Skip to main content

The Development of OCT

  • Chapter
  • First Online:
Cardiovascular OCT Imaging

Abstract

Optical coherence tomography (OCT) enables cross sectional and volumetric imaging of internal structure and pathology in biological tissues. OCT can perform an “optical biopsy”, imaging pathology in situ and in real time without the need for excisional biopsy. OCT imaging has become a standard of care in ophthalmology and is an emerging imaging modality in cardiology, where it provides information that often cannot be obtained by any other means. This chapter reviews the early history of OCT development with an emphasis on basic concepts and the process of technology translation. Early OCT technology and catheter imaging devices as well as advances in imaging speed using swept source/Fourier domain detection are reviewed. The process of clinical translation, beginning with ex vivo imaging and histology, preclinical animal studies and progressing to clinical studies in patients is discussed. The history of commercial intravascular OCT development is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note there OCT embodiments including full-field OCT that acquire axial data in parallel.

  2. 2.

    In some ways OCT is by definition, always a confocal system. A single spatial optical mode is used for illumination and a single spatial mode is used for detection. However, a long Rayleigh range is often used and the lateral resolution is less than standard confocal microscopes. OCT, with high numerical aperture focusing, is often referred to as Optical Coherence Microscopy (OCM).

  3. 3.

    The longitudinal resolution is actually determined by the product of the coherence (autocorrelation) function and the focusing properties of the incident light beam. But usually the coherence function is the dominate factor.

  4. 4.

    The original name of the company was Coherent Diagnostic Technology, but the corporate name was later changed to LightLab Imaging.

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  Google Scholar 

  2. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma BE, Hee MR, et al. Biomedical imaging and optical biopsy using optical coherence tomography. Nat Med. 1995;1:970–2.

    Article  CAS  PubMed  Google Scholar 

  3. Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation. 1996;93(6):1206–13.

    Article  CAS  PubMed  Google Scholar 

  4. Erbel R, Roelandt JRTC, Ge J, Gorge G. Intravascular ultrasound. London: Martin Dunitz; 1998.

    Google Scholar 

  5. Szabo TL. Diagnostic ultrasound imaging: inside out. Burlington: Elsevier Academic Press; 2004. xxii, 549 p. p.

    Google Scholar 

  6. Hedrick WR, Hykes DL, Starchman DE. Ultrasound physics and instrumentation. 4th ed. St. Louis: Elsevier Mosby; 2005.

    Google Scholar 

  7. Schuman JS, Puliafito CA, Fujimoto JG. Optical coherence tomography of ocular diseases. 2nd ed. Thorofare: Slack Inc.; 2004.

    Google Scholar 

  8. Duguay MA. Light photographed in flight. Am Sci. 1971;59(September):551–6.

    Google Scholar 

  9. Duguay MA, Mattick AT. Ultrahigh speed photography of picosecond light pulses and echoes. Appl Opt. 1971;10(September):2162–70.

    Article  CAS  PubMed  Google Scholar 

  10. Bruckner AP. Picosecond light scattering measurements of cataract microstructure. Appl Opt. 1978;17(October):3177–83.

    Article  CAS  PubMed  Google Scholar 

  11. Park H, Chodorow M, Kompfner R. High resolution optical ranging system. Appl Opt. 1981;20(July):2389–94.

    Article  CAS  PubMed  Google Scholar 

  12. Fujimoto JG, De Silvestri S, Ippen EP, Puliafito CA, Margolis R, Oseroff A. Femtosecond optical ranging in biological systems. Opt Lett. 1986;11(3):150–3.

    Article  CAS  PubMed  Google Scholar 

  13. Takada K, Yokohama I, Chida K, Noda J. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl Opt. 1987;26:1603–8.

    Article  CAS  PubMed  Google Scholar 

  14. Youngquist R, Carr S, Davies D. Optical coherence-domain reflectometry: a new optical evaluation technique. Opt Lett. 1987;12(3):158–60.

    Article  CAS  PubMed  Google Scholar 

  15. Gilgen HH, Novak RP, Salathe RP, Hodel W, Beaud P. Submillimeter optical reflectometry. J Lightwave Techol. 1989;7:1225–33.

    Article  CAS  Google Scholar 

  16. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13:1867–9.

    Article  Google Scholar 

  17. Clivaz X, Marquis-Weible F, Salathe RP. Optical low coherence reflectometry with 1.9 mm spatial resolution. Electron Lett. 1992;28(16):1553–4.

    Article  Google Scholar 

  18. Schmitt JM, Knuttel A, Bonner RF. Measurement of optical-properties of biological tissues by low- coherence reflectometry. Appl Opt. 1993;32(30):6032–42.

    Article  CAS  PubMed  Google Scholar 

  19. Tanno N, Ichimura T. Reproduction of optical reflection-intensity-distribution using multi-mode laser coherence. Trans Inst Electron Inf Commun Eng C-I. 1994;J77C-I(7):415–22.

    Google Scholar 

  20. Wang Y, Funaba T, Ichimura T, Tanno N. Optical multimode time-domain reflectometry. Review of Laser Engineering. 1995;23(4):273–9.

    Article  CAS  Google Scholar 

  21. Huang D, Wang J, Lin CP, Puliafito CA, Fujimoto JG. Micron-resolution ranging of cornea and anterior chamber by optical reflectometry. Laser Surg Med. 1991;11:419–25.

    Article  CAS  Google Scholar 

  22. Tanno N, Ichimura T, Saeki A, inventors. Device for measuring the light wave of a reflected image, Japanese Patent Application, 2-300169. 1994.

    Google Scholar 

  23. Rollins AM, Izatt JA. Optimal interferometer designs for optical coherence tomography. Opt Lett. 1999;24(21):1484–6.

    Article  CAS  PubMed  Google Scholar 

  24. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18(21):1864–6.

    Article  CAS  PubMed  Google Scholar 

  25. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Opthalmol. 1993;116(1):113–4.

    Article  CAS  Google Scholar 

  26. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  27. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102(2):217–29.

    Article  CAS  PubMed  Google Scholar 

  28. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, et al. Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol. 1995;113(8):1019–29.

    Article  CAS  PubMed  Google Scholar 

  29. Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998;105(2):360–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Schuman JS, et al. Optical coherence tomography of macular holes. Ophthalmology. 1995;102(5):748–56.

    Article  CAS  PubMed  Google Scholar 

  31. Hee MR, Puliafito CA, Wong C, Reichel E, Duker JS, Schuman JS, et al. Optical coherence tomography of central serous chorioretinopathy. Am J Opthalmol. 1995;120(1):65–74.

    Article  CAS  Google Scholar 

  32. Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E, Wilkins JR, et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology. 1996;103(8):1260–70.

    Article  CAS  PubMed  Google Scholar 

  33. Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol. 1995;6(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  34. Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113(5):586–96.

    Article  CAS  PubMed  Google Scholar 

  35. Swanson EA, Huang D. Ophthalmic OCT reaches $1 Billion per year. Retinal Physician. 2011;8(4):45. 58–9, 62.

    Google Scholar 

  36. Schmitt JM, Knuttel A, Yadlowsky M, Eckhaus MA. Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol. 1994;39(10):1705–20.

    Article  CAS  PubMed  Google Scholar 

  37. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1(9):970–2.

    Article  CAS  PubMed  Google Scholar 

  38. Parsa P, Jacques SL, Nishioka NS. Optical properties of rat liver between 350 and 2200 nm. Appl Opt. 1989;28(12):2325–30.

    Article  CAS  PubMed  Google Scholar 

  39. Schmitt JM, Knuttel A. Model of optical coherence tomography of heterogeneous tissue. J Opt Soc Am A. 1997;14(6):1231–42.

    Article  Google Scholar 

  40. Brezinski ME, Tearney GJ, Boppart SA, Swanson EA, Southern JF, Fujimoto JG. Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics. J Search Res. 1997;71(1):32–40.

    Article  CAS  Google Scholar 

  41. Izatt JA, Kulkarni MD, Wang H-W, Kobayashi K, Sivak Jr MV. Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J Sel Top Quant. 1996;2(4):1017–28.

    Article  CAS  Google Scholar 

  42. Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am J Gastroenterol. 1997;92(10):1800–4.

    CAS  PubMed  Google Scholar 

  43. Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. Optical biopsy in human urologic tissue using optical coherence tomography. J Urology. 1997;157(5):1915–9.

    Article  CAS  Google Scholar 

  44. Boppart SA, Brezinski ME, Pitris C, Fujimoto JG. Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. Neurosurgery. 1998;43(4):834–41.

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi K, Izatt JA, Kulkarni MD, Willis J, Sivak Jr MV. High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results. Gastrointest Endosc. 1998;47(6):515–23.

    Article  CAS  PubMed  Google Scholar 

  46. Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG. Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. Digestive Dis Sci. 1998;43(6):1193–9.

    Article  CAS  Google Scholar 

  47. Pitris C, Brezinski ME, Bouma BE, Tearney GJ, Southern JF, Fujimoto JG. High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1640–4.

    Article  CAS  PubMed  Google Scholar 

  48. Pitris C, Goodman A, Boppart SA, Libus JJ, Fujimoto JG, Brezinski ME. High-resolution imaging of gynecologic neoplasms using optical coherence tomography. Obstet Gynecol. 1999;93(1):135–9.

    Article  CAS  PubMed  Google Scholar 

  49. Jesser CA, Boppart SA, Pitris C, Stamper DL, Nielsen GP, Brezinski ME, et al. High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Brit J Radiol. 1999;72(864):1170–6.

    Article  CAS  PubMed  Google Scholar 

  50. Boppart SA, Goodman A, Libus J, Pitris C, Jesser CA, Brezinski ME, et al. High resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: feasibility for laparoscopic-based imaging. British J Obstet Gynaec. 1999;106(10):1071–7.

    Article  CAS  Google Scholar 

  51. Pitris C, Jesser C, Boppart SA, Stamper D, Brezinski ME, Fujimoto JG. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. J Gastroenterol. 2000;35(2):87–92.

    Article  CAS  PubMed  Google Scholar 

  52. Brezinski ME, Tearney GJ, Bouma BE, Boppart SA, Hee MR, Swanson EA, et al. High-resolution imaging of plaque morphology with optical coherence tomography. Circulation. 1995;92(8):103.

    Google Scholar 

  53. Tearney GJ, Boppart SA, Bouma BE, Brezinski ME, Weissman NJ, Southern JF, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett. 1996;21(7):543–5.

    Article  CAS  PubMed  Google Scholar 

  54. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitvis C, Southern JF, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276(5321):2037–9.

    Article  CAS  PubMed  Google Scholar 

  55. Bouma BE, Tearney GJ. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography. Opt Lett. 1999;24(8):531–3.

    Article  CAS  PubMed  Google Scholar 

  56. Swanson EA, Petersen C, McNamara E, Lamport R, Kelly D, inventors. Ultra-small optical probes, imaging optics, and methods for using same. US patent 6,445,939. 1999.

    Google Scholar 

  57. Sergeev AM, Gelikonov VM, Gelikonov GV, Feldchtein FI, Kuranov RV, Gladkova ND, et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt Express. 1997;1(13):432–40.

    Article  CAS  PubMed  Google Scholar 

  58. Feldchtein FI, Gelikonov GV, Gelikonov VM, Kuranov RV, Sergeev A, Gladkova ND, et al. Endoscopic applications of optical coherence tomography. Opt Express. 1998;3(6):257.

    Article  CAS  PubMed  Google Scholar 

  59. Tearney GJ, Brezinski ME, Boppart SA, Bouma BE, Weissman N, Southern JF, et al. Catheter-based optical imaging of a human coronary artery. Circulation. 1996;94(December):3013.

    Article  CAS  PubMed  Google Scholar 

  60. Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart. 1999;82(2):128–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tearney GJ, Jang IK, Kang DH, Aretz HT, Houser SL, Brady TJ, et al. Porcine coronary imaging in vivo by optical coherence tomography. Acta Cardiol. 2000;55(4):233–7.

    Article  CAS  PubMed  Google Scholar 

  62. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5.

    Article  PubMed  Google Scholar 

  63. Jang IK, Tearney G, Bouma B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation. 2001;104(22):2754.

    Article  CAS  PubMed  Google Scholar 

  64. Grube E, Gerckens U, Buellesfeld L, Fitzgerald PJ. Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in the coronary artery. Circulation. 2002;106(18):2409–10.

    Article  PubMed  Google Scholar 

  65. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–9.

    Article  PubMed  Google Scholar 

  66. Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117(1–2):43–8.

    Article  CAS  Google Scholar 

  67. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2.

    Article  CAS  PubMed  Google Scholar 

  68. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Opt Lett. 1997;22(22):1704–6.

    Article  CAS  PubMed  Google Scholar 

  69. Yun SH, Tearney GJ, Bouma BE, Park BH, de Boer JF. High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength. Opt Express. 2003;11(26):3598–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Yun SH, Tearney GJ, de Boer JF, Iftimia N, Bouma BE. High-speed optical frequency-domain imaging. Opt Express. 2003;11(22): 2953–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Choma MA, Sarunic MV, Yang CH, Izatt JA. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9.

    Article  PubMed  Google Scholar 

  72. Huber R, Taira K, Ko TH, Wojtkowski M, Srinivasan V, Fujimoto JG, editors. High-speed, amplified, frequency swept laser at 20 kHz sweep rates for OCT imaging. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies 2005. Baltimore: Optical Society of America; 2005.

    Google Scholar 

  73. Huber R, Wojtkowski M, Fujimoto JG. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt Express. 2006;14(8): 3225–37.

    Article  CAS  PubMed  Google Scholar 

  74. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7(3):457–63.

    Article  PubMed  Google Scholar 

  75. Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE, et al. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett. 2004;29(5):480–2.

    Article  PubMed  Google Scholar 

  76. Cense B, Nassif N, Chen TC, Pierce MC, Yun S, Park BH, et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express. 2004;12:2435–47.

    Article  PubMed  Google Scholar 

  77. Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express. 2004;12(11):2404–22.

    Article  PubMed  Google Scholar 

  78. Leitgeb R, Hitzenberger CK, Fercher AF. Performance of Fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889–94.

    Article  CAS  PubMed  Google Scholar 

  79. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003;28(21):2067–9.

    Article  PubMed  Google Scholar 

  80. Swanson EA, Huang D, Fujimoto JG, Puliafito CA, Lin CP, Schuman JS, inventors. Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample. US patent 5,321,501. 1994.

    Google Scholar 

  81. Swanson EA, Chinn SR, inventors. Method and apparatus for performing optical measurements using a rapidly frequency tuned laser. US patent 5,956,355.

    Google Scholar 

  82. Eickhoff W, Ulrich R. Optical frequency-domain reflectometry in single-mode fiber. Appl Phys Lett. 1981;39(9):693–5.

    Article  CAS  Google Scholar 

  83. Barfuss H, Brinkmeyer E. Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems. J Lightwave Technol. 1989;7(1):3–10.

    Article  Google Scholar 

  84. Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical wave-guides. J Lightwave Technol. 1993;11(8):1377–84.

    Article  Google Scholar 

  85. Kachelmyer AL. Range-Doppler imaging: waveforms and receiver design. Laser Radar III. SPIE the International Society for Optics and Photonics PO Box 10 Bellingham WA 98227-0010 USA; 1998.

    Google Scholar 

  86. Oh WY, Yun SH, Tearney GJ, Bouma BE. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt Lett. 2005;30(23):3159–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, et al. Comprehensive volumetric optical microscopy in vivo. Nat Med. 2006;12(12):1429–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Vakoc BJ, Shishko M, Yun SH, Oh WY, Suter MJ, Desjardins AE, et al. Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). Gastrointest Endosc. 2007;65(6):898–905.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Huber R, Wojtkowski M, Taira K, Fujimoto JG, Hsu K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt Express. 2005;13(9):3513–28.

    Article  CAS  PubMed  Google Scholar 

  90. Huber R, Adler DC, Fujimoto JG. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett. 2006;31(20):2975–7.

    Article  PubMed  Google Scholar 

  91. Adler DC, Chen Y, Huber R, Schmitt J, Connolly J, Fujimoto JG. Three-dimensional endomicroscopy using optical coherence tomography. Nat Photonics. 2007;1(12):709–16.

    Article  CAS  Google Scholar 

  92. Adler DC, Zhou C, Tsai TH, Schmitt J, Huang Q, Mashimo H, et al. Three-dimensional endomicroscopy of the human colon using optical coherence tomography. Opt Express. 2009;17(2):784–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express. 2011;19(4):3044–62.

    Article  CAS  PubMed  Google Scholar 

  94. Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, et al. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18(19):20029–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Okamura T, Onuma Y, Garcia-Garcia HM, Van Geuns RJM, Wykrzykowska JJ, Schultz C, et al. First in man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound. Eur Heart J. 2010;31:788.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Fujimoto PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fujimoto, J.G., Schmitt, J.M., Swanson, E.A., Jang, IK. (2015). The Development of OCT. In: Jang, IK. (eds) Cardiovascular OCT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-10801-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10801-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10800-1

  • Online ISBN: 978-3-319-10801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics