Skip to main content

Abstract

The first chapter is introduced by a short motivation for the ACFA 2020 project given by the “ACARE vision 2020”. The ACFA 2020 project is presented in a concise way, listing the main goals and the associated deliverables together with some key numbers of the project. In order to set the background of the research work done, a section on the state of the art in aircraft configurations is contained. A special emphasis is given to European developments in advanced blended wing body (BWB) aircraft configurations, followed by a section on recent developments in aircraft conceptual design modeling and simulation methods. A section on control concepts for automatic flight control systems concludes the chapter, where both load alleviation and handling qualities are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Relative to year-2000 aircraft.

References

  1. Aerospace and Defence Industries Association of Europe ASD (2014) About ACARE. http://www.acare4europe.com/about-acare

  2. Aerospace and Defence Industries Association of Europe ASD (2014) Latest ACARE documents. http://www.acare4europe.com/documents/latest-acare-documents

  3. AIRBUS (2012) Global market forecast 2012–2031. http://www.airbus.com/company/market/forecast/

  4. Alexandrov V, Hussaini M (2000) Multidisciplinary design optimization: state of the art. In: 8th AIAA/UASAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach

    Google Scholar 

  5. An overview of the multi-purpose elsA flow solver (2013) http://www.aerospacelab-journal.org/fr/panorama-general-logiciel-elsA

  6. Anderson JD (1995) Computational fluid dynamic. McGraw-Hill, New York

    Google Scholar 

  7. Anderson JD (2007) Fundamentals of aerodynamics. McGraw-Hill, New York

    Google Scholar 

  8. ANSYS Inc. (2013) Ansys CFX and fluent software. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics

  9. ANSYS Inc. (2013) The AVL software. http://web.mit.edu/drela/Public/web/avl/

  10. ANSYS Inc. (2013) The TAU code. http://tau.dlr.de/startseite/

  11. Bendixen GE, O’Connell RF, Siegert CD (1981) Digital active control system for load alleviation for the lockheed L-1011. Aeronaut J 86(849):430–436

    Google Scholar 

  12. BOEING (2012) Current market outlook 2012–2031. http://www.boeing.com/boeing/commercial/cmo/

  13. Bretschneider S, Arago O, Staudacher S (2007) Architecture of a techno and environmental risk assessment tool using a multi-modular build approach. In: 18th international symposium on air-breathing engines, Beijing. ISABE-2007-1103

    Google Scholar 

  14. Brockhaus R (2001) Flugregelung (Flight Control). Springer, Heidelberg

    Book  Google Scholar 

  15. Buttazzo G, Frediani A (2012) Variational analysis and aerospace engineering: mathematical challenges for aerospace design. Springer, Germany

    Google Scholar 

  16. Caplin J, Ray A, Joshi S (2001) Damage-mitigating control of aircraft for enhanced structural durability. IEEE Trans Aerosp Electron Syst 37(3):849–862

    Article  Google Scholar 

  17. Clean sky JU (2014) Clean sky 2. http://www.cleansky.eu/. Accessed 8 July 2014

  18. DARcorporation (2013) Advanced aircraft analysis. http://www.darcorp.com/Software/AAA/

  19. Defoort S, Balesdent M, Klotz P, Schmollgruber P, Morio J, Hermetz J, Blondeau C, Carrier G, Bérend N (2012) Multidisciplinary aerospace system design: principles, issues and onera experience. J Aerosp Lab AL04-12(4)

    Google Scholar 

  20. Disney TE (1977) C5-A active load alleviation system. J Spacecr 14(2):81–86

    Article  Google Scholar 

  21. DLR (2011) Das VELA-Projekt (the vela project). http://www.dlr.de/as/Portaldata/5/Resources/dokumente/projekte/vela/The_VELA_Project.pdf

  22. Doulgeris G (2008) Modelling & integration of advanced propulsion systems. PhD thesis, School of Engineering, Cranfield University

    Google Scholar 

  23. Dreier ME (2007) Introduction to helicopter and tiltrotor flight simulation. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  24. Drela M (2007) The XFOIL program. http://web.mit.edu/drela/Public/web/xfoil/

  25. European Commission (2014) Flying high with innovative aircraft concepts. http://ec.europa.eu/research/research-for-europe/transport-nacre_en.html

  26. European Commission (2014) Horizon 2020—the EU framework programme for research and innovation. http://ec.europa.eu/programmes/horizon2020/

  27. European Commission and Directorate-General for Research and Innovation (2001) European aeronautics: a vision for 2020. Office for official publications of the European communities, Luxembourg

    Google Scholar 

  28. European Commission, Directorate-General for Research and Innovation, and Directorate-General for Mobility and Transport (2011) Flightpath 2050: Europe’s vision for aviation: maintaining global leadership and serving society’s needs. Publications office of the European union, Luxembourg

