification. A primary goal of genetic testing in plasma cell neoplasms is to identify patients with both high-risk and standard-risk disease: the former, to ensure these patients receive sufficient therapy and/or stem cell transplantation, and the latter, to spare these individuals unnecessarily toxic therapy. Thus, identification of the genetic abnormalities of a patient’s disease is critical to providing individualized targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gersen S, Keagle M, editors. The principles of clinical cytogenetics. 3rd edn. New York: Springer; 2013.

    Google Scholar 

  2. Barch M, Knutsen T, Spurbeck J, editors. The AGT cytogenetics laboratory manual. 3rd edn. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  3. Swansbury J, editors. Cancer cytogenetics–methods and protocols. Totowa: Humana Press; 2003.

    Google Scholar 

  4. Wegner R-D, editors. Diagnostic cytogenetics. Berlin: Springer; 1999.

    Google Scholar 

  5. Shaffer L, McGowan-Jordan J, Schmid M, editors. ISCN (2013): an international system for human cytogenetic nomenclature. Basel: S. Karger; 2013.

    Google Scholar 

  6. Liehr T, editors. Fluorescence in situ hybridization (FISH). Berlin: Springer; 2009.

    Google Scholar 

  7. Bridger J, Volip E, editors. Fluorescence in situ hybridization (FISH)—protocols and applications. New York: Springer; 2010.

    Google Scholar 

  8. Put N, Lemmens H, Wlodarska I, et al. Interphase fluorescence in situ hybridization on selected plasma cells is superior in the detection of cytogenetic aberrations in plasma cell dyscrasia. Genes Chromosomes Cancer. 2010;49:991–7. doi:10.1002/gcc.

    Article  CAS  PubMed  Google Scholar 

  9. Berry NK, Bain NL, Enjeti AK, Rowlings P. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow. J Clin Pathol. 2014;67(1):66–9. doi:10.1136/jclinpath-2013-201691.

    Google Scholar 

  10. Christensen JH, Abildgaard N, Plesner T, et al. Interphase fluorescence in situ hybridization in multiple myeloma and monoclonal gammopathy of undetermined significance without and with positive plasma cell identification: analysis of 192 cases from the Region of Southern Denmark. Cancer Genet Cytogenet. 2007;174(2):89–99. doi:10.1016/j.cancergencyto.2006.11.015.

    Google Scholar 

  11. Dong H, Yang H, Jagannath S, et al. Risk stratification of plasma cell neoplasm: insights from plasma cell-specific cytoplasmic immunoglobulin fluorescence in situ hybridization (cIg FISH) vs. conventional FISH. Clin Lymphoma Myeloma Leuk. 2012;12(5):366–74. doi:10.1016/j.clml.2012.05.003.

    Google Scholar 

  12. Pozdnyakova O, Crowley-Larsen P, Zota V, Wang SA, Miron PM. Interphase FISH in plasma cell dyscrasia: increase in abnormality detection with plasma cell enrichment. Cancer Genet Cytogenet. 2009;189(2):112–7. doi:10.1016/j.cancergencyto.2008.11.007.

    Google Scholar 

  13. Lu G, Muddasani R, Orlowski RZ, et al. Plasma cell enrichment enhances detection of high-risk cytogenomic abnormalities by fluorescence in situ hybridization and improves risk stratification of patients with plasma cell neoplasms. Arch Pathol Lab Med. 2013;137(5):625–31. doi:10.5858/arpa.2012-0209-OA.

    Google Scholar 

  14. Stevens-Kroef M, Weghuis DO, Croockewit S, et al. High detection rate of clinically relevant genomic abnormalities in plasma cells enriched from patients with multiple myeloma. Genes Chromosomes Cancer. 2012;51:997–1006. doi:10.1002/gcc.

    Article  CAS  PubMed  Google Scholar 

  15. Gole L, Lin A, Chua C, Chng WJ. Modified cIg-FISH protocol for multiple myeloma in routine cytogenetic laboratory practice. Cancer Genet. 2014;207(1–2):31–4. doi:10.1016/j.cancergen.2013.12.001.

    Google Scholar 

  16. Shetty S, Siady M, Mallempati KC, Wilson A, Poarch J, Chandler B. Utility of a column-free cell sorting system for separation of plasma cells in multiple myeloma FISH testing in clinical laboratories. Int J Hematol. 2012;95:274–81. doi:10.1007/s12185-012-1021-1.

    Article  CAS  PubMed  Google Scholar 

  17. Slovak ML, Bedell V, Pagel K, Chang KL, Smith D, Somlo G. Targeting plasma cells improves detection of cytogenetic aberrations in multiple myeloma: phenotype/genotype fluorescence in situ hybridization. Cancer Genet Cytogenet. 2005;158(2):99–109. doi:10.1016/j.cancergencyto.2005.01.006.

    Google Scholar 

  18. Zehentner BK, Hartmann L, Johnson KR, et al. Array-based karyotyping in plasma cell neoplasia after plasma cell enrichment increases detection of genomic aberrations. Am J Clin Pathol. 2012;138(4):579–89. doi:10.1309/AJCPKW31BAIMVGST.

    Article  PubMed  Google Scholar 

  19. Dimopoulos M, Kyle R, Fermand J, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood. 2011;117(18):4701–5. doi:10.1182/blood-2010-10-299529.

    Google Scholar 

  20. Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27(27):4585–90. doi:10.1200/JCO.2008.20.6136.

    Google Scholar 

  21. Agnelli L, Mosca L, Fabris S, et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosom Cancer. 2009;48:603–14. doi:10.1002/gcc.

    Article  CAS  PubMed  Google Scholar 

  22. Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15):e56–65. doi:10.1182/blood-2010-04-279596.

    Google Scholar 

  23. Walker BA, Leone PE, Jenner MW, et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood. 2006;108(5):1733–43. doi:10.1182/blood-2006-02-005496.

    Google Scholar 

  24. MeiĂŸner T, Seckinger A, Rème T. Gene expression profiling in multiple myeloma–reporting of entities, risk, and targets in clinical routine. Clin Cancer Res. 2011;17:7240–7. doi:10.1158/1078-0432.CCR-11-1628.

    Article  PubMed  Google Scholar 

  25. Chng WJ, Kumar S, Vanwier S, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res. 2007;67(7):2982–9. doi:10.1158/0008-5472.CAN-06-4046.

    Article  CAS  PubMed  Google Scholar 

  26. Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108(6):2020–8. doi:10.1182/blood-2005-11-013458.

    Google Scholar 

  27. Broyl A, Hose D, Lokhorst H, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116(14):2543–53. doi:10.1182/blood-2009-12-261032.

    Google Scholar 

  28. Dhodapkar M V, Sexton R, Waheed S, et al. Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood. 2014;123(1):78–85. doi:10.1182/blood-2013-07-515239.

    Google Scholar 

  29. Shaughnessy JD, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84. doi:10.1182/blood-2006-07-038430.

    Google Scholar 

  30. Decaux O, Lodé L, Magrangeas F, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myélome. J Clin Oncol. 2008;26(29):4798–805. doi:10.1200/JCO.2007.13.8545.

    Google Scholar 

  31. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72. doi:10.1038/nature09837.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28(2):384–90. doi:10.1038/leu.2013.199.

    Google Scholar 

  33. Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101. doi:10.1016/j.ccr.2013.12.015.

    Google Scholar 

  34. Magrangeas F, Avet-Loiseau H, Gouraud W, et al. Minor clone provides a reservoir for relapse in multiple myeloma. Leukemia. 2013;27(2):473–81. doi:10.1038/leu.2012.226.

    Google Scholar 

  35. Dewald GW, Therneau T, Larson D, et al. Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma. Blood. 2005;106(10):3553–8. doi:10.1182/blood-2005-05-1981.

    Google Scholar 

  36. Smadja N, Fruchart C, Isnard F, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia. 1998;12(6):960–9.

    Google Scholar 

  37. Avet-Loiseau H, Attal M, Campion L, et al. Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t(4;14), del(17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol. 2012;30(16):1949–52. doi:10.1200/JCO.2011.36.5726.

    Google Scholar 

  38. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi:10.1182/blood-2011-11-390658.

    Google Scholar 

  39. Carrasco DR, Tonon G, Huang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9(4):313–25. doi:10.1016/j.ccr.2006.03.019.

    Google Scholar 

  40. Chng WJ, Santana-DĂ¡vila R, Van Wier SA, et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia. 2006;20(5):807–13. doi:10.1038/sj.leu.2404172.

    Article  CAS  PubMed  Google Scholar 

  41. Hoctor VT, Campbell LJ. Hyperhaploid plasma cell myeloma. Cancer Genet. 2012;205(7–8):414–8. doi:10.1016/j.cancergen.2012.05.004.

    Google Scholar 

  42. Smadja N, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98(7):2229–38.

    Article  CAS  PubMed  Google Scholar 

  43. Slovak ML. Multiple myeloma: current perspectives. Clin Lab Med. 2011;31(4):699–724. doi:10.1016/j.cll.2011.08.009.

    Google Scholar 

  44. GonzĂ¡lez D, van der Burg M, GarcĂ­a-Sanz R, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007;110:3112–21. doi:10.1182/blood-2007-02-069625.

    Google Scholar 

  45. Fonseca R, Blood E, Harrington D, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569–75. doi:10.1182/blood-2002-10-3017.R.F.

    Google Scholar 

  46. Fonseca R. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood. 2002;99(10):3735–41. doi:10.1182/blood.V99.10.3735.

    Article  CAS  PubMed  Google Scholar 

  47. Carrasco DR, Tonon G, Huang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9(4):313–25. doi:10.1016/j.ccr.2006.03.019.

    Google Scholar 

  48. Chesi M, Bergsagel PL. Many multiple myelomas: making more of the molecular mayhem. Hematology Am Soc Hematol Educ Program. 2011;2011:344–53. doi:10.1182/asheducation-2011.1.344.

    Google Scholar 

  49. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106(1):296–303. doi:10.1182/blood-2005-01-0034.

    Google Scholar 

  50. Karlin L, Soulier J, Chandesris O, et al. Clinical and biological features of t(4;14) multiple myeloma: a prospective study. Leuk Lymphoma. 2011;52:238–46. doi:10.3109/10428194.2010.537795.

    Google Scholar 

  51. Bergsagel PL, Kuehl WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev. 2003;194:96–104. http://www.ncbi.nlm.nih.gov/pubmed/12846810.

    Google Scholar 

  52. Gutiérrez NC, Castellanos M V, Martín ML, et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis Leukemia. 2007;21(1):143–50. doi:10.1038/sj.leu.2404413.

    Article  PubMed  Google Scholar 

  53. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc. 2013;88(4):360–76. doi:10.1016/j.mayocp.2013.01.019.

    Google Scholar 

  54. Avet-Loiseau H, Malard F, Campion L, et al. Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood. 2011;117(6):2010–2. doi:10.1182/blood-2010-07-295105.

    Google Scholar 

  55. Ross FM, Chiecchio L, Dagrada G, et al. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica. 2010;95(7):1221–5. doi:10.3324/haematol.2009.016329.

    Google Scholar 

  56. Greenberg A, Rajkumar S, Therneau T, Singh P, Dispenzieri A, Kumar SK. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398–403. doi:10.1038/leu.2013.258.

    Google Scholar 

  57. Brioli A, Melchor L, Cavo M, Morgan GJ. The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br J Haematol. 2014;165(4):441–54. doi:10.1111/bjh.12805.

    Article  PubMed  Google Scholar 

  58. Takimoto M, Ogawa K, Kato Y, et al. Close relation between 14q32/IGH translocations and chromosome 13 abnormalities in multiple myeloma: a high incidence of 11q13/CCND1 and 16q23/MAF. Int J Hematol. 2008;87:260–5. doi:10.1007/s12185-008-0039-x.

    Article  PubMed  Google Scholar 

  59. Chiecchio L, Dagrada GP, Ibrahim AH, et al. Timing of acquisition of deletion 13 in plasma cell dyscrasias is dependent on genetic context. Haematologica. 2009;94(12):1708–13. doi:10.3324/haematol.2009.011064.

    Google Scholar 

  60. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. Blood. 2007;109:3489–95. doi:10.1182/blood-2006-08-040410.

    Google Scholar 

  61. Avet-Loiseau H, Leleu X, Roussel M, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol. 2010;28(30):4630–4. doi:10.1200/JCO.2010.28.3945.

    Google Scholar 

  62. Neben K, Jauch A, Bertsch U, et al. Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation. Haematologica. 2010;95(7):1150–7. doi:10.3324/haematol.2009.016436.

    Google Scholar 

  63. Kapoor P, Kumar S, Fonseca R, et al. Impact of risk stratification on outcome among patients with multiple myeloma receiving initial therapy with lenalidomide and dexamethasone. Blood. 2009;114(3):518–21. doi:10.1182/blood-2009-01-202010.

    Google Scholar 

  64. Reece D, Song KW, Fu T, et al. Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13. Blood. 2009;114(3):522–5. doi:10.1182/blood-2008-12-193458.

    Google Scholar 

  65. Lodé L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973–6. doi:10.3324/haematol.2010.023697.

    Google Scholar 

  66. Chang H, Ning Y, Qi X, Yeung J, Xu W. Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol. 2007;139(1):51–4. doi:10.1111/j.1365-2141.2007.06750.x.

    Google Scholar 

  67. Hebraud B, Leleu X, Lauwers-Cances V, et al. Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia. 2014;28:675–9. doi:10.1038/leu.2013.225.

    Google Scholar 

  68. Qazilbash MH, Saliba RM, Ahmed B, Parikh G, Mendoza F. Deletion of the short arm of chromosome 1 (del 1p) is a strong predictor of poor outcome in myeloma patients undergoing an autotransplant. Biol Blood Marrow Transplant. 2007;13:1066–72. doi:10.1016/j.bbmt.2007.05.014.

    Google Scholar 

  69. Wu KL, Beverloo B, Lokhorst HM, et al. Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Haematol. 2007;136(4):615–23. doi:10.1111/j.1365-2141.2006.06481.x.

    Google Scholar 

  70. Boyd KD, Ross FM, Walker BA, et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res. 2011;17(24):7776–84. doi:10.1158/1078-0432.CCR-11-1791.

    Google Scholar 

  71. Leone PE, Walker BA, Jenner MW, et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res. 2008;14:6033–41. doi:10.1158/1078-0432.CCR-08-0347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. 2010;116(15):56–65. doi:10.1182/blood-2010-04-279596.

    Google Scholar 

  73. Nemec P, Zemanova Z, Greslikova H, et al. Gain of 1q21 is an unfavorable genetic prognostic factor for multiple myeloma patients treated with high-dose chemotherapy. Biol Blood Marrow Transplant. 2010;16(4):548–54. doi:10.1016/j.bbmt.2009.11.025.

    Google Scholar 

  74. Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724–32. doi:10.1182/blood-2006-03-009910.

    Google Scholar 

  75. Chang H, Trieu Y, Qi X, Jiang NN, Xu W, Reece D. Impact of cytogenetics in patients with relapsed or refractory multiple myeloma treated with bortezomib: adverse effect of 1q21 gains. Leuk Res. 2011;35(1):95–8. doi:10.1016/j.leukres.2010.05.002.

    Google Scholar 

  76. Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10 Suppl 1:117–26. doi:10.1080/10245330512331390140.

    Article  CAS  PubMed  Google Scholar 

  77. Grzasko N, Hus M, Chocholska S, Pluta A, Hajek R, Dmoszynska A. 1q21 amplification with additional genetic abnormalities but not isolated 1q21 gain is a negative prognostic factor in newly diagnosed patients with multiple myeloma treated with thalidomide-based regimens. Leuk Lymphoma. 2012;53(12):2500–3. doi:10.3109/10428194.2012.684349.

    Google Scholar 

  78. Grzasko N, Hus M, Pluta A, et al. Additional genetic abnormalities significantly worsen poor prognosis associated with 1q21 amplification in multiple myeloma patients. Hematol Oncol. 2013;31(June 2012):41–8. doi:10.1002/hon.

    Article  CAS  PubMed  Google Scholar 

  79. Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26(2):349–55. doi:10.1038/leu.2011.204.

    Google Scholar 

  80. Gabrea A, Martelli ML, Qi Y, et al. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chromosomes Cancer. 2008;47:573–90. doi:10.1002/gcc.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Agarwal A, Ghobrial IM. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: a review of the current understanding of epidemiology, biology, risk stratification, and management of myeloma precursor disease. Clin Cancer Res. 2013;19(5):985–94. doi:10.1158/1078-0432.CCR-12-2922.

    Article  PubMed Central  PubMed  Google Scholar 

  82. LĂ³pez-Corral L, GutiĂ©rrez NC, Vidriales MB, et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res. 2011;17(7):1692–700. doi:10.1158/1078-0432.CCR-10-1066.

    Article  PubMed  Google Scholar 

  83. Brousseau M, Leleu X, Gerard J, Gastinne T, Godon A. Hyperdiploidy is a common finding in monoclonal gammopathy of undetermined significance and monosomy 13 is restricted to these hyperdiploid patients. Clin Cancer Res.2007:6026–31. doi:10.1158/1078-0432.CCR-07-0031.

    Google Scholar 

  84. Chang H, Yeung J, Xu W, Ning Y, Patterson B. Significant increase of CKS1B amplification from monoclonal gammopathy of undetermined significance to multiple myeloma and plasma cell leukaemia as demonstrated by interphase fluorescence in situ hybridisation. Br J Haematol. 2006;134(6):613–5. doi:10.1111/j.1365-2141.2006.06237.x.

    Google Scholar 

  85. Chang H, Qi X, Jiang A, Xu W, Young T, Reece D. 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplant. 2010;45(1):117–21. doi:10.1038/bmt.2009.107.

    Google Scholar 

  86. Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27(27):4585–90. doi:10.1200/JCO.2008.20.6136.

    Google Scholar 

  87. Bochtler T, Hegenbart U, Heiss C, et al. Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). 2011;117(14):3809–815. doi:10.1182/blood-2010-02-268987.

    Google Scholar 

  88. Van De Donk NWCJ Lokhorst HM Anderson KC Richardson PG. How I treat plasma cell leukemia. Blood. 2012;120:2376–389. doi:10.1182/blood-2012-05-408682.

    Google Scholar 

  89. Chang H, Qi X, Yeung J, Reece D, Xu W, Patterson B. Genetic aberrations including chromosome 1 abnormalities and clinical features of plasma cell leukemia. Leuk Res. 2009;33(2):259–62. doi:10.1016/j.leukres.2008.06.027.

    Google Scholar 

  90. Bryce AH, Ketterling RP, Gertz M a, et al. Translocation t(11;14) and survival of patients with light chain (AL) amyloidosis. Haematologica. 2009;94(3):380–6. doi:10.3324/haematol.13369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Jimenez-Zepeda VH, Dominguez-Martinez VJ. Plasma cell leukemia: a highly aggressive monoclonal gammopathy with a very poor prognosis. Int J Hematol. 2009;89(3):259–68. doi:10.1007/s12185-009-0288-3.

    Article  PubMed  Google Scholar 

  92. Jimenez-Zepeda VH, Neme-Yunes Y, Braggio E. Chromosome abnormalities defined by conventional cytogenetics in plasma cell leukemia: what have we learned about its biology? EUR J Haematol. 2011;87(5):20–7. doi:10.1111/j.1600-0609.2011.01629.x.

    Google Scholar 

  93. Neben K, Jauch A, Hielscher T, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol. 2013;31(34):4325–332. doi:10.1200/JCO.2012.48.4923.

    Google Scholar 

  94. Rajkumar S V, Gupta V, Fonseca R, et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia. 2013;27(8):1738–44. doi:10.1038/leu.2013.86.

    Google Scholar 

  95. Schmidt-Hieber M, Gutiérrez ML, Pérez-Andrés M, et al. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells. Haematologica. 2013;98:279–87. doi:10.3324/haematol.2011.060632.

    Google Scholar 

  96. Morgan GJ, Kaiser MF. How to use new biology to guide therapy in multiple myeloma. Hematology Am Soc Hematol Educ Program. 2012;2012:342–9.

    PubMed  Google Scholar 

  97. Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IMS. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005;105(1):317–23. doi:10.1182/blood-2004-03-0833.

    Google Scholar 

  98. Rasmussen T, Haaber J, Dahl IM, et al. Identification of translocation products but not K-RAS mutations in memory B cells from patients with multiple myeloma. Haematologica. 2010;95(10):1730–7. doi:10.3324/haematol.2010.024778.

    Google Scholar 

  99. Chng WJ, Gonzalez-Paz N, Price-Troska T, et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008;22(12):2280–4. doi:10.1038/leu.2008.142.

    Google Scholar 

  100. Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12(2):115–30. doi:10.1016/j.ccr.2007.07.004.

    Google Scholar 

  101. Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131–44. doi:10.1016/j.ccr.2007.07.003.

    Google Scholar 

  102. Boyd KD, Walker BA, Wardell CP, et al. High expression levels of the mammalian target of rapamycin inhibitor DEPTOR are predictive of response to thalidomide in myeloma. Leuk Lymphoma. 2010;51(11):2126–9. doi:10.3109/10428194.2010.509893.

    Google Scholar 

  103. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23(26):6333–8. doi:10.1200/JCO.2005.05.021.

    Google Scholar 

  104. Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 2012;122(10):3456–663. doi:10.1172/JCI61188.3456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Avet-Loiseau H, Durie BGM, Cavo M, et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an international myeloma working group collaborative project. Leukemia. 2013;27(3):711–7. doi:10.1038/leu.2012.282.

    Google Scholar 

  106. Munshi NC, Anderson KC, Bergsagel PL, et al. Consensus recommendations for risk stratification in multiple myeloma: report of the international myeloma workshop consensus panel 2. Blood. 2011;117(18):4696–700. doi:10.1182/blood-2010-10-300970.

    Google Scholar 

  107. Avet-Loiseau H. Ultra high-risk myeloma. Hematology Am Soc Hematol Educ Program. 2010;2010:489–93. doi:10.1182/asheducation-2010.1.489.

    Google Scholar 

  108. Zhuang J, Da Y, Li H, et al. Cytogenetic and clinical risk factors for assessment of ultra high-risk multiple myeloma. Leuk Res. 2014;38:188–93. doi:10.1016/j.leukres.2013.11.010.

    Google Scholar 

  109. Koren-Michowitz M, Hardan I, Berghoff J, et al. Chromosome 13q deletion and IgH abnormalities may be both masked by near-tetraploidy in a high proportion of multiple myeloma patients: a combined morphology and I-FISH analysis. Cancer Lett. 2007;255(2):307–14. doi:10.1016/j.canlet.2007.05.005.

    Google Scholar 

  110. Tan D, Teoh G, Lau LC, et al. An abnormal nonhyperdiploid karyotype is a significant adverse prognostic factor for multiple myeloma in the bortezomib era. Am J Hematol. 2010;85(10):752–6. doi:10.1002/ajh.21812.

    Google Scholar 

  111. Lawasut P, Groen R, Dhimolea E, Richardson P, Anderson KC, Mitsiades CS. Decoding the pathophysiology and the genetics of multiple myeloma to identify new therapeutic targets. Semin Oncol. 2013;40(5):537–48. doi:10.1053/j.seminoncol.2013.07.010.

    Google Scholar 

  112. Girnius S, Munshi NC. Individualized therapy in multiple myeloma: are we there? Semin Oncol. 2013;40(5):567–76. doi:10.1053/j.seminoncol.2013.08.001.

    Google Scholar 

  113. Schilling G, Hansen T, Shimoni A, et al. Impact of genetic abnormalities on survival after allogeneic hematopoietic stem cell transplantation in multiple myeloma. Leukemia. 2008;22:1250–5. doi:10.1038/leu.2008.88.

    Google Scholar 

  114. Annunziata CM, Hernandez L, Davis RE, et al. A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood. 2011;117(8):2396–404. doi:10.1182/blood-2010-04-278788.

    Google Scholar 

  115. Kiyota M, Kobayashi T, Fuchida S, et al. Monosomy 13 in metaphase spreads is a predictor of poor long-term outcome after bortezomib plus dexamethasone treatment for relapsed/refractory multiple myeloma. Int J Hematol. 2012;95(5):516–26. doi:10.1007/s12185-012-1035-8.

    Article  CAS  PubMed  Google Scholar 

  116. Jiang A, Reece D, Chang H. Genomic stratification of multiple myeloma treated with novel agents. Leuk Lymphoma. 2012;53:202–7. doi:10.3109/10428194.2011.608449.

    Google Scholar 

  117. Klein U, Jauch A, Hielscher T, Hillengass J, Raab MS. Chromosomal aberrations +1q21 and del(17p13) predict survival in patients with recurrent multiple myeloma treated with lenalidomide and dexamethasone. Cancer. 2011;117:2136–44. doi:10.1002/cncr.25775.

    Article  CAS  PubMed  Google Scholar 

  118. Dimopoulos M A, Kastritis E, Christoulas D, et al. Treatment of patients with relapsed/refractory multiple myeloma with lenalidomide and dexamethasone with or without bortezomib: prospective evaluation of the impact of cytogenetic abnormalities and of previous therapies. Leukemia. 2010;24(10):1769–78. doi:10.1038/leu.2010.175.

    Google Scholar 

  119. An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99(2):353–9. doi:10.3324/haematol.2013.088211.

    Google Scholar 

  120. Smetana J, Berankova K, Zaoralova R, et al. Gain (1)(q21) is an unfavorable genetic prognostic factor for patients with relapsed multiple myeloma treated with thalidomide but not for those treated with bortezomib. Clin Lymphoma, Myeloma Leuk. 2013;13(2):123–30. doi:10.1016/j.clml.2012.11.012.

    Google Scholar 

  121. Brioli A, Kaiser MF, Pawlyn C, et al. Biologically defined risk groups can be used to define the impact of thalidomide maintenance therapy in newly diagnosed multiple myeloma. Leuk Lymphoma. 2013;54(9):1975–81. doi:10.3109/10428194.2012.760736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Dolan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dolan, M. (2016). Conventional and Molecular Cytogenetics in Plasma Cell Neoplasms. In: Linden, M., McKenna, R. (eds) Plasma Cell Neoplasms. Springer, Cham. https://doi.org/10.1007/978-3-319-10918-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10918-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10917-6

  • Online ISBN: 978-3-319-10918-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics