Skip to main content

Magnetism and Dynamics of Prominences: MHD Waves

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

Quiescent solar prominences are highly dynamic structures which, among other features, display oscillatory motions. The presence of these oscillations has been confirmed by means of ground- and space-based observations, and they have been classified in small and large amplitude oscillations. Since prominences are magnetized structures, the theoretical interpretation of their oscillations has been mostly done in terms of magnetohydrodynamic (MHD) waves. This interpretation has allowed the development of prominence seismology as a tool to determine prominence physical parameters (magnetic field, Alfvén speed, inhomogeneity scale, etc.) which are difficult to measure by direct means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150, 405–406. doi:10.1038/150405d0.

    Article  ADS  Google Scholar 

  • Arregui, I., & Ballester, J. L. (2011). Damping mechanisms for oscillations in solar prominences. Space Science Review, 158, 169–204. doi:10.1007/s11214-010-9648-9, 1002.3489.

    Google Scholar 

  • Arregui, I., Oliver, R., & Ballester, J. L. (2012). Prominence oscillations. Living Reviews in Solar Physics, 9, 2. doi:10.12942/lrsp-2012-2.

    Google Scholar 

  • Arregui, I., Ramos, A. A., & Díaz, A. J. (2014). The promise of Bayesian analysis for prominence seismology. In IAU Symposium (Vol. 300, pp. 393–394). doi:10.1017/S1743921313011241.

    Google Scholar 

  • Arregui, I., Terradas, J., Oliver, R., & Ballester, J. (2008). Damping of fast magnetohydrodynamic oscillations in quiescent filament threads. Astrophysical Journal Letters, 682, L141–L144. doi:10.1086/591081.

    Article  ADS  Google Scholar 

  • Asai, A., Ishii, T. T., Isobe, H., et al. (2012). First simultaneous observation of an Hα moreton wave, EUV wave, and filament/prominence oscillations. Astrophysical Journal Letters, 745, L18. doi:10.1088/2041-8205/745/2/L18, 1112.5915.

    Google Scholar 

  • Ballai, I. (2003). On dissipative effects in solar prominences. Astronomy & Astrophysics, 410, L17–L19. doi:10.1051/0004-6361:20031401.

    Article  ADS  Google Scholar 

  • Ballester, J. L. (2014). Prominence seismology. In IAU Symposium (Vol. 300, pp. 30–39). doi:10.1017/S1743921313010703.

    Google Scholar 

  • Berger, T., Shine, R., Slater, G., et al. (2008). Hinode SOT observations of solar quiescent prominence dynamics. Astrophysical Journal Letters, 676, L89–L92. doi:10.1086/587171.

    Article  ADS  Google Scholar 

  • Bommier, V., Landi Degl’Innocenti, E., Leroy, J. L., & Sahal-Bréchot, S. (1994). Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the He I D3 and Hα lines. Solar Physics, 154, 231–260.

    Article  ADS  Google Scholar 

  • Bommier, V., & Leroy, J. (1998). Global pattern of the magnetic field vector above neutral lines from 1974 to 1982: Pic-du-Midi observations of prominences. In D. Webb, B. Schmieder, & D. Rust (Eds.), New perspectives on solar prominences. ASP Conference Series (Vol. 150, pp. 434–438). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Braginskii, S. I. (1965). Transport processes in a plasma. Reviews of Plasma Physics, 1, 205.

    ADS  Google Scholar 

  • Carbonell, M., Oliver, R., & Ballester, J. (2004). Time damping of linear non-adiabatic magnetohydrodynamic waves in an unbounded plasma with solar coronal properties. Astronomy & Astrophysics, 415, 739–750. doi:10.1051/0004-6361:20034630.

    Article  ADS  Google Scholar 

  • Carlsson, M., & Stein, R. F. (1997). Chromospheric dynamics - what can be learnt from numerical simulations. In G. M. Simnett, C. E. Alissandrakis, & L. Vlahos (Eds.), European meeting on solar physics. Lecture Notes in Physics (Vol. 489, p. 159). Berlin: Springer Verlag. doi:10.1007/BFb0105675.

    Google Scholar 

  • Chen, P., Innes, D., & Solanki, S. (2008). Soho/sumer observations of prominence oscillation before eruption. Astronomy & Astrophysics, 484, 487–493. doi:10.1051/0004-6361:200809544, 0802.1961.

    Google Scholar 

  • Cox, D. P., & Tucker, W. H. (1969). Ionization equilibrium and radiative cooling of a low-density plasma. Astrophysical Journal, 157, 1157. doi10.1086/150144.

    Google Scholar 

  • Dahlburg, R. B., & Mariska, J. T. (1988). Influence of heating rate on the condensational instability. Solar Physics, 117, 51–56. doi10.1007/BF00148571.

    Google Scholar 

  • De Pontieu, B., Martens, P., & Hudson, H. (2001). Chromospheric damping of alfvén waves. Astrophysical Journal, 558, 859–871. doi10.1086/322408.

    Google Scholar 

  • Díaz, A., Oliver, R., & Ballester, J. (2002). Fast magnetohydrodynamic oscillations in cylindrical prominence fibrils. Astrophysical Journal, 580, 550–565. doi:10.1086/343039.

    Article  ADS  Google Scholar 

  • Díaz, A., Oliver, R., & Ballester, J. (2003). Fast MHD oscillations of a 3-dimensional prominence fibril. Astronomy & Astrophysics, 402, 781–789. doi:10.1051/0004-6361:20030285.

    Article  ADS  Google Scholar 

  • Díaz, A., Oliver, R., & Ballester, J. (2005). Fast magnetohydrodynamic oscillations in a multifibril cartesian prominence model. Astronomy & Astrophysics, 440, 1167–1175. doi10.1051/0004-6361:20052759.

    Google Scholar 

  • Díaz, A., Oliver, R., & Ballester, J. (2010). Prominence thread seismology using the P1/2P2 ratio. Astrophysical Journal, 725, 1742–1748. doi10.1088/0004-637X/725/2/1742.

    Google Scholar 

  • Díaz, A., Oliver, R., Erdélyi, R., & Ballester, J. (2001). Fast MHD oscillations in prominence fine structures. Astronomy & Astrophysiocs, 379, 1083–1097. doi:10.1051/0004-6361:20011351.

    Article  ADS  Google Scholar 

  • Díaz, A., & Roberts, B. (2006). Fast magnetohydrodynamic oscillations in a fibril prominence model. Solar Physics, 236, 111–126. doi10.1007/s11207-006-0137-y.

    Google Scholar 

  • Dymova, M., & Ruderman, M. (2005). Non-axisymmetric oscillations of thin prominence fibrils. Solar Physics, 229, 79–94. doi10.1007/s11207-005-5002-x.

    Google Scholar 

  • Edwin, P., & Roberts, B.: (1983). Wave propagation in a magnetic cylinder. Solar Physics, 88, 179–191. DOI 10.1007/BF00196186.

    Article  ADS  Google Scholar 

  • Engvold, O. (1998). Observations of filament structure and dynamics. In D. Webb, B. Schmieder, & D. Rust (Eds.), New perspectives on solar prominences. ASP Conference Series (Vol. 150, pp. 23–31). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Engvold, O. (2004). Structures and dynamics of solar filaments - challenges in observing and modeling. In A. V. Stepanov, E. E. Benevolenskaya & A. G. Kosovichev (Eds.), Multi-wavelength investigations of solar activity, IAU symposium (Vol. 223, pp. 187–194). doi10.1017/S1743921304005575.

    Google Scholar 

  • Engvold, O. (2008). Observational aspects of prominence oscillations. In R. Erdélyi & C. Mendoza-Briceño (Eds.), Waves & oscillations in the solar atmosphere: Heating and magneto-seismology, IAU symposia (Vol. 247, pp. 152–157). Cambridge/New York: Cambridge University Press. doi10.1017/S1743921308014816.

    Google Scholar 

  • Eto, S., Isobe, H., Narukage, N., et al. (2002). Relation between a Moreton wave and an EIT wave observed on 1997 november 4. Publications of the Astronomical Society of Japan, 54, 481–491.

    Article  ADS  Google Scholar 

  • Forteza, P., Oliver, R., Ballester, J., & Khodachenko, M. (2007). Damping of oscillations by ion-neutral collisions in a prominence plasma. Astronomy & Astrophysics, 461, 731–739. doi:10.1051/0004-6361:20065900.

    Article  ADS  Google Scholar 

  • Forteza, P., Oliver, R., & Ballester, J. (2008). Time damping of non-adiabatic MHD waves in an unbounded partially ionised prominence plasma. Astronomy & Astrophysics, 492, 223–231. doi:10.1051/0004-6361:200810370.

    Article  ADS  Google Scholar 

  • Gilbert, H., Daou, A., Young, D., Tripathi, D., & Alexander, D. (2008). The filament-moreton wave interaction of 2006 December 6. Astrophysical Journal, 685, 629–645. doi10.1086/590545.

    Google Scholar 

  • Goedbloed, J. P. H., & Poedts, S. (2004). Principles of magnetohydrodynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Goossens, M. (2003). An introduction to plasma astrophysics and magnetohydrodynamics. Astrophysics and space science library (Vol. 294). Dordrecht/Norwell, MA: Kluwer.

    Google Scholar 

  • Goossens, M., Arregui, I., Ballester, J., & Wang, T. (2008). Analytic approximate seismology of transversely oscillating coronal loops. Astronomy & Astrophysics, 484, 851–857. doi:10.1051/0004-6361:200809728.

    Article  ADS  Google Scholar 

  • Goossens, M., Erdélyi, R., & Ruderman, M. (2010). Resonant MHD waves in the solar atmosphere. Space Science Reviews. doi10.1007/s11214-010-9702-7.

    Google Scholar 

  • Goossens, M., Hollweg, J., & Sakurai, T. (1992). Resonant behaviour of MHD waves on magnetic flux tubes. iii. Effect of equilibrium flow. Solar Physics, 138, 233–255. doi10.1007/BF00151914.

    Google Scholar 

  • Goossens, M., Ruderman, M., & Hollweg, J. (1995). Dissipative MHD solutions for resonant alfven waves in 1-dimensional magnetic flux tubes. Solar Physics, 157, 75–102. doi:10.1007/BF00680610.

    Article  ADS  Google Scholar 

  • Goossens, M., Terradas, J., Andries, J., Arregui, I., & Ballester, J. (2009). On the nature of kink MHD waves in magnetic flux tubes. Astronom & Astrophysics, 503, 213–223. doi:10.1051/0004-6361/200912399, 0905.0425.

    Google Scholar 

  • Harvey, J. (1969). Magnetic fields associated with solar active-region prominences. Ph.D. thesis, University of Colorado at Boulder, Boulder, CO.

    Google Scholar 

  • Heggland, L., Hansteen, V. H., De Pontieu, B., &Carlsson, M. (2011). Wave propagation and jet formation in the chromosphere. Astrophysical Journal, 743, 142. doi:10.1088/0004-637X/743/2/142, 1112.0037.

    Google Scholar 

  • Heinzel, P. (2014). Radiative transfer in solar prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 101–128). Springer.

    Google Scholar 

  • Heinzel, P., Zapiór, M., Oliver, R., & Ballester, J. L. (2014). Synthetic hydrogen spectra of prominence oscillations. Astronomy & Astrophysics, 562, A103. doi:10.1051/0004-6361/201322346, 1401.2131.

    Google Scholar 

  • Hershaw, J., Foullon, C., Nakariakov, V. M., & Verwichte, E. (2011). Damped large amplitude transverse oscillations in an EUV solar filament, triggered by large-scale transient coronal waves. Astronomy & Astrophysics, 531, A53. doi10.1051/0004-6361/201116750.

    Google Scholar 

  • Hildner, E. (1974). The formation of solar quiescent prominences by condensation. Solar Physics, 35, 123–136. doi:10.1007/BF00156962.

    Article  ADS  Google Scholar 

  • Hollweg, J. V., & Yang, G. (1988). Resonance absorption of compressible magnetohydrodynamic waves at thin ‘surfaces’. Journal of Geophysical Research, 93, 5423–5436. doi:10.1029/JA093iA06p05423.

    Article  ADS  Google Scholar 

  • Hyder, C. (1966). Winking filaments and prominence and coronal magnetic fields. Zeitschrift für Astrophysik, 63, 78–84.

    ADS  Google Scholar 

  • Isobe, H., & Tripathi, D. (2006). Large amplitude oscillation of a polar crown filament in the pre-eruption phase. Astronom & Astrophysics, 449, L17–L20. doi:10.1051/0004-6361:20064942, arXiv:astro-ph/0602432.

    Google Scholar 

  • Isobe, H., Tripathi, D., Asai, A., & Jain, R. (2007). Large-amplitude oscillation of an erupting filament as seen in EUV, Hα, and microwave observations. Solar Physics, 246, 89–99. doi10.1007/s11207-007-9091-6, 0711.3952.

    Google Scholar 

  • Jing, J., Lee, J., Spirock, T., & Wang, H. (2006). Periodic motion along solar filaments. Solar Physics, 236, 97–109. doi10.1007/s11207-006-0126-1.

    Google Scholar 

  • Jing, J., Lee, J., Spirock, T., Xu, Y., Wang, H., & Choe, G. (2003). Periodic motion along a solar filament initiated by a subflare. Astrophysical Journal Letters, 584, L103–L106. doi10.1086/373886.

    Google Scholar 

  • Joarder, P., & Roberts, B. (1992a). The modes of oscillation of a prominence. i. The slab with longitudinal magnetic field. Astronomy & Astrophysics, 256, 264–272.

    Google Scholar 

  • Joarder, P., & Roberts, B. (1992b). The modes of oscillation of a prominence. ii - The slab with transverse magnetic field. Astronomy & Astrophysics, 261, 625–632.

    Google Scholar 

  • Joarder, P., & Roberts, B. (1993a). The modes of oscillation of a prominence. iii. The slab in a skewed magnetic field. Astronomy & Astrophysics, 277, 225–234.

    Google Scholar 

  • Joarder, P. S., & Roberts, B. (1993b). The modes of oscillation of a Menzel prominence. Astronom & Astrophysics, 273, 642–646.

    ADS  Google Scholar 

  • Kleczek, J., & Kuperus, M. (1969). Oscillatory phenomena in quiescent prominences. Solar Physics, 6, 72–79. doi10.1007/BF00146797.

    Google Scholar 

  • Klimchuk, J. A., & Cargill, P. J. (2001). Spectroscopic diagnostics of nanoflare-heated loops. Astrophysical Journal, 553, 440–448. doi10.1086/320666.

    Google Scholar 

  • Krishan, V., & Varghese, B. A. (2008). Cylindrical Hall - MHD waves: A nonlinear solution. Solar Physics, 247, 343–349. doi10.1007/s11207-008-9117-8.

    Google Scholar 

  • Landman, D., Edberg, S., & Laney, C. (1977). Measurements of Hβ, He D3, and Ca+ λ8542 line emission in quiescent prominences. Astrophysical Journal, 218, 888–897. doi:10.1086/155744.

    Article  ADS  Google Scholar 

  • Leroy, J. L. (1980). Mass balance and magnetic structure in quiescent prominences. In F. Moriyama & J. Henoux (Eds.), Proceedings of the Japan-France seminar on solar physics (p. 155). Tokyo, Nihon Gakujutsu Shinkokai and CNRS.

    Google Scholar 

  • Leroy, J. L. (1988). Observations of prominence magnetic field. In J. Ballester & E. Priest (Eds.), Dynamics and structure of solar prominences, Universitat de les Illes Balears, Palma de Mallorca, Conferències i comunicacions (Vol. 5, pp. 33–40).

    Google Scholar 

  • Leroy, J. L. (1989). Observation of prominence magnetic fields. In E. Priest (Ed.), Dynamics and structure of quiescent solar prominences (Vol. 150, pp. 77–113). Dordrecht/Boston: Kluwer/Astrophysics and Space Science Library.

    Chapter  Google Scholar 

  • Li, T., & Zhang, J. (2012). SDO/AIA observations of large-amplitude longitudinal oscillations in a solar filament. Astrophysical Journal Letters, 760, L10. doi:10.1088/2041-8205/760/1/L10, 1210.5110.

    Google Scholar 

  • Lighthill, M. J. (1960). Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Royal Society of London Philosophical Transactions Series A, 252, 397–430. doi10.1098/rsta.1960.0010.

    Google Scholar 

  • Lin, Y. (2004). Magnetic field topology inferred from studies of fine threads in solar filaments. Ph.D. thesis, University of Oslo, Oslo.

    Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L., & van Noort, M. (2007). Evidence of traveling waves in filament threads. Solar Physics, 246, 65–72. doi10.1007/s11207-007-0402-8.

    Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J., & Berger, T. (2005). Thin threads of solar filaments. Solar Physics, 226, 239–254. doi:10.1007/s11207-005-6876-3.

    Article  ADS  Google Scholar 

  • Lin, Y., Martin, S., & Engvold, O. (2008). Filament substructures and their interrelation. In R., Howe, R. Komm, K. Balasubramaniam, & G. Petrie (Eds.), Subsurface and atmospheric influences on solar activity. ASP Conference Series (Vol. 383, pp. 235–242). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Lin, Y., Soler, R., Engvold, O., Ballester, J., Langangen, Ø., Oliver, R., & Rouppe van der Voort, L. (2009). Swaying threads of a solar filament. Astrophysical Journal, 704, 870–876. doi10.1088/0004-637X/704/1/870.

    Google Scholar 

  • Luna, M., Díaz, A. J., & Karpen, J. (2012). The effects of magnetic-field geometry on longitudinal oscillations of solar prominences. Astrophysical Journal, 757, 98. doi:10.1088/0004-637X/757/1/98, 1207.6358.

    Google Scholar 

  • Luna, M., & Karpen, J. (2012). Large-amplitude longitudinal oscillations in a solar filament. Astrophysical Journal Letters, 750, L1. doi:10.1088/2041-8205/750/1/L1, 1203.5027.

    Google Scholar 

  • Luna, M., Knizhnik, K., Muglach, K., et al. (2014). Observations and implications of large-amplitude longitudinal oscillations in a solar filament. Astrophysical Journal, 785, 79. doi:10.1088/0004-637X/785/1/79, 1403.0381.

    Google Scholar 

  • Martin, S., Lin, Y., & Engvold, O. (2008). A method of resolving the 180-degree ambiguity by employing the chirality of solar features. Solar Physics, 250, 31–51. DOI 10.1007/s11207-008-9194-8.

    Article  ADS  Google Scholar 

  • Milne, A. M., Priest, E. R., & Roberts, B. (1979). A model for quiescent solar prominences. Astrophysical Journal, 232, 304–317. DOI 10.1086/157290.

    Article  ADS  Google Scholar 

  • Molowny-Horas, R., Baudin, F., Oliver, R., & Ballester, J. (1998), He I 10830 Å Doppler oscillations in a solar filament. In R. Donahue & J. Bookbinder (Eds.), Cool stars, stellar systems, and the sun. ASP Conference Series (Vol. 154, pp. 650–657). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Molowny-Horas, R., Oliver, R., Ballester, J., & Baudin, F. (1997). Observations of Doppler oscillations in a solar prominence. Solar Physics, 172, 181–188.

    Article  ADS  Google Scholar 

  • Molowny-Horas, R., Wiehr, E., Balthasar, H., Oliver, R., & Ballester, J. (1999). Prominence Doppler oscillations. In A. Antalová, H. Balthasar, & A. Kučera (Eds.), JOSO annual report 1998 (pp. 126–127). Tatranská Lomnica, Slovakia: Astronomical Institute of Slovak Academy of Sciences.

    Google Scholar 

  • Moreton, G. E., & Ramsey, H. E. (1960). Recent observations of dynamical phenomena associated with solar flares. Publications of the Astronomical Society of the Pacific, 72, 357. doi10.1086/127549.

    Google Scholar 

  • Ning, Z., Cao, W., & Goode, P. (2009a). Behavior of the spines in a quiescent prominence observed by Hinode/SOT. Astrophysical Journal, 707, 1124–1130. doi:10.1088/0004-637X/707/2/1124.

    Article  ADS  Google Scholar 

  • Ning, Z., Cao, W., Okamoto, T., Ichimoto, K., & Qu, Z. (2009b). Small-scale oscillations in a quiescent prominence observed by Hinode/SOT. Astronomy & Astrophysics, 499, 595–600. doi10.1051/0004-6361/200810853.

    Google Scholar 

  • Okamoto, T., Nakai, H., Keiyama, A., et al. (2004). Filament oscillations and moreton waves associated with EIT waves. Astrophysical Journal, 608, 1124–1132. doi10.1086/420838.

    Google Scholar 

  • Okamoto, T., Tsuneta, S., Berger, T., et al. (2007). Coronal transverse magnetohydrodynamic waves in a solar prominence. Science, 318, 1577–1580. doi10.1126/science.1145447.

    Google Scholar 

  • Oliver, R., & Ballester, J. (1995). Magnetohydrodynamic waves in a bounded inhomogeneous medium with prominence-corona properties. Astrophysical Journal, 448, 444–458. doi10.1086/175975.

    Google Scholar 

  • Oliver, R., & Ballester, J. (1996). The influence of the temperature profile on the magnetohydrodynamic modes of a prominence-corona system. Astrophysical Journal, 456, 393–398. doi10.1086/176661.

    Google Scholar 

  • Oliver, R., & Ballester, J. (2002). Oscillations in quiescent solar prominences observations and theory (invited review). Solar Physics, 206, 45–67. doi10.1023/A:1014915428440.

    Google Scholar 

  • Oliver, R., Ballester, J., Hood, A., & Priest, E. (1992). Magnetohydrodynamic waves in a solar prominence. Astrophysical Journal, 400, 369–379. doi:10.1086/172003.

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J., Hood, A., & Priest, E. (1993). Oscillations of a quiescent solar prominence embedded in a hot corona. Astrophysical Journal, 409, 809–821. doi:10.1086/172711.

    Article  ADS  Google Scholar 

  • Pandey, B., & Wardle, M. (2008). Hall magnetohydrodynamics of partially ionized plasmas. Monthly Notices of the Royal Astronomiocal Society, 385, 2269–2278. doi:10.1111/j.1365-2966.2008.12998.x, 0707.2688.

    Google Scholar 

  • Parenti, S., & Vial, J. C. (2007.) Prominence and quiet-sun plasma parameters derived from FUV spectral emission. Astronomy & Astrophysics, 469, 1109–1115. doi:10.1051/0004-6361:20077196.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1953). Instability of thermal fields. Astrophysical Journal, 117, 431. doi:10.1086/145707.

    Article  ADS  Google Scholar 

  • Pintér, B., Jain, R., Tripathi, D., & Isobe, H. (2008). Prominence seismology: Wavelet analysis of filament oscillations. Astrophysical Journal, 680, 1560–1568. doi:10.1086/588273.

    Article  ADS  Google Scholar 

  • Pinto, C., & Galli, D. (2008). Three-fluid plasmas in star formation. II. Momentum transfer rate coefficients. Astronomy & Astrophysics, 492, 1–1. doi:10.1051/0004-6361:20078819e.

    Google Scholar 

  • Pouget, G., Bocchialini, K., & Solomon, J. (2006). Oscillations in a solar filament: First observation of long periods in the He I 584.33 Å line, modelling and diagnostic. Astronomy & Astrophysics, 450, 1189–1198. doi:10.1051/0004-6361:20053886.

    Google Scholar 

  • Priest, E. R. (2014). Magnetohydrodynamics of the sun. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ramsey, H., & Smith, S. (1966). Flare-initiated filament oscillations. Astronomical Journal, 71, 197–199. doi10.1086/109903.

    Google Scholar 

  • Régnier, S., Solomon, J., & Vial, J. (2001). Oscillations in an active region filament: Observations and comparison with MHD waves. Astronomy & Astrophysics, 376, 292–301. doi:10.1051/0004-6361:20010972.

    Article  ADS  Google Scholar 

  • Roberts, B., Edwin, P., & Benz, A. (1984). On coronal oscillations. Astrophysical Journal, 279, 857–865.

    Article  ADS  Google Scholar 

  • Roberts, B., & Joarder, P. (1994). Oscillations in quiescent prominences. In G., Belvedere, M. Rodono, & G. Simnett (Eds.), Advances in solar physics. Lecture Notes in Physics (Vol. 432, pp. 173–178). Berlin: Springer. DOI 10.1007/3-540-58041-7215.

    Google Scholar 

  • Rosenberg, H. (1970). Evidence for MHD pulsations in the solar corona. Astronomy & Astrophysics, 9, 159.

    ADS  Google Scholar 

  • Rosner, R., Golub, L., Coppi, B., & Vaiana, G. S. (1978). Heating of coronal plasma by anomalous current dissipation. Astrophysical Journal, 222, 317–332. doi:10.1086/156145.

    Article  ADS  Google Scholar 

  • Ruderman, M., & Roberts, B. (2002). The damping of coronal loop oscillations. Astrophysical Journal, 577, 475–486. doi10.1086/342130.

    Google Scholar 

  • Sakurai, T., Goossens, M., & Hollweg, J. V. (1991a). Resonant behaviour of magnetohydrodynamic waves on magnetic flux tubes - part two. Solar Physics, 133, 247–262. doi10.1007/BF00149889.

    Google Scholar 

  • Sakurai, T., Goossens, M., & Hollweg, J. V. (1991b). Resonant behaviour of MHD waves on magnetic flux tubes. I - connection formulae at the resonant surfaces. Solar Physics, 133, 227–245. doi:10.1007/BF00149888.

    Google Scholar 

  • Schure, K. M., Kosenko, D., Kaastra, J. S., Keppens, R., & Vink, J. (2009). A new radiative cooling curve based on an up-to-date plasma emission code. Astronomy & Astrophysics, 508, 751–757. doi:10.1051/0004-6361/200912495, 0909.5204.

    Google Scholar 

  • Soler, R. (2010). Damping of magnetohydrodynamic waves in solar prominence fine structures. Ph.D. thesis, Departament de Fisica, Universitat de les Illes Balears.

    Google Scholar 

  • Soler, R., Arregui, I., Oliver, R., & Ballester, J. (2010). Seismology of standing kink oscillations of solar prominence fine structures. Astrophysical Journal, 722, 1778–1792. doi:10.1088/0004-637X/722/2/1778, 1007.1959.

    Google Scholar 

  • Soler, R., Ballester, J. L., & Parenti, S. (2012a). Stability of thermal modes in cool prominence plasmas. Astronomy & Astrophysics, 540, A7. doi:10.1051/0004-6361/201118492, 1201.4668.

    Google Scholar 

  • Soler, R., & Goossens, M. (2011). Kink oscillations of flowing threads in solar prominences. Astronomy & Astrophysics, 531. doi10.1051/0004-6361/201116536, 1106.3937.

    Google Scholar 

  • Soler, R., Goossens, M., Terradas, J., & Oliver, R. (2013). The behavior of transverse waves in nonuniform solar flux tubes. I. Comparison of ideal and resistive results. Astrophysical Journal, 777, 158. doi10.1088/0004-637X/777/2/158, 1309.3423.

    Google Scholar 

  • Soler, R., Oliver, R., & Ballester, J. (2007). The effect of the solar corona on the attenuation of small-amplitude prominence oscillations. I. Longitudinal magnetic field. Astronomy & Astrophysics, 471, 1023–1033. doi:10.1051/0004-6361:20077633, arXiv:0704.1566.

    Google Scholar 

  • Soler, R., Oliver, R., & Ballester, J. (2008). Nonadiabatic magnetohydrodynamic waves in a cylindrical prominence thread with mass flow. Astrophysical Journal, 684, 725–735. doi:10.1086/590244, 0803.2600.

    Google Scholar 

  • Soler, R., Oliver, R., & Ballester, J. (2009a). Magnetohydrodynamic waves in a partially ionized filament thread. Astrophysical Journal, 699, 1553–1562. doi:10.1088/0004-637X/699/2/1553, 0904.3013.

    Google Scholar 

  • Soler, R., Oliver, R., & Ballester, J. (2009b). Propagation of nonadiabatic magnetoacoustic waves in a threaded prominence with mass flows. Astrophysical Journal, 693, 1601–1609. doi:10.1088/0004-637X/693/2/1601, 0809.4765.

    Google Scholar 

  • Soler, R., Oliver, R., & Ballester, J. (2009c). Resonantly damped kink magnetohydrodynamic waves in a partially ionized filament thread. Astrophysical Journal, 707, 662–670. doi:10.1088/0004-637X/707/1/662, 0909.3599.

    Google Scholar 

  • Soler, R., Oliver, R., Ballester, J., & Goossens, M. (2009d). Damping of filament thread oscillations: Effect of the slow continuum. Astrophysical Journal Letters, 695, L166–L170. doi:10.1088/0004-637X/695/2/L166, 0902.0572.

    Google Scholar 

  • Soler, R., Ruderman, M. S., & Goossens, M. (2012b). Damped kink oscillations of flowing prominence threads. Astronomy & Astrophysics, 546, A82. doi:10.1051/0004-6361/201220111, 1209.3382.

    Google Scholar 

  • Spitzer, L. (1962). Physics of fully ionized gases. New York: Interscience.

    Google Scholar 

  • Suematsu, Y., Yoshinaga, R., Terao, N., & Tsubaki, T. (1990). Oscillatory and transient features detected simultaneously in the Ca II K and Hβ line spectra of a quiescent prominence. Publications of the Astronomical Society of Japan, 42, 187–203.

    ADS  Google Scholar 

  • Tandberg-Hanssen, E. (1974). Solar prominences (Vol. 12). Dordrecht: D. Reidel Publishing Co.

    Google Scholar 

  • Tandberg-Hanssen, E. (1995). The nature of solar prominences. Astrophysics and space science library (Vol. 199). Dordrecht/Boston: Kluwer.

    Google Scholar 

  • Terradas, J., Andries, J., & Goossens, M. (2007). On the excitation of leaky modes in cylindrical loops. Solar Physics, 246, 231–242. doi:10.1007/s11207-007-9067-6.

    Article  ADS  Google Scholar 

  • Terradas, J., Arregui, I., Oliver, R., & Ballester, J. (2008). Transverse oscillations of flowing prominence threads observed with hinode. Astrophysical Journal Letters, 678, L153–L156. doi:10.1086/588728.

    Article  ADS  Google Scholar 

  • Terradas, J., Carbonell, M., Oliver, R., & Ballester, J. (2005). Time damping of linear non-adiabatic magnetoacoustic waves in a slab-like quiescent prominence. Astronomy & Astrophysics, 434, 741–749. doi:10.1051/0004-6361:20041984.

    Article  ADS  Google Scholar 

  • Terradas, J., & Goossens, M. (2012). Transverse kink oscillations in the presence of twist. Astronomy & Astrophysics, 548, A112. doi:10.1051/0004-6361/201219934, 1210.8093.

    Google Scholar 

  • Terradas, J., Molowny-Horas, R., Wiehr, E., Balthasar, H., Oliver, R., & Ballester, J. (2002). Two-dimensional distribution of oscillations in a quiescent solar prominence. Astronomy & Astrophysics, 393, 637–647. doi:10.1051/0004-6361:20020967.

    Article  ADS  Google Scholar 

  • Terradas, J., Oliver, R., & Ballester, J. (2001). Radiative damping of quiescent prominence oscillations. Astronomy & Astrophysics, 378, 635–652. doi:10.1051/0004-6361:20011148.

    Article  ADS  Google Scholar 

  • Thompson, W., & Schmieder, B. (1991). Oscillations in Hα filaments: Center-to-limb study. Astronomy & Astrophysics, 243, 501–511.

    ADS  Google Scholar 

  • Tripathi, D., Isobe, H., & Jain, R. (2009). Large amplitude oscillations in prominences. Space Science Reviews, 149, 283–298. doi:10.1007/s11214-009-9583-9, 0910.4059.

    Google Scholar 

  • Tsubaki, T., & Takeuchi, A. (1986). Periodic oscillations found in the velocity field of a quiescent prominence. Solar Physics, 104, 313–320. doi:10.1007/BF00159084.

    Article  ADS  Google Scholar 

  • Tsubaki, T., Toyoda, M., Suematsu, Y., & Gamboa, G. (1988). New evidence for oscillatory motions in a quiescent prominence. Publications of the Astronomical Society of Japan, 40, 121–126.

    ADS  Google Scholar 

  • Uchida, Y. (1970). Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publications of the Astronomical Society of Japan, 22, 341–364.

    ADS  Google Scholar 

  • Vial, J. C. (1998). Solar prominence diagnostics (review). In D. F. Webb, B. Schmieder, & D. M. Rust (Eds.), IAU colloq. 167: New perspectives on solar prominences. Astronomical Society of the Pacific Conference Series (Vol. 150, p. 175). San Francisco: Astronomical Society of the Pacific.

    Google Scholar 

  • Vršnak, B., Veronig, A., Thalmann, J., & Žic, T. (2007). Large amplitude oscillatory motion along a solar filament. Astronomy & Astrophysics, 471, 295–299. doi:10.1051/0004-6361:20077668, 0707.1752.

    Google Scholar 

  • Wiehr, E., Balthasar, H., & Stellmacher, G. (1989). Doppler velocity oscillations in quiescent prominences. Hvar Observatory Bulletin, 13,131–135.

    ADS  Google Scholar 

  • Yi, Z., Engvold, O., & Keil, S. (1991). Structure and oscillations in quiescent filaments from observations in He I 10830 Å. Solar Physics, 132, 63–80.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T. V., Khodachenko, M. L., & Rucker, H. O. (2011). Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astronomy & Astrophysics, 529, A82. doi:10.1051/0004-6361/201016326, 1101.3913.

    Google Scholar 

  • Zhang, Q. M., Chen, P. F., Xia, C., Keppens, R., & Ji, H. S. (2013). Parametric survey of longitudinal prominence oscillation simulations. Astronomy & Astrophysics, 554, A124. doi:10.1051/0004-6361/201220705, 1304.3798.

    Google Scholar 

  • Zirker, J., Engvold, O., & Martin, S. (1998). Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature, 396, 440–441. doi:10.1038/24798.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This chapter is dedicated to the memory of Josip Kleczek who woke up my interest for solar prominences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Ballester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ballester, J.L. (2015). Magnetism and Dynamics of Prominences: MHD Waves. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_11

Download citation

Publish with us

Policies and ethics