Skip to main content

Primordial Black Holes: Sirens of the Early Universe

  • Chapter
  • First Online:
Quantum Aspects of Black Holes

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 178))

Abstract

Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also a potential cold dark matter candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PBHs from the rare large density fluctuations for which this assumption is justified [9, 41].

  2. 2.

    Reference [89] argues that PBHs can also form on sub-horizon scales which never exit the horizon.

References

  1. Ade, P.A.R. et al.: Planck 2013 results. XXII. Constraints on inflation (2013). arXiv:1303.5082

  2. Ade, P.A.R. et al.: Planck 2013 results. XXV. Searches for cosmic strings and other topological defects (2013). arXiv:1303.5085

  3. Afshordi, N., McDonald, P., Spergel, D.N.: Primordial black holes as dark matter: the power spectrum and evaporation of early structures. Astrophys. J. 594, 71–74 (2003)

    ADS  Google Scholar 

  4. Alabidi, L., Kohri, K.: Generating primordial black holes via hilltop-type inflation models. Phys. Rev. D 80, 063511 (2009)

    ADS  Google Scholar 

  5. Alcock, C., et al.: The MACHO project LMC microlensing results from the first two years and the nature of the galactic dark halo. Astrophys. J. 486, 697–726 (1997)

    ADS  Google Scholar 

  6. Alcock, C., et al.: The MACHO project: microlensing results from 5.7 years of LMC observations. Astrophys. J. 542, 281–307 (2000)

    ADS  Google Scholar 

  7. Alcock, C., et al.: MACHO Project limits on black hole dark matter in the 1–30 Solar mass range. Astrophys. J. 550, 169–172 (2001)

    ADS  Google Scholar 

  8. Bahcall, J.N., Hut, P., Tremaine, S.: Maximum mass of objects that constitute unseen disk material. Astrophys. J. 290, 15–20 (1985)

    ADS  Google Scholar 

  9. Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: The statistics of peaks of gaussian random fields. Astrophys. J. 304, 15–61 (1986)

    ADS  Google Scholar 

  10. Barnacka, A., Glicenstein, J.F., Moderski, R.: New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts. Phys. Rev. D 86, 043001 (2012)

    ADS  Google Scholar 

  11. Bassett, B.A., Tsujikawa, S.: Inflationary preheating and primordial black holes. Phys. Rev. D 63, 123503 (2001)

    ADS  Google Scholar 

  12. Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rept. 405, 279–390 (2005)

    ADS  Google Scholar 

  13. Bird, S., Peiris, H.V., Viel, M.: Minimally parametric power spectrum reconstruction from the Lyman-alpha forest. Mon. Not. Roy. Astron. Soc. 413, 1717–1728 (2011)

    ADS  Google Scholar 

  14. Blais, D., Kiefer, C., Polarski, D.: Can primordial black holes be a significant part of dark matter? Phys. Lett. B 535, 11–16 (2002)

    ADS  Google Scholar 

  15. Boubeker, L., Lyth, D.H.: Hilltop inflation. JCAP 0507, 010 (2005)

    ADS  Google Scholar 

  16. Bringmann, T., Scott, P., Akrami, Y.: Improved constraints on the primordial power spectrum at small scales from ultra compact minihalos. Phys. Rev. D 85, 125027 (2012)

    ADS  Google Scholar 

  17. Brodie, J.P., Strader, J.: Extragalactic globular clusters and galaxy formation. Ann. Rev. Astron. Astrophys. 44, 193–267 (2006)

    ADS  Google Scholar 

  18. Bugaev, E.V., Klimai, P.A.: Constraints on amplitudes of curvature perturbations from primordial black holes. Phys. Rev. D 79, 103511 (2009)

    ADS  Google Scholar 

  19. Bugaev, E.V., Klimai, P.A.: Primordial black hole constraints for curvaton models with predicted large non-Gaussianity. Int. J. Mod. Phys. D 22, 1350034 (2013)

    ADS  Google Scholar 

  20. Bullock, J.S., Primack, J.R.: Nongaussian fluctuations and primordial black holes from inflation. Phys. Rev. D 55, 7423–7439 (1997)

    ADS  Google Scholar 

  21. Byrnes, C.T., Copeland, E.J., Green, A.M.: Primordial black holes as a tool for constraining non-gaussianity. Phys. Rev. D 86, 043512 (2012)

    ADS  Google Scholar 

  22. Caldwell, R.R., Caspar, P.: Formation of black holes from collapsed cosmic string loops. Phys. Rev. D 53, 3002–3010 (1996)

    ADS  Google Scholar 

  23. Canizares, C.R.: Manifestations of a cosmological density of compact objects in quasar light. Astrophys. J. 263, 507–517 (1982)

    ADS  Google Scholar 

  24. Capela, F., Pshirkov, M., Tinyakov, P.: Constraints on primordial black holes as dark matter candidates from star formation. Phys. Rev. D 87, 023507 (2013)

    ADS  Google Scholar 

  25. Cappela, F., Pshirkov, M., Tinyakov, P.: Constraints on primordial black holes as dark matter candidates from capture by neutron stars. Phys. Rev. D 87, 12534 (2013)

    Google Scholar 

  26. Capela, F., Pshirkov, M., Tinyakov, P.: arXiv:1402.4671 [astro-ph.CO]

  27. Carr, B.J.: The primordial black hole mass spectrum. Astrophys. J. 201, 1–19 (1975)

    ADS  Google Scholar 

  28. Carr, B.J.: Some cosmological consequences of primordial black-hole evaporations. Astrophys. J. 206, 8–25 (1976)

    ADS  Google Scholar 

  29. Carr, B.J.: Pregalactic black hole accretion and the thermal history of the universe. Mon. Not. Roy. Astron. Soc. 194, 639–668 (1981)

    ADS  MATH  Google Scholar 

  30. Carr, B.J.: Primordial black holes-recent development. ECONF C041213, 0204 (2004)

    Google Scholar 

  31. Carr, B.J., Hawking, S.W.: Black holes in the early Universe. Mon. Not. Roy. Astron. Soc. 168, 399–415 (1974)

    ADS  Google Scholar 

  32. Carr, B.J., Lidsey, J.E.: Primordial black holes and generalized constraints on chaotic inflation. Phys. Rev. D 48, 543–553 (1993)

    ADS  Google Scholar 

  33. Carr, B.J., Sakellariadou, M.: Dynamical constraints on dark compact objects. Astrophys. J. 516, 195–220 (1999)

    ADS  Google Scholar 

  34. Carr, B.J., Gilbert, J.H., Lidsey, J.E.: Black hole relics and inflation: limits on blue perturbation spectra. Phys. Rev. D 50, 4853–4867 (1994)

    ADS  Google Scholar 

  35. Carr, B.J., Kohri, K., Yuuiti, S., Yokoyama, J.: New cosmological constraints on primordial black holes. Phys. Rev. D 81, 104019 (2010)

    ADS  Google Scholar 

  36. Chaname, J., Gould, A.: Disk and halo wide binaries from the revised Luyten catalog: probes of star formation and MACHO dark matter. Astrophys. J. 601, 289–310 (2004)

    ADS  Google Scholar 

  37. Charlot, S., Silk, J.: Signature of white dwarf galaxy halos. Astrophys. J. 445, 124–132 (1995)

    ADS  Google Scholar 

  38. Choptuik, M.W.: Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993)

    ADS  Google Scholar 

  39. Crawford, M., Schramm, D.N.: Spontaneous generation of density perturbations in the early universe. Nature 298, 538–540 (1982)

    ADS  Google Scholar 

  40. Dalcanton, J.J., et al.: Observational limits on Omega in stars, brown dwarfs, and stellar remnants from gravitational microlensing. Astrophys. J 424, 550–568 (1994)

    ADS  Google Scholar 

  41. Doroshkevich, A.G.: Spatial structure of perturbations and origin of galactic rotation in fluctuation theory. Astrophys. 6, 320–330 (1970)

    ADS  MathSciNet  Google Scholar 

  42. Drees, M., Erfani, E.: Running-mass inflation model and primordial black holes. JCAP 1104, 005 (2011)

    ADS  Google Scholar 

  43. Erfani, E.: arXiv:1311.3090 [astro-ph.CO]

  44. Fields, B.D., Freese, K., Graff, D.S.: Chemical abundance constraints on white dwarfs as halo dark matter. Astrophys. J. 534, 265–276 (2000)

    ADS  Google Scholar 

  45. Garcia-Bellido, J., Linde, A.D., Wands, D.: Density perturbations and black hole formation in hybrid inflation. Phys. Rev. D 54, 6040–6058 (1996)

    ADS  Google Scholar 

  46. Garriga, J., Sakellariadou, M.: Effects of friction on cosmic strings. Phys. Rev. D 48, 2502–2525 (1993)

    ADS  Google Scholar 

  47. Gould, A.: Femtolensing of gamma-rays bursters. Astrophys. J. 386, 5–7 (1992)

    ADS  Google Scholar 

  48. Green, A.M.: Supersymmetry and primordial black hole abundance constraints. Phys. Rev. D 60, 063516 (1999)

    ADS  Google Scholar 

  49. Green, A.M., Liddle, A.R.: Constraints on the density perturbation spectrum from primordial black holes. Phys. Rev. D 56, 6166–6174 (1997)

    ADS  Google Scholar 

  50. Green, A.M., Liddle, A.R.: Critical collapse and the primordial black hole initial mass function. Phys. Rev. D 60, 063509 (1999)

    ADS  Google Scholar 

  51. Green, A.M., Malik, K.A.: Primordial black hole production due to preheating. Phys. Rev. D 64, 021301 (2001)

    ADS  Google Scholar 

  52. Green, A.M., Liddle, A.R., Malik, K.A., Sasaki, M.: A new calculation of the mass fraction of primordial black holes. Phys. Rev. D 70, 041502 (2004)

    ADS  Google Scholar 

  53. Griest, K., Cieplak, A.M., Lehner, M.J.: New limits on primordial black hole dark matter from an analysis of Kepler source microlensing. Phys Rev. Lett. 111, 181302 (2013)

    ADS  Google Scholar 

  54. Harada, T., Yoo, C.-M., Kohri, K.: Threshold of primordial black hole formation. Phys. Rev. D 88, 084051 (2013)

    ADS  Google Scholar 

  55. Hawking, S.H.: Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc. 152, 75–78 (1971)

    ADS  Google Scholar 

  56. Hawking, S.H.: Black hole explosions. Nature 248, 30–31 (1974)

    ADS  MATH  Google Scholar 

  57. Hawking, S.H.: Black holes from cosmic strings. Phys. Lett. B 231, 237–239 (1987)

    ADS  MathSciNet  Google Scholar 

  58. Hawking, S.H., Moss, I.G., Stewart, J.M.: Bubble collisions in the very early universe. Phys. Rev. D. 26, 2681–2693 (1982)

    ADS  MathSciNet  Google Scholar 

  59. Heckler, A.F.: On the formation of a Hawking radiation photosphere around microscopic black holes. Phys. Rev. D 55, 480–488 (1997)

    ADS  Google Scholar 

  60. Heckler, A.F.: Calculation of the emergent spectrum and observation of primordial black holes. Phys. Rev. Lett. 78, 3430–3433 (1997)

    ADS  Google Scholar 

  61. Hlozek, R., et al.: The Atacama Cosmology Telescope: a measurement of the primordial power spectrum. Astrophys. J. 749, 90–99 (2012)

    ADS  Google Scholar 

  62. Ivanov, P.: Nonlinear metric perturbations and production of primordial black holes. Phys. Rev. D 57, 7145–7154 (1998)

    ADS  MathSciNet  Google Scholar 

  63. Ivanov, P., Naselsky, P., Novikov, I.: Inflation and primordial black holes as dark matter. Phys. Rev. D 50, 7173–7178 (1994)

