Skip to main content

On Semi-bent Functions and Related Plateaued Functions Over the Galois Field \(\mathbb{F}_{2^{n}}\)

  • Chapter
  • First Online:
Open Problems in Mathematics and Computational Science

Abstract

Plateaued functions were introduced in 1999 by Zheng and Zhang as good candidates for designing cryptographic functions since they possess desirable various cryptographic characteristics. They are defined in terms of the Walsh–Hadamard spectrum. Plateaued functions bring together various nonlinear characteristics and include two important classes of Boolean functions defined in even dimension: the well-known bent functions and the semi-bent functions. Bent functions (including their constructions) have been extensively investigated for more than 35 years. Very recently, the study of semi-bent functions has attracted the attention of several researchers. Much progress in the design of such functions has been made. The chapter is devoted to certain plateaued functions. The focus is particularly on semi-bent functions defined over the Galois field \(\mathbb{F}_{2^{n}}\) (n even). We review what is known in this framework and investigate constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Boolean function f is said to be homogeneous of degree r if \(f(x) =\sum _{ i=0}^{2^{n}-1 }a_{i}x^{i}\) where a i  = 0 for wt(i) ≠ r, where wt(i) is the Hamming weight of i.

  2. 2.

    We say a point p = (x 0, , x n ) is on a line L[y 0, , y n ] if and only if \(x_{0}y_{0} + x_{1}y_{1} + \cdots x_{n}y_{n} = 0\).

References

  1. S. Boztas, P.V. Kumar, Binary sequences with Gold-like correlation but larger linear span. IEEE Trans. Inf. Theory 40(2), 532–537 (1994)

    Article  MATH  Google Scholar 

  2. A. Canteaut, C. Carlet, P. Charpin, C. Fontaine, On cryptographic properties of the cosets of R(1,m). IEEE Trans. Inf. Theory 47, 1494–1513 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Carlet, On the secondary constructions of resilient and bent functions, in Proceedings of the Workshop on Coding, Cryptography and Combinatorics 2003 (Birkhäuser, Basel, 2004), pp. 3–28

    Google Scholar 

  4. C. Carlet, Boolean functions for cryptography and error correcting codes, in Chapter of the monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, ed. by Y. Crama, P.L. Hammer (Cambridge University Press, Cambridge, 2010), pp. 257–397

    Chapter  Google Scholar 

  5. C. Carlet, S. Mesnager, On Dillon’s class H of bent functions, niho bent functions and O-polynomials. J. Comb. Theory Ser. A 118(8), 2392–2410 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Carlet, S. Mesnager, On Semi-bent Boolean Functions. IEEE Trans. Inf. Theory 58(5), 3287–3292 (2012)

    Article  MathSciNet  Google Scholar 

  7. C. Carlet, E. Prouff, On plateaued functions and their constructions, in Proceedings of Fast Software Encryption (FSE). Lecture Notes in Computer Science, vol. 2887 (2003), pp. 54–73

    Google Scholar 

  8. A. Cesmelioglu, W. Meidl, A construction of bent functions from plateaued functions. Des. Codes Cryptogr. 66(1–3), 231–242 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Charpin, G. Gong, Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inform. Theory 54(9), 4230–4238 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Charpin, E. Pasalic, C. Tavernier, On bent and semi-bent quadratic Boolean functions. IEEE Trans. Inf. Theory 51(12), 4286–4298 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Chee, S. Lee, K. Kim, Semi-bent functions, in Advances in Cryptology-ASIACRYPT94. Proceedings of 4th International Conference on the Theory and Applications of Cryptology, Wollongong, ed. by J. Pieprzyk, R. Safavi-Naini. Lecture Notes in Computer Science, vol. 917 (1994), pp. 107–118

    Google Scholar 

  12. G. Cohen, S. Mesnager, On constructions of semi-bent functions from bent functions. Journal Contemporary Mathematics 625, Discrete Geometry and Algebraic Combinatorics, Americain Mathematical Society, 141–154 (2014)

    Google Scholar 

  13. T.W. Cusick, H. Dobbertin, Some new three-valued crosscorrelation functions for binary m-sequences. IEEE Trans. Inf. Theory 42(4), 1238–1240 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Dillon, Elementary Hadamard difference sets, Ph.D. dissertation, University of Maryland, 1974

    Google Scholar 

  15. H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke, P. Gaborit, Construction of bent functions via Niho Power Functions. J. Comb. Theory Ser. A 113, 779–798 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Dong, L. Qu, S. Fu, C. Li, New constructions of semi-bent functions in polynomial forms. Math. Comput. Model. 57, 1139–1147 (2013)

    Article  MathSciNet  Google Scholar 

  17. R. Gold, Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inform. Theory 14 (1), 154–156 (1968)

    Article  MATH  Google Scholar 

  18. F. Gologlu, Almost bent and almost perfect nonlinear functions, exponential sums, geometries and sequences, Ph.D. dissertation, University of Magdeburg, 2009

    Google Scholar 

  19. T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences. Discrete. Math. 16, 209–232 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Helleseth, Correlation of m-sequences and related topics, in Proceedings of SETAO98, Discrete Mathematics and Theoretical Computer Science, ed. by C. Ding, T. Helleseth, H. Niederreiter (Springer, London, 1999), pp. 49–66

    Google Scholar 

  21. T. Helleseth, P.V. Kumar, Sequences with low correlation, in Handbook of Coding Theory, Part 3: Applications, chap. 21, ed. by V.S. Pless, W.C. Huffman, R.A. Brualdi (Elsevier, Amsterdam, 1998), pp. 1765–1853

    Google Scholar 

  22. J.Y. Hyun, H. Lee, Y. Lee, Nonexistence of certain types of plateaued functions. Discrete Appl. Math. 161(16–17), 2745–2748 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Khoo, G. Gong, D.R. Stinson, A new family of Gold-like sequences, in Proceedings IEEE International Symposium on Information Theory, Lausanne (2002)

    Google Scholar 

  24. K. Khoo, G. Gong, D.R. Stinson, A new characterization of semi-bent and bent functions on finite fields. J. Design Codes Cryptogr. 38(2), 279–295 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Leander, A. Kholosha, Bent functions with 2r Niho exponents. IEEE Trans. Inf. Theory 52(12), 5529–5532 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Leander, G. McGuire, Spectra of functions, subspaces of matrices, and going up versus going down, in International Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC). Lecture Notes in Computer Science, vol. 4851 (Springer, Berlin, 2007), pp. 51–66

    Google Scholar 

  27. G. Leander, G. McGuire, Construction of bent functions from near-bent functions. J. Comb. Theory Ser. A 116, 960–970 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. N. Li, T. Helleseth, X. Tang, A. Kholosha, Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory 59(3), 1818–1831 (2013)

    Article  MathSciNet  Google Scholar 

  29. F.J. MacWilliams, N.J. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1977)

    MATH  Google Scholar 

  30. A. Maschietti, Difference sets and hyperovals. J. Design Codes Cryptogr. 14(1), 89–98 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Matsui, Linear cryptanalysis method for DES cipher, in Proceedings of EUROCRYPT’93. Lecture Notes in Computer Science, vol. 765 (1994), pp. 386–397

    Google Scholar 

  32. R.L. McFarland, A family of noncyclic difference sets. J. Comb. Theory Ser. A 15, 1–10 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Meier, O. Staffelbach, Fast correlation attacks on stream ciphers, in Advances in Cryptology, EUROCRYPT’88. Lecture Notes in Computer Science, vol. 330 (1988), 301–314

    Google Scholar 

  34. Q. Meng, H. Zhang, M. Yang, J. Cui, On the degree of homogeneous bent functions. Discrete Appl. Math. 155(5), 665–669 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Mesnager, A new family of hyper-bent boolean functions in polynomial form, in Proceedings of Twelfth International Conference on Cryptography and Coding, IMACC 2009. Lecture Notes in Computer Science, vol. 5921 (Springer, Heidelberg, 2009), pp. 402–417

    Google Scholar 

  36. S. Mesnager, A new class of bent and hyper-bent Boolean functions in polynomial forms. J. Design Codes Cryptogr. 59(1–3), 265–279 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. S. Mesnager, Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials. IEEE Trans. Inf. Theory 57(9), 5996–6009 (2011)

