Skip to main content

The Standard Formulations of Classical and Quantum Mechanics

  • Chapter
  • First Online:
The Formalisms of Quantum Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 893))

  • 4603 Accesses

Abstract

I first start by reminders of classical mechanics, probabilities and quantum mechanics, in their usual formulations in theoretical physics. This is mostly very standard material. The last section on reversibility and probabilities in quantum mechanics is a slightly more original presentation of these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Probability theory appeared and developed in parallel with classical physics, with important contributors in both fields, from Pascal, Bernoulli, and Laplace to Poincaré and Kolmogorov.

  2. 2.

    Looking for efficiency and operability does not mean adopting the (in)famous “shut up and calculate” stance, an advice often but falsely attributed to R. Feynman.

  3. 3.

    At least for finite dimensional and simple cases of infinite dimensional Hilbert spaces, see the discussion on superselection sectors.

  4. 4.

    In a Bayesian sense.

  5. 5.

    This question makes sense if for instance, Alice has made a bet with Bob. Again, and especially for this protocol, the probability has to be taken in a Bayesian sense.

Bibliography

  1. Y. Aharonov, P.G. Bergmann, J.L. Lebowitz, Time symmetry in the quantum process of measurement. Phys. Rev. 134(6B), 1410–1416 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  2. V. Arnold, K. Vogtmann, A. Weinstein, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, 2nd revised edition (Springer, New York, 1989)

    Google Scholar 

  3. G. Auletta, Foundations and Interpretation of Quantum Mechanics (World Scientific, Singapore, 2001)

    Google Scholar 

  4. G. Auletta, M. Fortunato, G. Parisi, Quantum Mechanics (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  5. M. Bauer, Probabilité et processus stochastiques, pour les physiciens (et les curieux) (2009), http://ipht.cea.fr/Docspht/search/article.php?id=t09/324

  6. C. Cohen-Tannoudji, B. Diu, F. Laloë. Quantum Mechanics, vols. 1 and 2 (Wiley, New York, 2006)

    Google Scholar 

  7. R.T. Cox, Probability, frequency and reasonable expectation. Am. J. Phys. 14(1), 1–13 (1946)

    Article  ADS  MATH  Google Scholar 

  8. B. de Finetti, Theory of Probability (Wiley, New York, 1974)

    MATH  Google Scholar 

  9. P.A.M. Dirac, The Principles of Quantum Mechanics. International Series of Monographs on Physics (Clarendon, Oxford, 1930)

    Google Scholar 

  10. W Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1968)

    MATH  Google Scholar 

  11. A.R. Hibbs R. P. Feynman, Quantum Mechanics and Path Integral (Dover, New York, 2010) [Emended edition by d. f. styer edition]

    Google Scholar 

  12. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  13. A.N. Kolmogorov, Foundations of Probability (Chelsea Publishing Company, New York, USA, 1950)

    Google Scholar 

  14. F. Laloe, Do we really understand quantum mechanics? Am. J. Phys. 69, 655 (2001)

    Article  ADS  Google Scholar 

  15. F. Laloë, Comprenons-nous vraiment la mécanique quantique? (EDP Sciences, Paris, 2011)

    Google Scholar 

  16. F. Laloë, Do We Really Understand Quantum Mechanics? (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Mechanics, 3rd edn. (Butterworth-Heinemann, Oxford UK, Burlington MA, USA, 1976)

    Google Scholar 

  18. M. Le Bellac, Quantum Physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  19. C.N. Parkinson, Parkinson’s Law. The Economist, 19 November 1955

    Google Scholar 

  20. A. Peres, Quantum Theory: Concepts and Methods (Springer, Berlin, 1995)

    MATH  Google Scholar 

  21. J. von Neumann, Mathematische Grundlagen der Quantenmechanik. Grundlehren der mathematischen Wissenschaften, volume Bd. 38. (Springer, Berlin, 1932)

    Google Scholar 

  22. J. von Neumann, Mathematical Foundations of Quantum Mechanics. Investigations in Physics, vol. 2. (Princeton University Press, Princeton, 1955)

    Google Scholar 

  23. S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  24. A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

  25. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena. International Series of Monographs on Physics (Clarendon, Oxford, 2002)

    Google Scholar 

  26. J. Zinn-Justin, Path Integrals in Quantum Mechanics. Oxford Graduate Texts, pbk. ed edition (Oxford University Press, Oxford, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

David, F. (2015). The Standard Formulations of Classical and Quantum Mechanics. In: The Formalisms of Quantum Mechanics. Lecture Notes in Physics, vol 893. Springer, Cham. https://doi.org/10.1007/978-3-319-10539-0_2

Download citation

Publish with us

Policies and ethics