    ADS  Google Scholar 

  64. Jedamzik, K.: Primordial black hole formation during the QCD epoch. Phys. Rev. D 55, 5871–5875 (1997)

    ADS  Google Scholar 

  65. Jedamzik, K., Niemeyer, J.: Primordial black hole formation during first order phase transitions. Phys. Rev. D 59, 124014 (1999)

    ADS  Google Scholar 

  66. Josan, A.S., Green, A.M.: Constraints from primordial black hole formation at the end of inflation. Phys. Rev. D 82, 047303 (2010)

    ADS  Google Scholar 

  67. Josan, A.S., Green, A.M.: Gamma-rays from ultracompact minihalos: potential constrains on the primordial curvature perturbation. Phys. Rev. D 82, 083527 (2010)

    ADS  Google Scholar 

  68. Josan, A.S., Green, A.M., Malik, K.A.: Generalised constraints on the curvature perturbation from primordial black holes. Phys. Rev. D 79, 103520 (2009)

    ADS  MathSciNet  Google Scholar 

  69. Kanazawa, T., Kawasaki, M., Yanagida, T.: Double inflation in supergravity and the primordial black hole formation. Phys. Lett. B 482, 174–172 (2000)

    ADS  Google Scholar 

  70. Kassiola, A., Kovner, I., Blandford, R.D.: Bounds on intergalactic compact objects from observations of compact radio sources. Astrophys. J. 381, 6–13 (1991)

    ADS  Google Scholar 

  71. Kawasaki, M., Sugiyama, N., Yanagida, T.: Primordial black hole formation in a double inflation model in supergravity. Phys. Rev. D 57, 6050–6056 (1998)

    ADS  Google Scholar 

  72. Kawasaki, M., Kzunori, K., Moroi, T.: Hadronic decay of late-decaying particles and Big-Bang Nucleosynthesis. Phys. Lett. B 625, 7–12 (2005)

    ADS  Google Scholar 

  73. Kesden, M., Hanasoge, S.: Transient solar oscillations driven by primordial black holes. Phys. Rev. Lett. 107, 111101 (2011)

    ADS  Google Scholar 

  74. Khlopov, M.Y., Polnarev, A.G.: Primordial black holes as a cosmological test of grand unification. Phys. Lett. B 97, 383–387 (1980)

    ADS  Google Scholar 

  75. Khlopov, M.Y., Barrau, A., Julien, G.: Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe. Class. Quant. Grav. 23, 1875–1882 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  76. Kim, H.I., Lee, C.H.: Constraints on the spectral index from primordial black holes. Phys. Rev. D 54, 6001–6007 (1996)

    ADS  Google Scholar 

  77. Kim, H.I., Lee, C.H., MacGibbon, J.H.: Diffuse gamma-ray background and primordial black hole constraints on the spectral index of density fluctuations. Phys. Rev. D 59, 064004 (1999)

    ADS  MathSciNet  Google Scholar 

  78. Kinney, W.H.: Inflation: flow, fixed points and observables to arbitrary order in slow roll. Phys. Rev. D 66, 083508 (2002)

    ADS  Google Scholar 

  79. Kohri, K., Yokoyama, J.: Primordial black holes and primordial nucleosynthesis. 1. Effects of hadron injection from low mass holes. Phys. Rev. D 61, 023501 (2000)

    ADS  Google Scholar 

  80. Kohri, K., Lyth, D.H., Melchiorri, A.: Black hole formation and slow-roll inflation. JCAP 0804, 038 (2008)

    ADS  MathSciNet  Google Scholar 

  81. Kopp, M., Hofmann, S., Weller, J.: Separate universes do not constrain primordial black hole formation. Phys. Rev. D 83, 124025 (2011)

    ADS  Google Scholar 

  82. La, D., Steinhardt, P.J.: Bubble percolation in extended inflationary models. Phys. Lett. B 220, 375 (1989)

    ADS  Google Scholar 

  83. Lacey, C.G., Ostriker, J.P.: Massive black holes in galactic halos? Astrophys. J. 299, 633–652 (1985)

    ADS  Google Scholar 

  84. Leach, S.M., Grivell, I.J., Liddle, A.R.: Black hole constraints on the running mass inflation model. Phys. Rev. D 62, 043516 (2000)

    ADS  Google Scholar 

  85. Lemoine, M.: Moduli constraints on primordial black holes. Phys. Lett. B 481, 333–338 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  86. Lindley, D.: Primordial black holes and the deuterium abundance. Mon. Not. Roy. Astron. Soc. 193, 593–601 (1980)

    ADS  Google Scholar 

  87. Lyth, D.H., Wands, D.: Generating the curvature perturbation without an inflation. Phys. Lett. B 254, 5–14 (2002)

    ADS  MATH  Google Scholar 

  88. Lyth, D.H., Liddle, A.R.: The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  89. Lyth, D.H., Malik, K.A., Sasaki, M., Zaballa, I.: Forming sub-horizon black holes at the end of inflation. JCAP 0601, 011 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  90. MacGibbon, J.H.: Can Planck-mass relics of evaporating black holes close the universe? Nature 329, 308–309 (1987)

    ADS  Google Scholar 

  91. MacGibbon, J.H., Webber, B.R.: Quark and gluon jet emission from primordial black holes: The instantaneous spectra. Phys. Rev. D 41, 3052–3079 (1990)

    ADS  Google Scholar 

  92. MacGibbon, J.H., Carr, B.J.: Cosmic rays from primordial black holes. Astrophys. J. 371, 447–469 (1991)

    ADS  Google Scholar 

  93. MacGibbon, J.H., Carr, B.J., Page, D.N.: Do evaporating black holes form photospheres? Phys. Rev. D 78, 064043 (2008)

    ADS  MathSciNet  Google Scholar 

  94. Meszaros, P.: Primeval black holes and galaxy formation. Astron. Astrophys. 38, 5–13 (1975)

    ADS  Google Scholar 

  95. Miyama, S., Sato, K.: The upper bound of the number density of primordial black holes from the Big Bang nucleosynthesis. Prog. Theor. Phys. 59, 1012–1013 (1978)

    ADS  Google Scholar 

  96. Musco, I., Miller, J.C.: Primordial black hole formation in the early universe: critical behaviour and self-similarity. Class. Quant. Grav. 30, 145009 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  97. Musco, I., Miller, J.C., Rezzolla, L.: Computations of primordial black hole formation. Class. Quant Grav. 22, 1405–1424 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  98. Musco, I., Miller, J.C., Polnarev, A.: Primordial black hole formation in the radiative era: investigation of the critical nature of the collapse. Class. Quant. Grav. 26, 235001 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  99. Nadezhin, D.K., Novikov, I.D., Polnarev, A.G.: Hydrodynamics of primordial black hole formation. Sov. Astron. 22, 129–138 (1978)

    ADS  Google Scholar 

  100. Nakama, T., Harada, T., Polnarev, A.G., Yokoyama, J.: Identifying the most crucial parameters of the initial curvature profile for primordial black hole formation (2013). arXiv:1310.3007

  101. Naselskii, P.D.: Hydrogen recombination kinetics in the presence of low-mass primordial black holes. Sov. Astron. Lett. 4, 209–211 (1978)

    ADS  Google Scholar 

  102. Niemeyer, J.C., Jedamzik, K.: Near-critical gravitational collapse and the initial mass function of primordial black holes. Phys. Rev. Lett. 80, 5481–5484 (1998)

    ADS  Google Scholar 

  103. Niemeyer, J.C., Jedamzik, K.: Dynamics of primordial black hole formation. Phys. Rev. D 59, 124013 (1999)

    ADS  Google Scholar 

  104. Paczynski, B.: Gravitational microlensing by the galactic halo. Astrophys. J. 304, 1–5 (1986)

    ADS  Google Scholar 

  105. Page, D.N., Hawking, S.H.: Gamma rays from primordial black holes. Astrophys. J. 206, 1–7 (1976)

    ADS  Google Scholar 

  106. Pani, P., Loeb, A.: Exclusion of the remaining mass window for primordial black holes as the dominant constituent of dark matter (2014). arXiv:1401.3025

  107. Peiris, H.V., Easther, R.: Primordial black holes, eternal inflation and the inflationary parameter space after WMAP 5. JCAP 0807, 024 (2008)

    ADS  Google Scholar 

  108. Polnarev, A.G., Zembowicz, R.: Formation of primordial black holes by cosmic strings. Phys. Rev. D 43, 1106–1109 (1991)

    ADS  Google Scholar 

  109. Polnarev, A.G., Khlopov, M.Y.: Dustlike stages in the early universe and constraints on the primordial black hole spectrum. Sov. Astron. 26, 391–395 (1992)

    ADS  Google Scholar 

  110. Polnarev, A.G., Musco, I.: Curvature profiles as initial conditions for primordial black hole formation. Class. Quant. Grav. 24, 1405–1432 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  111. Polnarev, A.G., Nakama, T., Yokoyama, J.: Self-consistent initial conditions for primordial black hole formation. JCAP 1209, 027 (2012)

    ADS  MathSciNet  Google Scholar 

  112. Press, W.H., Gunn, J.E.: Method for detecting a cosmological density of condensed objects. Astrophys. J. 185, 397–412 (1973)

    ADS  Google Scholar 

  113. Press, W.H., Schechter, P.: Formation of galaxies and clusters of galaxies by self similar gravitational condensation. Astrophys. J. 187, 425–438 (1974)

    ADS  Google Scholar 

  114. Quinn, D.P., et al.: On the reported death of the MACHO era. Mon. Not. Roy. Astron. Soc. 396, 11–15 (2009)

    ADS  Google Scholar 

  115. Randall, L., Soljacic, M., Guth, A.H.: Supernatural inflation: inflation from supersymmetry with no (very) small parameters. Nucl. Phys. B 472, 377–408 (1996)

    ADS  Google Scholar 

  116. Ricotti, M., Gould, A.: A new probe of dark matter and high-energy universe using microlensing. Astrophys. J. 707, 979–987 (2009)

    ADS  Google Scholar 

  117. Ricotti, M., Ostriker, J.P., Mack, K.J.: Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829 (2008)

    ADS  Google Scholar 

  118. Saito, R., Yokoyama, J.: Gravitational wave background as a probe of the primordial black hole abundance. Phys. Rev. Lett. 102, 161101 (2009). (erratum-ibid 107 069901 (2011))

    ADS  Google Scholar 

  119. Saito, R., Yokoyama, J.: Gravitational-wave constraints on the abundance of primordial black holes. Prog. Theor. Phys. 123, 867–886 (2010). (erratum-ibid 126 351–352 (2011))

    ADS  MATH  Google Scholar 

  120. Saito, R., Yokoyama, J., Nagata, R.: Single-field inflation, anomalous enhancement of superhorizon fluctuations, and non-Gaussianity in primordial black hole formation. JCAP 024, 0806 (2008)

    Google Scholar 

  121. Schmid, C., Schwarz, D.J., Widerin, P.: Amplification of cosmological inhomogeneities from the QCD transition. Phys. Rev. D 59, 043517 (1999)

    ADS  Google Scholar 

  122. Scott, P., Sivertsson, S.: Gamma-rays from ultra compact primordial dark matter mini halos. Phys. Rev. Lett. 103, 211301 (2009)

    ADS  Google Scholar 

  123. Seto, N., Cooray, A.: Search for small-mass black hole dark matter with space-based gravitational wave detectors. Phys. Rev. D 70, 063512 (2004)

    ADS  Google Scholar 

  124. Seto, N., Cooray, A.: Searching for primordial black hole dark matter with pulsar timing arrays. Astrophys. J. 659, 33–36 (2007)

    ADS  Google Scholar 

  125. Shandera, S., Erickcek, A.L., Scott, P., Galarza, J.Y.: Number counts and non-gaussianity. Phys. Rev. D 88, 103506 (2013)

    ADS  Google Scholar 

  126. Shibata, M., Sasaki, M.: Black hole formation in the Friedmann universe: Formulation and computation in numerical relativity. Phys. Rev. D 60, 084002 (1999)

    ADS  MathSciNet  Google Scholar 

  127. Stewart, E.D.: Flattening the inflaton’s potential with quantum corrections. Phys. Lett. B 391, 34–38 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  128. Stewart, E.D.: Flattening the inflaton’s potential with quantum corrections. 2. Phys. Rev. D 56, 2019–2023 (1997)

    ADS  MATH  Google Scholar 

  129. Tisserand, P., et al.: Limits on the Macho content of the galactic halo from the EROS-2 survey of the Magellanic clouds. Astron. Astrophys. 469, 387–404 (2007)

    ADS  Google Scholar 

  130. Vainer, B.N., Naselskii, P.D.: Observable consequences of the evaporation of low-mass primordial black holes. Sov. Astron. Lett. 3, 76–78 (1977)

    ADS  Google Scholar 

  131. Vainer, B.N., Dryzhakova, O.V., Naselskii, P.D.: Primordial black holes and cosmological nucleosynthesis. Sov. Astron. Lett. 4, 344–348 (1978)

    Google Scholar 

  132. Vallinotto, A., Copeland, E.J., Kolb, E.W., Liddle, A.R., Steer, D.A.: Inflationary potentials yielding constant scalar perturbation spectral indices. Phys. Rev. D 69, 103519 (2004)

    ADS  Google Scholar 

  133. Vilenkin, A., Shellard, E.P.S.: Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  134. Weinberg, M.D., Shapiro, S.L., Wasserman, I.: The dynamical fate of wide binaries in the solar neighborhood. Astrophys. J. 312, 367–389 (1987)

    ADS  Google Scholar 

  135. Wichoski, U.F., MacGibbon, J.H., Brandenberger, R.H.: High-energy neutrinos, photons and cosmic ray fluxes from VHS cosmic strings. Phys. Rev. D 65, 063005 (2002)

    ADS  Google Scholar 

  136. Wilkinson, P., et al.: Limits on the cosmological abundance of supermassive compact objects from a search for multiple imaging in compact radio sources. Phys. Rev. Lett. 86, 584–587 (2001)

    ADS  Google Scholar 

  137. Yokoyama, J.: Formation of MACHO primordial black holes in inflationary cosmology. Astron. Astrophys. 318, 673–679 (1997)

    ADS  Google Scholar 

  138. Yokoyama, J.: Chaotic new inflation and formation of primordial black holes. Phys. Rev. D 58, 083510 (1998)

    ADS  MathSciNet  Google Scholar 

  139. Yokoyama, J.: Cosmological constraints on primordial black holes produced in the near critical gravitational collapse. Phys. Rev. D 58, 107502 (1998)

    ADS  Google Scholar 

  140. Young, S., Byrnes, C.T.: Primordial black holes in non-Gaussian regimes. JCAP 1208, 052 (2013)

    ADS  Google Scholar 

  141. Zeldovich, Y.B., Novikov, I.D.: The hypothesis of cores retarded during expansion and the hot cosmological model. Sov. Astron. 10, 602–603 (1967)

    ADS  Google Scholar 

  142. Zeldovich, Y.B., Starobinskii, A.A., Khlopov, M.Y., Chechetkin, V.M.: Primordial black holes and the deuterium problem. Sov. Astron. Lett. 3, 110–112 (1977)

    ADS  Google Scholar 

Download references

Acknowledgments

AMG is funded by the STFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Green, A.M. (2015). Primordial Black Holes: Sirens of the Early Universe. In: Calmet, X. (eds) Quantum Aspects of Black Holes. Fundamental Theories of Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-10852-0_5

Download citation

Publish with us

Policies and ethics