    Article  MathSciNet  Google Scholar 

  38. S. Mesnager, Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and Dickson polynomials. IEEE Trans. Inf. Theory 57(11), 7443–7458 (2011)

    Article  MathSciNet  Google Scholar 

  39. S. Mesnager, Semi-bent functions with multiple trace terms and hyperelliptic curves, in Proceeding of International Conference on Cryptology and Information Security in Latin America (IACR), Latincrypt 2012. Lecture Notes in Computer Science, vol. 7533 (Springer, Berlin, 2012), pp. 18–36

    Google Scholar 

  40. S. Mesnager, Semi-bent functions from oval polynomials, in Proceedings of Fourteenth International Conference on Cryptography and Coding, Oxford, IMACC 2013. Lecture Notes in Computer Science, vol. 8308 (Springer, Heidelberg, 2013), pp. 1–15

    Google Scholar 

  41. S. Mesnager, Contributions on boolean functions for symmetric cryptography and error correcting codes, Habilitation to Direct Research in Mathematics (HdR thesis), December 2012

    Google Scholar 

  42. S. Mesnager, Bent functions from Spreads. Journal of the American Mathematical Society (AMS), Contemporary Mathematics 632. to appear.

    Google Scholar 

  43. S. Mesnager, G. Cohen, On the link of some semi-bent functions with Kloosterman sums, in Proceedings of International Workshop on Coding and Cryptology, IWCC 2011. Lecture Notes in Computer Science, vol. 6639 (Springer, Berlin, 2011), pp. 263–272

    Google Scholar 

  44. S. Mesnager, J.P. Flori, Hyper-bent functions via Dillon-like exponents. IEEE Trans. Inf. Theory 59(5), 3215– 3232 (2013)

    Article  MathSciNet  Google Scholar 

  45. Y. Niho, Multi-valued cross-correlation functions between two maximal linear recursive sequences, Ph.D. dissertation, University of Sothern California, Los Angeles, 1972

    Google Scholar 

  46. O.S. Rothaus, On “bent” functions. J. Comb. Theory Ser. A 20, 300–305 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  47. B. Segre, U. Bartocci, Ovali ed altre curve nei piani di Galois di caratteristica due. Acta Arith. 18(1), 423–449 (1971)

    MATH  MathSciNet  Google Scholar 

  48. G. Sun, C. Wu, Construction of semi-bent Boolean functions in even number of variables. Chin. J. Electron. 18(2), 231–237 (2009)

    Google Scholar 

  49. J. Wolfmann, Cyclic code aspects of bent functions, in Finite Fields Theory and Applications, Contemporary Mathematics Series of the AMS, vol. 518 (American Mathematical Society, Providence, 2010), pp. 363–384

    Google Scholar 

  50. J. Wolfmann, Special bent and near-bent functions. Adv. Math. Commun. 8(1), 21–33 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  51. J. Wolfmann, Bent and near-bent functions (2013). arxiv.org/abs/1308.6373

    Google Scholar 

  52. T. Xia, J. Seberry, J. Pieprzyk, C. Charnes, Homogeneous bent functions of degree n in 2n variables do not exist for n > 3. Discrete Appl. Math. 142(1–3), 127–132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  53. P. Yuan, C. Ding, Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl. 17, 560–574 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Y. Zheng, X.M. Zhang, Plateaued functions, in Advances in Cryptology ICICS 1999. Lecture Notes in Computer Science, vol. 1726 (Springer, Berlin, 1999), 284–300

    Google Scholar 

  55. Y. Zheng, X.M. Zhang, Relationships between bent functions and complementary plateaued functions. Lecture Notes in Computer Science, vol. 1787 (1999), pp. 60–75

    Article  Google Scholar 

  56. Y. Zheng, X.M. Zhang, On plateaued functions. IEEE Trans. Inform. Theory 47(3), 1215–1223 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Claude Carlet for his careful reading and interesting comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Mesnager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mesnager, S. (2014). On Semi-bent Functions and Related Plateaued Functions Over the Galois Field \(\mathbb{F}_{2^{n}}\) . In: Koç, Ç. (eds) Open Problems in Mathematics and Computational Science. Springer, Cham. https://doi.org/10.1007/978-3-319-10683-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10683-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10682-3

  • Online ISBN: 978-3-319-10683-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics