Skip to main content

Particle Formation of Food Ingredients by Supercritical Fluid Technology

  • Chapter
  • First Online:
High Pressure Fluid Technology for Green Food Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Size reduction of food ingredients is associated with easier processing and increased bioavailability for nutritional purposes. In this chapter, particle formation techniques based on supercritical fluids such as rapid expansion of supercritical solutions (RESS), supercritical antisolvent (SAS) and particles from gas saturated solutions (PGSS™), used to obtain micro- and nanosized particles of food ingredients are described. Criteria for process selection and guidelines for implementation of processes are discussed. Specific applications are also presented, including hyphenation techniques. The reader is provided with an overview of the different processes applied so far for the particle formation of carotenoids, phenolic compounds, sterols, probiotics, vitamins, proteins, lipids and their encapsulates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson JM, Lindahl S, Turner C et al (2012) Pressurised hot water extraction with on-line particle formation. Food Chem 134:1724–1731

    Article  CAS  Google Scholar 

  • Cafara M, Marianecci C, Codeca S et al (2006) Retinylpalmitate-loaded vesicles: influence on vitamin light-induced degradation. J Drug Deliv Sci Tech 16:407–412

    Google Scholar 

  • Can Q, Carlfors J, Turner C (2009) Carotenoids particle formation by supercritical fluid technologies. Chin J Chem Eng 17:344–349

    Article  Google Scholar 

  • Chattopadhyay P, Shekunov BY, Seitzinger J et al (2006) US Patent US6998051 B2

    Google Scholar 

  • Chaudhary A, Nagaich U, Gulati N et al (2012) Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. JAPER 2:2249–3370

    Google Scholar 

  • Cismondi M, Michelsen M, Zabaloy M (2009) GPEC: global phase equilibrium calculations. http://www.gpec.efn.uncor.edu/

  • Cocero MJ, Martín A, Mattea F et al (2009) Encapsulation and co precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–555

    Article  CAS  Google Scholar 

  • Colussi S, Elvassore N, Kikic I (2006) A comparison between semi-empirical and molecular-based equations of state for describing the thermodynamic of supercritical micronization processes. J Supercrit Fluids 39:118–126

    Article  CAS  Google Scholar 

  • De Paz E, Martín A, Cocero MJ (2012) Formulation of B-carotene with soybean lecithin by PGSS (Particle from Gas Saturated Solutions)-drying. J Supercrit Fluids 72:125–133

    Article  Google Scholar 

  • Diez-Municio M, Montilla A, Herrero M et al (2011) Supercritical CO2 impregnation of lactulose on chitosan: a comparison between scaffolds and microspheres form. J Supercrit Fluids 57:73–79

    Article  CAS  Google Scholar 

  • Diplock AT, Aggett M, Ashwell M et al (1999) Scientific concepts of functional foods in Europe: consensus document. Brit J Nutr 81:S1–S27

    Article  CAS  Google Scholar 

  • Dohrn R, Fonseca JMS, Peper S (2012) Experimental methods for phase equilibria at high pressures. Annu Rev Chem Biomol Eng 3:343–367

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N et al (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Tech 6:628–647

    Article  CAS  Google Scholar 

  • Franceschi E, De Cesaro AM, Ferreira SRS et al (2009) Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2. J Food Eng 95:656–663

    Article  CAS  Google Scholar 

  • Gupta RB, Shim JJ (2007) Solubility in supercritical carbon dioxide. CRC, Boca Raton

    Google Scholar 

  • Hanna M, York P (1998) US Patent 5,851,453

    Google Scholar 

  • Hansen CM (2000) Hansen solubility parameters: a user’s handbook. CRC, Boca Raton

    Google Scholar 

  • He WZ, Suo QL, Jiang ZH et al (2004) Precipitation of ephedrine by SEDS process using a specially designed prefilming atomizer. J Supercrit Fluids 31:101–110

    Google Scholar 

  • Herrero M, Plaza M, Cifurentes A et al (2010) Green processes for the extraction of bioactives from rosemary: chemical and functional characterization via UPLC-MS/MS and in-vitro assays. J Chromatogr A 1217:2512–2520

    Google Scholar 

  • Heyang J, Fei X, Cuilan J et al (2009) Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chin J Chem Eng 17:672–677

    Article  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci 46:185–196

    Article  CAS  Google Scholar 

  • Hong HL, Suo QL, Han LH et al (2009) Study on precipitation of astaxanthin in supercritical fluid. Power Technol 191:294–298

    Article  CAS  Google Scholar 

  • Ibanez E, Cifuentes A, Rodriguez-Meizoso I et al (2009) Spanish patent no P200900164

    Google Scholar 

  • Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–219

    Article  CAS  Google Scholar 

  • Kikic I, De Zordi N, Moneghini M et al (2010) Solubility estimation of drugs in ternary systems of interest for the antisolvent precipitation processes. J Supercrit Fluids 55:616–622

    Article  CAS  Google Scholar 

  • Knez Z, Weidner E (2003) Particles formation and particle design using supercritical fluids. Curr Opin Solid St M 7:353–361

    Article  CAS  Google Scholar 

  • Koushan K, Rusovici R, Li W, Fergusson LR, Chalam KV (2013) The role of lutein in eye-related disease. Nutrients 5:1823–1839

    Google Scholar 

  • Lubary M, Loos TW, Horst JH et al (2011) Production of microparticles from milk fat products using the supercritical melt micronization (ScMM) process. J Supercrit Fluids 55:1079–1088

    Article  CAS  Google Scholar 

  • Magnan C, Badens E, Commenges N et al (2000) Soy lecithin micronization by precipitation with a compressed fluid antisolvent—influence of process parameters. J Supercrit Fluids 19:69–77

    Article  CAS  Google Scholar 

  • Mamvura CI, Moolman FS, Kalombo L et al (2011) Characterisation of the poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonicacid) (PVP:PVAc-CA) interpolymer complex matrix microparticles encapsulating a Bifidobacteriumlactis Bb12 probiotic strain. Probiotics Antimicrob Proteins 3:97–102

    Article  Google Scholar 

  • Martín A, Cocero MJ (2004) Numeric modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the SAS process. J Supercrit Fluids 12:249–258

    Google Scholar 

  • Martín A, Mattea F, Gutiérrez L et al (2007) Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process. J Supercrit Fluids 41:138–147

    Article  Google Scholar 

  • McHugh MA, Krukonis VJ (1994) Supercritical fluid extraction: principles and practice. Butterworth-Heinemann, Newton

    Google Scholar 

  • Moolman FS, Labuschagne PW, Thantsa MS et al (2006) Encapsulating probiotics with an interpolymer complex in supercritical carbon dioxide. S Afr J Sci 102:349–354

    CAS  Google Scholar 

  • Moribe K, Maruyama S, Inoue Y et al (2010) Ascorbyldipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. Int J Pharm 387:236–243

    Article  CAS  Google Scholar 

  • Nunes AVM, Duarte CMM (2011) Dense CO2 as a solute, co-solute, or co-solvent in particle formation processes: a review. Materials 4:2017–2041

    Article  Google Scholar 

  • Perrut M, Jung J, Leboeuf F (2002) International patent no. WO2002092213 A1

    Google Scholar 

  • Plösch T, Kruit JK, Bloks VW et al (2006) Reduction of cholesterol absorption by dietary plant sterols and stanols in mice is independent of the Abcg5/8 Transporter. J Nutr 136:2135–2140

    Google Scholar 

  • Ras RT, Hiemstra H, Lin Y et al (2013) Consumption of plant sterol-enriched foods and effects on plasma plant sterol concentrations—a meta-analysis of randomized controlled studies. Atherosclerosis 230:336–346

    Article  CAS  Google Scholar 

  • Reverchon E, Adami R (2006) Review: nanomaterials and supercritical fluids. J Supercrit Fluids 37:1–22

    Article  CAS  Google Scholar 

  • Rodríguez-Meizoso I, Castro-Puyana M, Börjesson P et al (2012) Life cycle assessment of green pilot-scale extraction to obtain potent antioxidants from rosemary leaves. J Supercrit Fluids 72:205–212

    Article  Google Scholar 

  • Rossmann M, Braeuer A, Dowy S et al (2012) Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. J Supercrit Fluids 66:350–358

    Google Scholar 

  • Sahebkar A (2013) Fat lowers fat: purified phospholipids as emerging therapies for dyslipidemia. Biochim Biophys Acta 1831:887–893

    Article  CAS  Google Scholar 

  • Sane A, Limtrakul J (2009) Formation of retinylpalmitate-loaded poly(L-lactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV). J Supercrit Fluids 51:230–237

    Article  CAS  Google Scholar 

  • Santos DT, Meireles MAA (2013) Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J Food Process Eng 36:36–49

    Article  CAS  Google Scholar 

  • Schumann C (2002) Medical, nutritional and technological properties of lactulose. An update. Eur J Nutr 41:17–25

    Article  Google Scholar 

  • Shariati A, Peters CJ (2002) Measurements and modeling of the phase behavior of ternary systems of interest for the GAS process: I. The system carbon dioxide + 1-propanol + salicyclic acid. J Supercrit Fluids 23:195–208

    Article  CAS  Google Scholar 

  • Sievers RE, Karst U (1995) European patent no. 0 677 332, 1995

    Google Scholar 

  • Skerget M, Knez Z, Knez-Hrncic M (2011) Solubility of solids in sub- and supercritical fluids: a review. J Chem Eng Data 56:694–719

    Article  CAS  Google Scholar 

  • Sonkaew P, Sane A, Suppakul P (2012) Antioxidant activities of curcumin and ascorbyldipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agr Food Chem 60:5388–5399

    Article  CAS  Google Scholar 

  • Srinivasan K (2014) Antioxidant potential of spices and their active constituents. Crit Rev Food Sci 54:352–372

    Article  CAS  Google Scholar 

  • Strumendo M, Bertucco A, Elvassore N (2007) Modeling of particle formation processes using gas saturated solution atomization. J Supercrit Fluids 41:115–125

    Article  CAS  Google Scholar 

  • Su CS (2013) Prediction of solubilities of solid solutes in carbon dioxide-expanded organic solvents using the predictive Soave–Redlich–Kwong (PSRK) equation of state. Chem Eng Res Des 91:1163–1169

    Article  CAS  Google Scholar 

  • Sun YP, Rollins HW, Bandara J et al (2002) Preparation and processing of nanoscale materials by supercritical fluid technology. In: Sun YP (ed) Supercritical fluid technology in materials science and engineering: synthesis, properties, and applications. Marcel Dekker, New York, pp 491–576

    Chapter  Google Scholar 

  • Szliszka E, Zydowicz G, Mizgala E et al (2012) Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol 41:818–828

    CAS  Google Scholar 

  • Tenorio A, Jaeger P, Gordillo MD et al (2009) On the selection of limiting hydrodynamic conditions for the supercritical antisolvent (SAS) process. Ind Eng Chem Res 48:9224–9232

    Article  CAS  Google Scholar 

  • Türk M (1999) Formation of small organic particles by RESS: experimental and theoretical investigations. J Supercrit Fluids 15:79–89

    Article  Google Scholar 

  • Türk M (2009) Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion processes. J Supercrit Fluids 47:537–545

    Article  Google Scholar 

  • Türk M, Lietzow R (2004) Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution. AAPS Pharm Sci Tech 5:36–45

    Article  Google Scholar 

  • Türk M, Hils P, Helfgen B et al (2002) Micronization of pharmaceutical substances by Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J Supercrit Fluids 22:75–84

    Article  Google Scholar 

  • Türk M, Upper G, Hils P (2006) Formation of composite drug–polymer particles by co-precipitation during the rapid expansion of supercritical fluids. J Supercrit Fluids 39:253–263

    Article  Google Scholar 

  • Van Konynenburg PH, Scott RL (1980) Critical lines and phase equilibria in binary van der Waals mixtures. Phil Trans R Soc A 298:495–540

    Article  Google Scholar 

  • Ventosa N, Sala S, Veciana J (2001) Depressurization of an expanded liquid organic solution (DELOS): a new procedure for obtaining submicron- or micron-sized crystalline particles. Crys Growth Des 1:299–303

    Article  CAS  Google Scholar 

  • Ventosa N, Veciana J, Rovira C et al (2002) International patent no. WO0216003 A1

    Google Scholar 

  • Vermuri PK, Velampaty RHP, Tipparaju SL (2014) Probiotics: a novel approach in improving the values of human life. Int J Pharm Pharm Sci 6:41–43

    Google Scholar 

  • Weidner E (2009) High pressure micronization for food applications. J Supercrit Fluids 47:556–565

    Article  CAS  Google Scholar 

  • Wellwood CRL, Cole RA (2004) Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. J Agr Food Chem 52:6101–6107

    Article  CAS  Google Scholar 

  • Wu JJ, Shen CT, Jong TT et al (2009) Supercritical carbon dioxide anti-solvent process for purification of micronized propolis particulates and associated anti-cancer activity. Sep Purif Technol 70:190–198

    Article  CAS  Google Scholar 

  • Young TJ, Mawson S, Johnston KP et al (2000) Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol Prog 16:402–407

    Article  CAS  Google Scholar 

  • Zhong Q, Jin M, Tian H et al (2008) Application of supercritical anti-solvent technologies for the synthesis of delivery systems of bioactive food components. Food Biophys 3:186–190

    Article  Google Scholar 

Download references

Acknowledgements

IRM thanks The Swedish Research Council (VR, 2012-4124), The Crafoord Foundation (2013-0763) and the Swedish Foundation for Strategic Research (SSF, 2005:0073/13) for supporting her work. MP thanks the Swedish Research Council Formas (229-2009-1527) (SuReTech) and the Antidiabetic Food Centre, a VINNOVA VINN Excellence Centre at Lund University (Sweden) for supporting her work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Rodríguez-Meizoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodríguez-Meizoso, I., Plaza, M. (2015). Particle Formation of Food Ingredients by Supercritical Fluid Technology. In: Fornari, T., Stateva, R. (eds) High Pressure Fluid Technology for Green Food Processing. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10611-3_5

Download citation

Publish with us

Policies and ethics