Skip to main content

Future Development

  • Chapter
  • First Online:
Cardiovascular OCT Imaging

Abstract

This chapter gives an overview of on-going research and development (R&D) work that is likely to impact the future of cardiovascular OCT. Addressed first are the influences of macrotrends in healthcare delivery on R&D investment and the need for advances that lead to improvements in patient outcomes. The remainder of the chapter reviews recent work in selected topic areas: ultra-high-speed OCT technologies, 3D segmentation and visualization, angiographic co-registration, functional lesion assessment, multimodality imaging, and novel blood-clearing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pijls NH, De Bruyne B, Peels K, van der Voort PH, Bonnier HJRM, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenosis. N Engl J Med. 1996;334:1703–8.

    Article  CAS  PubMed  Google Scholar 

  2. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, Klauss V, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  3. Pijls NH, Van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol. 2007;49:2105–11.

    Article  PubMed  Google Scholar 

  4. Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodrigeuz V, Jimenez-Quevedo P, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve. J Am Coll Cardiol. 2012;59:1080–90.

    Article  PubMed  Google Scholar 

  5. Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J Sel Top Quant Electr. 1999;5:1205–15.

    Article  CAS  Google Scholar 

  6. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography – principles and application. Rep Prog Phys. 2003;33:239–303.

    Article  Google Scholar 

  7. Hamden R, Gonzales RG, Ghostine S, Caussin C. Optical coherence tomography: from physical principles to clinical applications. Arch Cardiovasc Dis. 2012;105:529–34.

    Article  Google Scholar 

  8. Huber R, Wojtkowski M, Fujimoto JG. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt Express. 2006;14(8):3225–37.

    Article  CAS  PubMed  Google Scholar 

  9. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express. 2010;18:14685–704.

    Article  PubMed  Google Scholar 

  10. Adler DC, Wieser W, Trepanier F, Schmitt JM, Huber RA. Extended coherence length Fourier domain mode locked lasers at 1310 nm. Opt Express. 2011;19:20930–9.

    Article  PubMed  Google Scholar 

  11. Jayaraman V, Jiang J, Potsaid B, Cole G, Fujimoto J, Cable A. Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography. Proc SPIE. 2012 8276:82760D-1–82760D-11.

    Google Scholar 

  12. Cho HS, Jang SJ, Kim K, Dan-Chin-Yu AV, Shishkov M, Bouma BE, Oh WY. High frame-rate intravascular optical frequency-domain imaging in vivo. Biomed Opt Express. 2014;5:223–32.

    Article  PubMed Central  Google Scholar 

  13. Oh WY, Vakoc BJ, Shishkov M, Tearney GJ, Bouma BE. > 400 KHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. Opt Lett. 2010;35:2919–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Huber R, Adler DC, Fujimoto J. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett. 2006;31:2975–7.

    Article  PubMed  Google Scholar 

  15. Tsai TH, Potsaid B, Kraus MF, Zhou C, Tao YK, Hornegger J, Fujimoto JG. Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography. Biomed Opt Express. 2011;2:2438–48.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Tsai TH, Potsaid B, Jayaraman V, Jiang J, Heim PJ, Kraus MF, Zhou C, Hornegger J, Mashimo H, Cable AE, Fujimoto JG. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed Opt Express. 2013;4:1119–32.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang T, Weiser W, Springeling G, Beurskens R, Lancee CT, Pfeiffer T, van der Steen AF, Huber R, van Soest G. Intravascular optical coherence tomography imaging at 3200 frames per second. Opt Lett. 2013;38:1715–7.

    Article  PubMed  Google Scholar 

  18. Sihan K, Botha C, Post F, de Winter S, Gonzalo N, Regar E, et al. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: method and validation. Catheter Cardiovasc Interv. 2009;74:1058–65.

    Article  PubMed  Google Scholar 

  19. Gogas BD, Farooq V, Serruys PW. Three-dimensional coronary tomographic reconstructions using in vivo intracoronary optical frequency domain imaging in the setting of acute myocardial infarction: the clinical perspective. Hellenic J Cardiol. 2012;53:148–51.

    PubMed  Google Scholar 

  20. Chatzizisis YS, Koutkias VG, Toutouzas K, Giannopoulos A, Chouvardia I, Riga M, et al. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images. Int J Cardiol. 2014;172:568–80.

    Article  PubMed  Google Scholar 

  21. Bonnema GT, O’Halloran Cardinal K, Williams SK, Barton JK. An automatic algorithm for detecting stent endothelization from volumetric optical coherence tomography datasets. Phys Med Biol. 2008;53:3082–98.

    Article  Google Scholar 

  22. Tsantis S, Kagadis GC, Katsanos K, Karnabatidis D, Bourantas G, Nikiforidis GC. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography. Med Phys. 2012;39:503–13.

    Article  PubMed  Google Scholar 

  23. Ughi GJ, Adriaenssens T, Onsea K, Kayaert P, Dubois C, Sinnaeve P, Coosemans M, Desmet W, D’hooge J. Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage. Int J Cardiovasc Imaging. 2012;28:229–41.

    Article  CAS  PubMed  Google Scholar 

  24. Ughi GJ, Van Dyck CJ, Adriaenssens T, Hoymans VY, Sinnaeve P, Timmermans JP, Desmet W, Vrints CJ, D’hooge J. Automatic assessment of stent neointimal coverage by intravascular optical coherence tomography. Eur Heart J Cardiovasc Imaging. 2014;15:195–200.

    Article  PubMed  Google Scholar 

  25. Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158:284–93.

    Article  PubMed  Google Scholar 

  26. Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, Ladich E, et al. Examination of the in vivo mechanisms of late drug eluting stent thrombosis. J Am Coll Cardiol Intv. 2012;5:12–20.

    Article  Google Scholar 

  27. Yabushita H, Bouma BE, Houser SL, Aretz T, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  28. Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol. 2006;97:1172–5.

    Article  PubMed  Google Scholar 

  29. Xu C, Schmitt JM, Carlier SG, Virmani R. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J Biomed Opt. 2008;13:034003.

    Article  PubMed  Google Scholar 

  30. Wang Z, Kyono H, Bezerra H, Wang H, Gargesha M, Alraies C, Xu C, Schmitt JM, Wilson DL, Costa MA, Rollins AM. Semi-automatic segmentation and quantification of calcified plaques in intra-coronary optical coherence tomography images. J Biomed Opt. 2010;15:061711.

    Article  PubMed  Google Scholar 

  31. Wang Z, Chamie D, Bezerra HG, Yamamoto H, Kanovsky J, Wilson DL, Costa MA, Rollins AM. Volumetric quantification of fibrous caps using intravascular optical coherence tomography. Biomed Opt Express. 2012;3:1413–26.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tu S, Xu L, Ligthart J, Xu B, Witberg K, Sun Z, Koning G, Reiber JHC, Regar E. In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography. Int J Cardiovasc Imaging. 2012;28:1315–27.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pyxaras SA, Tu S, Barbato E, Barbati G, Di Derafino L, De Vroey F, et al. Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenosis: comparison with fractional flow reserve. Am Heart J. 2013;166:1010–8.

    Article  PubMed  Google Scholar 

  34. Koo BK, Yang HM, Doh JH, Choe H, Lee SY, Yoon CH, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenosis of difference locations. J Am Coll Cardiol Intv. 2011;4:803–11.

    Article  Google Scholar 

  35. Shiono Y, Kitabata H, Kubo T, Masuno T, Ohta S, Ozaki Y, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J. 2012;76:2218–25.

    Article  PubMed  Google Scholar 

  36. Johnson NP, Kirkeeide RL, Gould KL. Coronary anatomy to predict physiology. Circ Cardiovasc Imaging. 2013;6:817–32.

    Article  PubMed  Google Scholar 

  37. Serruys PW, Girasis C, Papadopoulou S-L, Onuma Y. Non-invasive fractional flow reserve: scientific basis, methods, and perspectives. EuroIntervention. 2012;8:511–9.

    Article  PubMed  Google Scholar 

  38. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenosis by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve. J Am Coll Cardiol. 2011;58:1989–97.

    Article  PubMed  Google Scholar 

  39. Norgaard BL, Leipsic J, Gaur S, Gaur S, Seneviratne S, Ko BS, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease. J Am Coll Cardiol. 2014;63:1145–55.

    Article  PubMed  Google Scholar 

  40. Schmitt JM, Friedman JM, Petroff C, Elbasiony A. Lumen morphology and vascular resistance measurements data collection systems, apparatus, and methods. US Patent Application 0071404 (24 Mar 2011).

    Google Scholar 

  41. Guagliumi G, Sirbu V, Petroff C, Capodanno D, Musumeci G, Yamamoto H, et al. Volumetric assessment of lesion severity with optical coherence tomography: relationship with fractional flow reserve. EuroIntervention. 2013;8:1172–81.

    Article  PubMed  Google Scholar 

  42. Maehara A, Mintz GS, Weissman NJ. Advances in intravascular imaging. Circ Cardiovasc Interv. 2009;2:482–90.

    Article  PubMed  Google Scholar 

  43. Muller JE, Weissman NJ, Tuzcu EM. The year in intracoronary imaging. J Am Coll Cardiol Imaging. 2010;3:881–91.

    Article  Google Scholar 

  44. Bourantas CV, Garcia-Garcia HM, Naka KK, Sakellarios A, Athanasiou L, Fotiadis DI, et al. Hybrid intravascular imaging. Current applications and prospective potential in the study of coronary atherosclerosis. J Am Coll Cardiol. 2013;61:1369–78.

    Article  PubMed  Google Scholar 

  45. Jang I-K, Bouma BE, Kang D-H, Park S-J, Park S-W, Seung K-B, Choi K-B, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.

    Article  PubMed  Google Scholar 

  46. Yin J, Li X, Jing J. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt. 2011;16:060505.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Li BH, Leung SO, Soong A, Munding CE, Lee H, Thind AS, et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Cath Cardiovasc Interv. 2012;81:494–507.

    Article  Google Scholar 

  48. Li X, Li JW, Jing J, Ma T, Liang SS, Zhang J, et al. Integrated IVUS-OCT imaging for atherosclerotic plaque characterization. IEEE J Sel Top Quantum Electron. 2013;20:7100108.

    PubMed Central  Google Scholar 

  49. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55:173–85.

    Article  PubMed  Google Scholar 

  50. Schmitt JM, Petroff C. Method of determining pressure in a vessel as measured an optical pressure transducer in an optical coherence tomography system. US Patent 8,676,299 (18 Mar 2014).

    Google Scholar 

  51. Petroff C, Schmitt JM. Optical coherence tomography and pressure based systems and methods. U.S. Patent Application 20140094697 (3 Apr 2014).

    Google Scholar 

  52. Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol. 2006;47:C92–6.

    Article  PubMed  Google Scholar 

  53. Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, Tearney GJ. Optical coherence tomography–near infrared spectroscopy system and catheter for intravascular imaging. Opt Express. 2013;21:30849–58.

    Article  PubMed  Google Scholar 

  54. Pu J, Mintz GS, Brilakis ES, Banerjee S, Abdel-Karim AR, Maini B, Biro S, Lee JB, Stone GW, Weisz G, Maehara A. In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. Eur Heart J. 2012;33:372–83.

    Article  PubMed  Google Scholar 

  55. Yonetsu T, Suh W, Abtahian F, Kato K, Vergallo R, Kim SJ, Ji H, McNulty I, Lee H, Jang IK. Comparison of near-infrared spectroscopy and optical coherence tomography for detection of lipid. Catheter Cardiovasc Interv 2013 (in press).

    Google Scholar 

  56. Barton JK, Guzman F, Tumlinson A. Dual modality instrument for simultaneous optical coherence tomography imaging and fluorescence spectroscopy. J Biomed Opt. 2004;9:618–23.

    Article  PubMed  Google Scholar 

  57. Tumlinson AR, Hariri LP, Utzinger U, Barton JK. Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Appl Opt. 2004;43:113–21.

    Article  PubMed  Google Scholar 

  58. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006;113:2335–62.

    Article  PubMed  Google Scholar 

  59. Qureshi A, Gurbuz Y, Niazi JH. Biosensors for cardiac biomarkers detection: a review. Sens Actuators B. 2012;171–172:62–76.

    Article  Google Scholar 

  60. Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, McCarthy JR, Ntziachristos V, Bouma BE, Jaffer FA, Tearney GJ. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med. 2011;17:1680–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J. 2012;76:922–7.

    Article  PubMed  Google Scholar 

  62. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT. Hospital-acquired renal insufficiency: a prospective study. Am J Med. 1983;74:243–8.

    Article  CAS  PubMed  Google Scholar 

  63. Lopez JJ, Arain SA, Madder R, Parekh N, Shroff AR, Westerhausen MD. Techniques and best practices for optical coherence tomography. Cath Cardiovasc Interv. 2014 (on-line publication; article in press).

    Google Scholar 

  64. Frick K, Michael TT, Alomar M, Mohammed A, Abdullah S, Grodin J, Hastings JL, et al. Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media. Cath Cardiovasc Interv. 2013. doi:10.1002/ccd.25092. Epub.

  65. Villard J, Feldman M, Kim J, Milner T, Freeman G. Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography. Circulation. 2002;105:1843–9.

    Article  PubMed  Google Scholar 

  66. Hoang KC, Edris A, Su J, Mukai DS, Mahon S, Petrov AD, Kern M, Ashan C, Chen Z, Tromberg BJ, Narula J, Brenner M. Use of an oxygen-carrying blood substitute to improve intravascular optical coherence tomography imaging. J Biomed Opt. 2009;14:034028.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Allemang MT, Lakin RO, Kanaya T, Eslahpazir BA, Bezerra HG, Kashyap VS. The use of dextran and carbon dioxide for optical coherence tomography in the superficial femoral artery. J Vasc Surg. 2014;59:238–40.

    Article  PubMed  Google Scholar 

  68. Ueda Y, Asakura M, Hirayama A, Komamura K, Hori M, Komada K. Intracoronary morphology of culprit lesions after reperfusion in acute myocardial infarction: serial angioscopic observations. J Am Coll Cardiol. 1996;27:606–10.

    Article  CAS  PubMed  Google Scholar 

  69. Kataiwa H, Tanaka A, Kitabata H, Matsumoto H, Kashiwagi M, Kuroi A, et al. Head to head comparison between the conventional balloon occlusion method and the non-occlusion method for optical coherence tomography. Int J Cardiol. 2011;146:186–90.

    Article  PubMed  Google Scholar 

  70. Kato A, Yonemura K, Matsushima H, Ikegaya N, Hishida A. Complication of oliguric acute renal failure in patients treated with low-molecular weight dextran. Ren Fail. 2001;23:679–84.

    Article  CAS  PubMed  Google Scholar 

  71. Alayash AI. Setbacks in blood substitutes research and development: a biochemical perspective. Clin Lab Med. 2010;30:381–9.

    Article  PubMed  Google Scholar 

  72. Voorhies RM, Fraser RA. Cerebral air embolism occurring at angiography and diagnosed by computerized tomography. Case report. J Neurosurg. 1984;60:177–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Schmitt PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmitt, J.M., Adler, D.C., Xu, C. (2015). Future Development. In: Jang, IK. (eds) Cardiovascular OCT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-10801-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10801-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10800-1

  • Online ISBN: 978-3-319-10801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics