Skip to main content

Mechanical Properties of Metallic Nanocontacts

  • Chapter
  • First Online:
Fundamentals of Friction and Wear on the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

  • 3210 Accesses

Abstract

The mechanical properties of the reduced number of atoms forming the apex of a tip are interesting both from a fundamental point of view and for the interpretation of experiments related to scanning local probe methods. These mechanical properties can be studied by establishing a very small contact, a nanocontact, between a tip and a surface. The elasticity and fracture events during the controlled breaking of a nanocontact as the tip is separated from the surface provide information about the mechanical properties of the tip apex. In the case of metallic tips, electron transport through the nanocontact also provides information on its mechanical properties, because at the scale of a few atoms forming the nanocontact the mechanical and electron transport properties are strongly related.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscope

DFT:

Density functional theory

DOS:

Density of states

MCBJ:

Mechanically controlled break-junction

MD:

Molecular dynamics

MFM:

Magnetic force microscopy

PC:

Point contact

PCS:

Point contact spectroscopy

SNOM:

Scanning near-field optical microscopy

SPM:

Scanning probe microscopy

STM:

Scanning tunneling microscope

TF:

Tuning fork

UHV:

Ultra high vacuum

References

  1. U. Dürig, O. Züger, D.W. Pohl, Phys. Rev. Lett. 65, 349 (1990)

    Article  ADS  Google Scholar 

  2. J.K. Gimzewski, R. Möller, Phys. Rev. B 36, 1284 (1987)

    Article  ADS  Google Scholar 

  3. N. Agraït, A.L. Yeyati, J.M. van Ruitenbeek, Phys. Rep. Rev. Sect. Phys. Lett. 377, 81 (2003)

    Google Scholar 

  4. G. Rubio, N. Agraït, S. Vieira, Phys. Rev. Lett. 76, 2302 (1996)

    Article  ADS  Google Scholar 

  5. U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248, 454 (1990)

    Article  ADS  Google Scholar 

  6. P. Avouris, Z. Chen, V. Perebeinos, Nat. Nano 2, 605 (2007)

    Article  Google Scholar 

  7. attoAFM. Attocube systems AG

    Google Scholar 

  8. CryogenicSFM. Omicron Nanotechnolgy GmbH

    Google Scholar 

  9. LT-SPM. NanoMagnetics Instruments.

    Google Scholar 

  10. G. Binnig, H. Rohrer, Helvetica Physica Acta 55, 726 (1982)

    Google Scholar 

  11. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  12. G. Rubio-Bollinger, P. Joyez, N. Agraït, Phys. Rev. Lett. 93, 116803 (2004)

    Article  ADS  Google Scholar 

  13. G. Rubio-Bollinger, S.R. Bahn, N. Agraït, K.W. Jacobsen, S. Vieira, Phys. Rev. Lett. 87, 26101 (2001)

    Article  ADS  Google Scholar 

  14. S.P. Jarvis, M.A. Lantz, H. Ogiso, H. Tokumoto, U. Durig, Appl. Phys. Lett. 75, 3132 (1999)

    Article  ADS  Google Scholar 

  15. G. Meyer, N.M. Amer, Appl. Phys. Lett. 53, 1045 (1988)

    Article  ADS  Google Scholar 

  16. D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stern, B.D. Terris, Rev. Sci. Instrum. 59, 2337 (1988)

    Article  ADS  Google Scholar 

  17. D. Rugar, H.J. Mamin, P. Guethner, Appl. Phys. Lett. 55, 2588 (1989)

    Article  ADS  Google Scholar 

  18. U. Stahl, C.W. Yuan, A.L. Delozanne, M. Tortonese, Appl. Phys. Lett. 65, 2878 (1994)

    Article  ADS  Google Scholar 

  19. R. Garcia, R. Perez, Surf. Sci. Rep. 47, 197 (2002)

    Article  ADS  MATH  Google Scholar 

  20. F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  21. F.J. Giessibl, Appl. Phys. Lett. 73, 3956 (1998)

    Article  ADS  Google Scholar 

  22. J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, Rev. Sci. Instrum. 70, 2765 (1999)

    Article  ADS  Google Scholar 

  23. K. Besocke, Sur. Sci. 181, 145 (1987)

    Article  ADS  Google Scholar 

  24. D.W. Pohl, Rev. Sci. Instrum. 58, 54 (1987)

    Article  ADS  Google Scholar 

  25. C. Renner, P. Niedermann, A.D. Kent, O. Fischer, Rev. Sci. Instrum. 61, 965 (1990)

    Article  ADS  Google Scholar 

  26. I.B. Altfeder, A.P. Volodin, Rev. Sci. Instrum. 64, 3157 (1993)

    Article  ADS  Google Scholar 

  27. S.H. Pan, Patent WO 9319494 (1993)

    Google Scholar 

  28. S.H. Pan, E.W. Hudson, J.C. Davis, Rev. Sci. Instrum. 70, 1459 (1999)

    Article  ADS  Google Scholar 

  29. J. Moreland, J.W. Ekin, J. Appl. Phys. 58, 3888 (1985)

    Article  ADS  Google Scholar 

  30. C.J. Muller, J.M. Vanruitenbeek, L.J. Dejongh, Physica C 191, 485 (1992)

    Article  ADS  Google Scholar 

  31. A.M.C. Valkering, A.I. Mares, C. Untiedt, K.B. Gavan, T.H. Oosterkamp, J.M. van Ruitenbeek, Rev. Sci. Instrum. 76, 103903 (2005)

    Google Scholar 

  32. J.M. van Ruitenbeek, A. Alvarez, I. Pineyro, C. Grahmann, P. Joyez, M.H. Devoret, D. Esteve, C. Urbina, Rev. Sci. Instrum. 67, 108 (1996)

    Article  ADS  Google Scholar 

  33. T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    Article  ADS  Google Scholar 

  34. F.J. Giessibl, Appl. Phys. Lett. 76, 1470 (2000)

    Article  ADS  Google Scholar 

  35. W.H.J. Rensen, N.F. van Hulst, A.G.T. Ruiter, P.E. West, Appl. Phys. Lett. 75, 1640 (1999)

    Article  ADS  Google Scholar 

  36. J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H.J. Hug, P.J.A. van Schendel, H.J. Guntherodt, Rev. Sci. Instrum. 71, 1695 (2000)

    Article  ADS  Google Scholar 

  37. H. Edwards, L. Taylor, W. Duncan, A.J. Melmed, J. Appl. Phys. 82, 980 (1997)

    Article  ADS  Google Scholar 

  38. W.A. Atia, C.C. Davis, Appl. Phys. Lett. 70, 405 (1997)

    Article  ADS  Google Scholar 

  39. K. Karrai, R.D. Grober, in Near-Field Optics (Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie)), vol. 2535, ed. by M.A. Paesler, P.J. Moyer (1995), p. 69

    Google Scholar 

  40. F.J. Giessibl, S. Hembacher, M. Herz, C. Schiller, J. Mannhart, Nanotechnology 15, S79 (2004)

    Article  ADS  Google Scholar 

  41. J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H.J. Hug, P.J.A. van Schendel, H.J. Guntherodt, Appl. Surf. Sci. 157, 290 (2000)

    Article  ADS  Google Scholar 

  42. R.H.M. Smit, R. Grande, B. Lasanta, J.J. Riquelme, G. Rubio-Bollinger, N. Agrait, Rev. Sci. Instrum. 78, 113705 (2007)

    Google Scholar 

  43. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1 (Courier Dover Publications, 1954)

    Google Scholar 

  44. M. Knudsen, The Kinetic Theory of Gases. (Methuen, London, 1934)

    Google Scholar 

  45. Y.V. Sharvin, Zh. Eksp. Teor. Fiz 48, 984 (1965)

    Google Scholar 

  46. J.A. Torres, J.I. Pascual, J.J. Saenz, Phys. Rev. B 49, 16581 (1994)

    Article  ADS  Google Scholar 

  47. E. Scheer, N. Agrait, J.C. Cuevas, A.L. Yeyati, B. Ludoph, A. Martin-Rodero, G.R. Bollinger, J.M. van Ruitenbeek, C. Urbina, Nature 394, 154 (1998)

    Article  ADS  Google Scholar 

  48. H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998)

    Article  ADS  Google Scholar 

  49. V. Rodrigues, D. Ugarte, Phys. Rev. B 6307, 3405 (2001)

    Google Scholar 

  50. M.H. Sadd, Elasticity Theory, Applications, and Numerics (Elsevier Butterworth Heinemann 2005)

    Google Scholar 

  51. J. Frenkel, Z. Physik 37, 572 (1926)

    Article  ADS  MATH  Google Scholar 

  52. C. Untiedt, G. Rubio, S. Vieira, N. Agraït, Phys. Rev. B 56, 2154 (1997)

    Article  ADS  Google Scholar 

  53. A.M. Duif, A.G.M. Jansen, P. Wyder, J. Phys. Condens. Matter 1, 3157 (1989)

    Article  ADS  Google Scholar 

  54. A.G.M. Jansen, A.P. Vangelder, P. Wyder, J. Phys. C-Solid State Phys. 13, 6073 (1980)

    Article  ADS  Google Scholar 

  55. A.G.M. Jansen, F.M. Mueller, P. Wyder, Phys. Rev. B 16, 1325 (1977)

    Article  ADS  Google Scholar 

  56. R.M. Lyndenbell, Science 263, 1704 (1994)

    Article  ADS  Google Scholar 

  57. A.I. Yanson, R. Bollinger, Nature 395, 783 (1998)

    Article  ADS  Google Scholar 

  58. R.H.M. Smit, C. Untiedt, A.I. Yanson, J.M. van Ruitenbeek, Phys. Rev. Lett. 87, 266102 (2001)

    Article  ADS  Google Scholar 

  59. E.Z. da Silva, F.D. Novaes, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 69, 115411 (2004)

    Google Scholar 

  60. T. Shiota, A.I. Mares, A.M.C. Valkering, T.H. Oosterkamp, J.M. van Ruitenbeek, Phys. Rev. B 77, 125411 (2008)

    Google Scholar 

  61. N. Agraït, C. Untiedt, G. Rubio-Bollinger, S. Vieira, Phys. Rev. Lett. 88, 216803 (2002)

    Article  ADS  Google Scholar 

  62. M. Brandbyge, N. Kobayashi, M. Tsukada, Phys. Rev. B 60, 17064 (1999)

    Article  ADS  Google Scholar 

  63. E.G. Emberly, G. Kirczenow, Phys. Rev. B 60, 6028 (1999)

    Article  ADS  Google Scholar 

  64. M. Okamoto, K. Takayanagi, Phys. Rev. B 60, 7808 (1999)

    Article  ADS  Google Scholar 

  65. R.H.M. Smit, C. Untiedt, G. Rubio-Bollinger, R.C. Segers, J.M. van Ruitenbeek, Phys. Rev. Lett. 91, 76805 (2003)

    Article  ADS  Google Scholar 

  66. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  67. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  68. N. Agraït, C. Untiedt, G. Rubio-Bollinger, S. Vieira, Chem. Phys. 281, 231 (2002)

    Article  ADS  Google Scholar 

  69. B. Ludoph, M.H. Devoret, D. Esteve, C. Urbina, J.M. van Ruitenbeek, Phys. Rev. Lett. 82, 1530 (1999)

    Article  ADS  Google Scholar 

  70. C. Untiedt, G.R. Bollinger, S. Vieira, N. Agraït, Phys. Rev. B 62, 9962 (2000)

    Article  ADS  Google Scholar 

  71. I.K. Yanson, Zhur. Eksper. Teoret. Fiziki 66, 1035 (1974)

    Google Scholar 

  72. A.V. Khotkevich, I.K. Yanson, Atlas of Point Contact Spectra of Electron-Phonon Interactions in Metals (Kluwer Academic Publishers, Boston, 1995)

    Book  Google Scholar 

  73. O. Pfeiffer, L. Nony, R. Bennewitz, A. Baratoff, E. Meyer, Nanotechnology 15, S101 (2004)

    Article  ADS  Google Scholar 

  74. A. Stalder, U. Durig, Appl. Phys. Lett. 68, 637 (1996)

    Article  ADS  Google Scholar 

  75. C. Untiedt, M.J. Caturla, M.R. Calvo, J.J. Palacios, R.C. Segers, J.M. van Ruitenbeek, Phys. Rev. Lett. 98, 206801 (2007)

    Article  ADS  Google Scholar 

  76. A. Halbritter, S. Csonka, G. Mihaly, E. Jurdik, O.Y. Kolesnychenko, O.I. Shklyarevskii, S. Speller, H. van Kempen, Phys. Rev. B 68, 035417 (2003)

    Google Scholar 

  77. C.J. Chen, J. Phys. Condens. Matter 3, 1227 (1991)

    Article  ADS  Google Scholar 

  78. J.H. Rose, J.R. Smith, J. Ferrante, Phys. Rev. B 28, 1835 (1983)

    Article  ADS  Google Scholar 

  79. C. Untiedt, A.I. Yanson, R. Grande, G. Rubio-Bollinger, N. Agraït, S. Vieira, J.M. van Ruitenbeek, Phys. Rev. B 66, 85418 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge fruitful discussions with C. Untiedt, R.H.M. Smit and P. Joyez. This work was partially supported by MINECO (MAT2011-25046) and by Comunidad de Madrid (Spain) through program Citecnomik (S-0505/ESP/0337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabino Rubio-Bollinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubio-Bollinger, G., Riquelme, J.J., Vieira, S., Agraït, N. (2015). Mechanical Properties of Metallic Nanocontacts. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_16

Download citation

Publish with us

Policies and ethics