    Google Scholar 

  29. Finck RD, Hoak DE (1978) USAF stability and control Datcom. Technical report, flight control division, air force dynamics laboratory, wright-patterson air force base

    Google Scholar 

  30. GasTurb GmbH (2013) GasTurb 12. http://www.gasturb.de/. Accessed 8 July 2014

  31. Geiselhart K (1994) A technique for integration engine cycle and aircraft configuration optimization. Technical report, lockheed engineering & sciences company, Hampton, Virginia, NASA-CR-191602

    Google Scholar 

  32. Goldsmith HA (1964) Stability and control of supersonic aircraft at low speeds. In: 4th ICAS congress, Paris, France

    Google Scholar 

  33. Graham WR, Hall CA, Vear Morales M (2014) The potential of future aircraft technology for noise and pollutant emissions reduction. Transport Policy (in press)

    Google Scholar 

  34. Guptill J, Coroneos R, Patnaik S, Hopkins D, Berke L (1996) Cometboards users manual, release 1.0. Technical report, Lewis Research Center, Cleveland, Ohio. NASA Technical Memorandum, NASA-TM-4537

    Google Scholar 

  35. Hahn K-U, Koenig R (1992) ATTAS flight test and simulation results of the advanced gust management system LARS. In: AIAA atmospheric flight mechanics conference, Hilton Head Island

    Google Scholar 

  36. Hecker S, Hahn K-U (2007) Advanced gust load alleviation system for large flexible aircraft. In: 1st CEAS European air & space conference, Berlin

    Google Scholar 

  37. Heinze W, Österheld CM, Horst P (2001) Multidisziplinäres Flugzeugentwurfsverfahren PrADO—Programmentwurf und Anwendung im Rahmen von Flugzeug-Konzeptstudien (Multidisciplinary aircraft design method PrADO—program design and application in aircraft concept studies). In: Jahrbuch der DGLR-Jahrestagung 2001, Hamburg

    Google Scholar 

  38. Hileman J, Spakovszky Z, Drela M, Sargeant M (2007) Airframe design for “Silent Aircraft”. In: 45th AIAA aerospace sciences meeting and exhibit, Reno, Nevada

    Google Scholar 

  39. Hunsaker DF (2007) A numerical blade element approach to estimating propeller flowfields. In: Proceedings of the AIAA aerospace sciences meeting and exhibit, Reno, Nevada

    Google Scholar 

  40. Hunsaker DF, Snyder D (2006) A lifting-line approach to estimating propeller/wing interactions. In: Proceedings of the 24th applied aerodynamics conference, San Francisco

    Google Scholar 

  41. IST World (2014) Aircraft wing advanced technology operations (AWIATOR). http://www.ist-world.org/ProjectDetails.aspx?ProjectId=db962e43efb743e6968bc0430a00b4c1&SourceDatabaseId=9cd97ac2e51045e39c2ad6b86dce1ac2

  42. IST World (2014) Very efficient large aircraft (VELA). http://www.ist-world.org/ProjectDetails.aspx?ProjectId=bc5fe779da034fe4926c266e1c644b66&SourceDatabaseId=9cd97ac2e51045e39c2ad6b86dce1ac2

  43. Jenkinson L, Simpkin P, Rhodes D (1999) Civil jet aircraft design. AIAA Education Series. Elsevier, Amsterdam

    Google Scholar 

  44. Johnson W (1980) Helicopter theory. Dover, New York

    Google Scholar 

  45. Katz J, Plotkin A (2001) Low-speed aerodynamics. Cambridge University, Cambridge

    Book  MATH  Google Scholar 

  46. Kehrer WT (1964) Longitudinal stability and control of large supersonic aircraft at low speeds. In: 4th ICAS congress, Paris, France

    Google Scholar 

  47. Kordt M (2008) Multi objective dynamic aircraft synthesis—MODYAS. Airbus deutschland GmbH

    Google Scholar 

  48. Kurzhals PR (1978) Active controls in aircraft design. Executive summary. In: FMP symposium on stability and control, Ottawa

    Google Scholar 

  49. Kyprianidis K, Lehmayr B, Alexiou A, Xu L (2010) TERA2020—rationale, objectives and design algorithm. In: European workshop on new aero engine concepts, Munich

    Google Scholar 

  50. Lavelle T, Plencner R, Seidel J (1992) Concurrent optimization of airframe and engine design parameters. In: 4th symposium on multidisciplinary analysis and optimization cosponsored by the AIAA, USAF, NASA, and OAI, Cleveland, Ohio, Sept 1992. AIAA-92-4713

    Google Scholar 

  51. Lehmayr B, Kyprianidis K, Alexiou A, Xu L (2010) TERA2020 optimization of new AC configurations. In: European workshop on new aero engine concepts, Munich

    Google Scholar 

  52. Liebeck RH (2002) Design of the blended-wing-body subsonic transport. In: 40th AIAA aerospace sciences meeting and exhibit, Reno, Nevada

    Google Scholar 

  53. Liersch CM, Hepperle M (2011) A distributed toolbox for multidisciplinary preliminary aircraft design. In: 60th Deutscher Luft- und Raumfahrtkongress 2011, Bremen, Germany, Sept 2011

    Google Scholar 

  54. Liersch C, Hepperle M (2009) A unified approach for multidisciplinary preliminary aircraft design. In: 2nd CEAS European air and space conference, Manchester, Oct 2009

    Google Scholar 

  55. Maier R (2014) ACFA 2020 project. http://www.acfa2020.eu/index.html. Accessed 8 July 2014

  56. McCullers L (1984) Aircraft configuration optimization including optimized flight profiles. In: Recent experiences in multidisciplinary analysis and optimization, proceedings of a symposium held at NASA langley research center, Hampton, Virginia, April 1984. NASA Conference Publication 2327, Part 1, pp 395–412

    Google Scholar 

  57. McRuer D, Ashkenas I, Graham D (1973) Aircraft dynamics and automatic control. Princeton University, Princeton

    Google Scholar 

  58. Merat R (2008) Study of a direct lift control system based on the A380 aircraft. In: 46th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, 2008

    Google Scholar 

  59. Morris A, Arendsen P, Larocca G, Laban M, Voss R, Hönlinger H (2004) MOB—a European project on multidisciplinary design optimization. In: 24th international congress of the aeronautical sciences, Yokohama

    Google Scholar 

  60. NASA contractor report 3164 (1980) Selected advanced aerodynamics and active control technology concepts development on a derivative B-747 aircraft, 1980. NASA langley research center under contract NAS1-14741 with the Boeing commercial airplan company

    Google Scholar 

  61. O’Connell RF (1980) Design, development, and implementation of an active control system for load alleviation for a commercial transport airplane. AGARD-R-683

    Google Scholar 

  62. Ogaji S, Pilidis P, Hales R (2007) TERA—a tool for aero-engine modelling and management. In: 2nd world congress on engineering asset management and the 4th international conference on condition monitoring, Harrogate

    Google Scholar 

  63. Onat E, Klees G (1979) A method to estimate weight and dimensions of large and small gas turbine engines. Technical report, Boeing military airplane development, Seattle, Washington. Technical report, NASA-CR-199481

    Google Scholar 

  64. OpenCDT website (2014) www.opencdt.org. Accessed 30 June 2014

  65. Paletta N (2011) Maneuver load controls, analysis and design for flexible aircraft. PhD thesis, University of Napoli, Italy

    Google Scholar 

  66. Paletta N, Belardo M, Pecora M (2010) Load alleviation on a joined-wing unmanned aircraft. J Aircr 47(6):2005–2016

    Article  Google Scholar 

  67. Palmer P (1990) The turbomatch scheme for aero/industrial gas turbine engine design point/off design performance calculation. SME, thermal power group, technical report, Cranfield University

    Google Scholar 

  68. Pascovici D (2008) Thermo economic and risk analysis for advanced long range aero engines. PhD thesis, School of Engineering, Cranfield University

    Google Scholar 

  69. Patnaik S, Lavelle T, Hopkins D, Coronets R (1997) Cascade optimization strategy for aircraft and air-breathing propulsion system concepts. J Aircr 34(1):136–139

    Article  Google Scholar 

  70. Patnaik S, Guptill J, Hopkins D, Lavelle T (1998) Neural network and regression approximations in high-speed civil aircraft design optimization. J Aircr 35(6):839–850

    Article  Google Scholar 

  71. Patnaik S, Guptill J, Hopkins D, Lavelle T (1998) Neural network and regression approximations in high speed civil transport aircraft design optimization. Technical report, Lewis research center, Cleveland, Ohio. NASA Technical Memorandum, NASA/TM-1998-206316

    Google Scholar 

  72. Patnaik S, Hopkins D, Berke L (1996) A general-purpose optimization engine for multi-disciplinary design applications. In: 6th symposium on multidisciplinary analysis and optimization cosponsored by AIAA, USAS, NASA, ISSO, and USAF, Bellevue, Washington, Sept 1996. AIAA-96-4163

    Google Scholar 

  73. Patnaik S, Lavelle T, Hopkins D, Coronets R (1996) Cascade optimization strategy for aircraft air-breathing propulsion system concepts. In: 6th symposium on multidisciplinary analysis and optimization cosponsored by AIAA, USAS, NASA, ISSO, and USAF, Bellevue, Washington, Sept 1996. AIAA-96-4145

    Google Scholar 

  74. Plencner R, Snyder C (1991) The navy/nasa engine program (NEPP)—a user’s manual. Technical report, Lewis Research Center, Cleveland, Ohio, 1991. NASA Technical Memorandum, NASA-TM-105186

    Google Scholar 

  75. Pratt KG (1974) A survey of active controls benefits to supersonic transport. In: Symposium on advanced control technology, Los Angeles, California

    Google Scholar 

  76. Quintero V (2009) Techno-economic and environmental risk assessment of innovative propulsion systems for short-range civil aircraft. PhD thesis, School of Engineering, Cranfield University

    Google Scholar 

  77. Ramsey HD, Lewolt JG (1979) Design maneuver loads for an airplane with an active control system. In: AIAA 20th structures, structural dynamics, and materials conference, St. Lois, Missouri

    Google Scholar 

  78. Raymer DP (2006) Aircraft design: a conceptual approach, 4th edn. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  79. Raymer DP (2013) Dan raymer’s aircraft design & RDS website. http://www.aircraftdesign.com/

  80. Roskam J (1995) Airplane flight dynamics and automatic flight controls. DARcorporation

    Google Scholar 

  81. Roskam J (1998) What drives unique configurations. In: Advanced aerospace aerodynamics; proceedings of the aerospace technology conference and exposition, Anaheim, pp 1–17

    Google Scholar 

  82. Roskam J (2002) Airplane design. DARcorporation, Lawrence, Canada

    Google Scholar 

  83. Rößler C (2012) Conceptual design of unmanned aircraft with fuel cell propulsion system, 1st edn. Verlag Dr. Hut, Munich, Germany

    Google Scholar 

  84. Seitz A (2011) Advanced methods for propulsion system integration in aircraft conceptual design. PhD thesis, Technische Universität München, pp 11–13

    Google Scholar 

  85. Sesar JU (2014) SESAR from innovation to solution. http://www.sesarju.eu/

  86. Simulia website (2010) http://www.simulia.com/

  87. Steiner H-J, Hornung M, Baur S, Holzapfel F (2010) Modeling of propeller-wing aerodynamics for aircraft featuring large number of control devices. In: Deutscher Luft- und Raumfahrtkongress 2010, Hamburg

    Google Scholar 

  88. Stevens BL, Lewis FL (2003) Aircraft control and simulation. Wiley, Jersey

    Google Scholar 

  89. Stinton D (2001) The design of the aeroplane, 2nd edn. Blackwell Science, Malden

    Google Scholar 

  90. Storck R (2002) Die historische Entwicklung der Nurflügelflugzeuge der Welt (The historic development of flying wing aircraft in the World). Bernard & Graefe, Bonn

    Google Scholar 

  91. Technology Panel (AVT) Task Group AVT-036 (2007) Performance prediction and simulation of gas turbine engine operation for aircraft, marine, vehicular, and power generation. Technical report, NATO (North Atlantic Treaty Organisation), 2007. Final report of the RTO applied vehicle technology panel (AVT) task group TR-AVT-036

    Google Scholar 

  92. Tedford NP, Martins JRRA (2010) Benchmarking multidisciplinary design optimization algorithms. Optim Eng 11:159–183

    Article  MathSciNet  MATH  Google Scholar 

  93. The Tornado software (2013) http://www.redhammer.se/tornado/

  94. The XFLR5 program (2013) http://www.xflr5.com/xflr5.htm

  95. Thornton SV (1993) Reduction of structural loads using maneuver load control on the advanced fighter technology integration (AFTI)/F111 mission adaptive wing. In: NASA technical memorandum 4526, NASA Dryden Research Facility

    Google Scholar 

  96. Torenbeek E (1982) Synthesis of subsonic airplane design. Delft University, The Netherlands

    Book  Google Scholar 

  97. VSAERO software (2013) http://www.ami.aero/software-computing/amis-computational-fluid-dynamics-tools/vsaero/

  98. Wildschek A, Maier R, Hromčík M, Haniš T, Schirrer A, Kozek M, Westermayer C, Hemedi M (2009) Hybrid controller for gust load alleviation and ride comfort improvement using direct lift control flaps. In: 3rd European conference for aerospace sciences (EUCASS), Paris

    Google Scholar 

  99. Wilfert G, Sieber J, Rolt A, Baker N, Touyeras A, Colantouni S (2007) New environmental friendly aero engine core concepts. In: 18th international symposium on air-breathing engines, Bejing. ISABE-2007-1120

    Google Scholar 

  100. Yoo I, Lee S (2012) Reynolds-averaged Navier-Stokes computations of synthetic jet flows using deforming meshes. AIAA J 50(9):1943–1955

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kozek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kozek, M. et al. (2015). Overview and Motivation. In: Kozek, M., Schirrer, A. (eds) Modeling and Control for a Blended Wing Body Aircraft. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-10792-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10792-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10791-2

  • Online ISBN: 978-3-319-10792-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics