Skip to main content

Symmetric Solutions to the Viscous Gas Equations

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  • 318 Accesses

Abstract

In the last decades, significant progress has been made on the existence and uniqueness of symmetric solutions to the compressible Navier-Stokes equations . In this chapter a brief review of some existence and large-time behavior results of symmetric (spherically symmetric, axisymmetric, etc) solutions with large data will be presented. The different cases: isentropic or nonisentropic flows, constant or the density-/temperature-dependent viscosity and heat conductivity, weak or strong (smooth) solutions, etc., will be discussed. The ideas and developed techniques used in analysis will be presented and analyzed, and some open questions will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids (North-Holland, Amsterdam/New York, 1990)

    MATH  Google Scholar 

  2. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, London, 1967)

    MATH  Google Scholar 

  3. D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Bresch, B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Bresch, B. Desjardins, C.K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28, 843–868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. G.Q. Chen, M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat-conducting flow with symmetry and free boundary. Commun. Partial Differ. Equ. 27, 907–943 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Chen, T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Commun. Pure Appl. Anal. 7, 987–1016 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. H.J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190, 504–523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. H.J. Choe, H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids. Math. Methods Appl. Sci. 28, 1–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity. SIAM J. Math. Anal. 13, 397–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.M. Dafermos, L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. T.M.A. 6, 435–454 (1982)

    Google Scholar 

  14. S.J. Ding, H.Y. Wen, L. Yao, C.J. Zhu, Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum. SIAM J. Math. Anal. 44, 1257–1278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Ducomet, S. Necasova, A. Vasseur, On global motions of a compressible barotropic and self-gravitating gas with density-dependent viscosities. Z. Angew. Math. Phys. 61, 479–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Ducomet, S. Necasova, A. Vasseur, On spherically symmetric motions of a viscous compressible barotropic and self-gravitating gas. J. Math. Fluid Mech. 13, 191–211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Ducomet, A.A. Zlotnik, Viscous compressible barotropic symmetric flows with free boundary under general mass force. I. Uniform-in-time bounds and stabilization. Math. Methods Appl. Sci. 28, 827–863 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.S. Fan, S. Jiang, G.X. Ni, Uniform boundedness of the radially symmetric solutions of the Navier-Stokes equations for isentropic compressible fluids. Osaka J. Math. 46, 863–876 (2009)

    MathSciNet  MATH  Google Scholar 

  19. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford Science Publications/Clarendon Press, Oxford, 2003)

    Book  MATH  Google Scholar 

  20. E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Feireisl, H. Petzeltová, On compactness of solutions to the Navier-Stokes equations of compressible flow. J. Differ. Equ. 163, 57–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Fujita-Yashima, R. Benabidallah, Unicite’ de la solution de l’équation monodimensionnelle ou a’ symétrie sphérique d’un gaz visqueux et calorifère. Rendi. del Circolo Mat. di Palermo, Ser.II, XLII, 195–218 (1993)

    Google Scholar 

  23. H. Fujita-Yashima, R. Benabidallah, Equation à symétrie sphérique d’un gaz visqueux et calorifère avec la surface libre. Ann. Mat. Pura Appl. CLXVIII, 75–117 (1995)

    Google Scholar 

  24. H. Grad, Asymptotic theory of the Boltzmann equation II, in Rarefied Gas Dynamics, vol. 1, ed. by J. Laurmann (Academic Press, New York, 1963), pp. 26–59

    Google Scholar 

  25. Z.H. Guo, Q.S. Jiu, Z.P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J. Math. Anal. 39, 1402–1427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Z.H. Guo, H.L. Li, Z.P. Xin, Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations. Commun. Math. Phys. 309, 371–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Z.H. Guo, S. Jiang, F. Xie, Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient. Asymptot. Anal. 60, 101–123 (2008)

    MathSciNet  MATH  Google Scholar 

  28. K. Higuchi, Global existence of the spherically symmetric solution and the stability of the stationary solution to compressible Navier-Stokes equation. Master thesis of Kanazawa University (1992) (Japanese)

    Google Scholar 

  29. D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large discontinuous initial data. Indiana Univ. Math. J. 41, 1225–1302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Hoff, H.K. Jenssen, Symmetric nonbarotropic flows with large data and forces. Arch. Rational Mech. Anal. 173, 297–343 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Hoff, D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanics (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  33. L. Hsiao, S. Jiang, Nonlinear hyperbolic-parabolic coupled systems. Handbook of Differential Equations: Evolutionary Equations, vol. 1, ed. by C.M. Dafermos, E. Feireisl (Elsevier/North Holland, Amsterdam/Boston, 2002), pp. 287–384

    Google Scholar 

  34. X.D. Huang, J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations. arXiv:1107.4655v2.

    Google Scholar 

  35. X.D. Huang, J. Li, Existence and blowup behavior of global strong solutions to the two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data. arXiv:1205.5342.

    Google Scholar 

  36. X.D. Huang, J. Li, Global well-posedness of classical solutions to the Cauchy problem of two-dimensional baratropic compressible Navier-Stokes system with vacuum and large initial data. arXiv:1207.3746.

    Google Scholar 

  37. X.D. Huang, J. Li, Z.P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokese quations. Commun. Pure Appl. Math. 65, 0549–0585 (2012)

    Article  MathSciNet  Google Scholar 

  38. H. Jang, Local well-posedness of dynamics of viscous gaseous stars. Arch. Ration. Mech. Anal. 195, 797–863 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. N. Itaya, On a certain temporally global solution, spherically symmetric, for the compressible NS equations. The Jinbun ronshu of Kobe Univ. Commun. 21, 1–10 (1985) (Japanese)

    Google Scholar 

  40. H.K. Jenssen, T.K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients. SIAM J. Math. Anal. 42, 904–930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Jiang, On the asymptotic behavior of the motion of a viscous, heat-conducting, one-dimensional real gas. Math. Z. 216, 317–336 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Jiang, Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain. Commun. Math. Phys. 178, 339–374 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Jiang, Large-time behavior of solutions to the equations of a viscous polytropic ideal gas. Ann. Math. Pura Appl. 175, 253–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Jiang, Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity. Math. Nachr. 190, 169–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Jiang, S. Jiang, J.P. Yin, Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and force. Discrete Contin. Dyn. Syst. 34, 567–587 (2014)

    MathSciNet  MATH  Google Scholar 

  46. S. Jiang, P. Zhang, Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Commun. Math. Phys. 215, 559–581 (2001)

    Article  MATH  Google Scholar 

  47. S. Jiang, P. Zhang, Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data. Indiana Univ. Math. J. 51, 345–355 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Jiang, P. Zhang, Axisymmetric solutions of the 3-D Navier-Stokes equations for compressible isentropic fluids. J. Pures Appl. Math. 82, 949–973 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Jiang, Z.P. Xin, P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl. Anal. 12, 239–252 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Q. Jiu, Y. Wang, Z. Xin, Global well-posedness of the Cauchy problem of two dimensional compressible Navier-Stokes equations in weighted spaces. J. Differ. Equ. 255, 351–404 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Q. Jiu, Y. Wang, Z. Xin, Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum. J. Math. Fluid Mech. 16, 483–521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Q. Jiu, Y. Wang, Z. Xin, Global classical solutions to the two-dimensional compressible Navier-Stokes equations in \(\mathbb{R}^{2}\). arXiv:1209.0157

    Google Scholar 

  53. J.L. Joly, G. Métivier, J. Rauch, Focusing at a point and absorption of nonlinear oscillations. Trans. Am. Math. Soc. 347, 3921–3970 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. B. Kawohl, Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas. J. Differ. Equ. 58, 76–103 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  55. A.V. Kazhikhov, On the theory of initial-boundary value problems for the equations of one-dimensional nonstationary motion of a viscous heat-conducting gas. Din. Sploshnoj Sredy 50, 37–62 (1981) (Russian)

    MATH  Google Scholar 

  56. H.L. Li, J. Li, Z. Xin, Vanishing of vacuum states and blow up phenomena of the compressible Navier-Stokes equations. Commun. Math. Phys. 281, 401–444 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Li, Z. Xin, Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities. arXiv:1504.0682v1.

    Google Scholar 

  58. P.L. Lions, Mathematical Topics in Fluid Mechanics, vol. II, Compressible Models (Oxford Science Publications/Clarendon Press, Oxford, 1998)

    MATH  Google Scholar 

  59. H. Liu, T. Yang, H. Zhao, Q. Zou, One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data. SIAM J. Math. Anal. 46, 2185–2228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. T.P. Liu, Z. Xin, T. Yang, Vacuum states of compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  61. T. Makino, On a local existence theorem for the evolution equations of gaseous stars, in Patterns and Wave Qualitative Analysis of Nonlinear Differential Equations (North-Holland, Amsterdam/New York, 1986), pp. 459–479

    Google Scholar 

  62. A. Matsumura, Large time behavior of the spherically symmetric solutions of an isothermal model of compressible viscous gas. Trans. Theorem Stat. Phys. 21, 579–592 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  64. A. Matsumura, T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Mellet, A. Vasseur, On the barotropic compressible Navier-Stokes equation. Commun. Partial Differ. Equ. 32, 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Nakamura, S. Nishibata, Large-time behavior of spherical flow of heat-conducting gas in a field of potential forces. Indiana Univ. Math. J. 57, 1019–1054 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. T. Nakamura, S. Nishibata, S. Yanagi, Large-time behavior of spherically symmetric solutions to an isentropic model of compressible viscous fluid in a field of external forces. Math. Models Method Appl. Sci. 14, 1849–1879 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. J. Nash, Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

    MathSciNet  Google Scholar 

  69. V.B. Nikolaev, On the solvability of mixed problem for one-dimensional axisymmetrical viscous gas flow. Dinamicheskie zadachi Mekhaniki sploshnoj sredy 63, Sibirsk. Otd. Acad. Nauk SSSR, Inst. Gidrodinamiki (1983) (Russian)

    Google Scholar 

  70. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  71. M. Okada, Š. Matušu̇-Nečasová, T. Makino, Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara Sez. VII (N.S.) 48, 1–20 (2002)

    Google Scholar 

  72. R.H. Pan, W. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivities. Commun. Math. Sci. 13, 401–425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  73. R. Salvi, I. Straškraba, Global existence for viscous compressible fluids and their behavior as t → . J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40, 17–51 (1993)

    Google Scholar 

  74. J. Serrin, Mathematical principles of classical fluid mechanics. Handbuch der Physik VIII/1, (Springer, Berlin/Heidelberg/New York, 1972), pp. 125–262

    Google Scholar 

  75. W.J. Sun, S. Jiang, Z.H. Guo, Helically symmetric solutions to the 3-D Navier-Stokes equations for compressible isentropic fluids. J. Differ. Equ. 222, 263–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. V.A. Vaigant, A.V. Kazhikhov, On the existence of global solutions of two dimensional Navier-Stokes equations of a compressible viscous fluid. Sibirsk. Mat. Zh. 36, 1283–1316 (1995) (Russian)

    MathSciNet  MATH  Google Scholar 

  77. A. Valli, W.M. Zaja̧czkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Google Scholar 

  78. A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. arXiv:1501.06803v4.

    Google Scholar 

  79. S.W. Vong, T. Yang, C.J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J. Differ. Equ. 192, 475–501 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  80. T. Wang, H. Zhao, Global large solutions to a viscous-heat conducting one dimensional gas with temperature-dependent viscosity. arXiv:1505.05252

    Google Scholar 

  81. M. Wei, T. Zhang, D. Fang, Global behavior of spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients. SIAM J. Math. Anal. 40, 869–904 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. H.Y. Wen, C.J. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum. SIAM J. Math. Anal. 45, 431–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  83. H.Y. Wen, C.J. Zhu, Global symmetric classical solutions of the full compressible Navier-Stokes equations with vacuum and large initial data. J. Math. Pures Appl. 102, 498–545 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  84. Z. Xin, Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MATH  Google Scholar 

  85. Z. Xin, H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations. J. Hyper. Differ. Equ. 3, 403–442 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  86. T. Yang, Z.A. Yao, C.J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Commun. Partial Differ. Equ. 26, 965–981 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  87. T. Yang, C.J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329–363 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  88. T. Yang, H.J. Zhao, A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J. Differ. Equ. 184, 163–184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Zhang, S. Jiang, F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics. Math. Models Methods Appl. Sci. 19, 833–875 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  90. T. Zhang, D. Fang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients. Arch. Ration. Mech. Anal. 191, 195–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. S. Zheng, Y. Qin, Universal attractors for the Navier-Stokes equations of compressible and heat-conductive fluid in bounded annular domains in \(\mathbb{R}^{n}\). Arch. Ration. Mech. Anal. 160, 153–179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  92. A.A. Zlotnik, B. Ducomet, The stabilization rate and stability of viscous compressible barotropic symmetric flows with a free boundary for a general mass force. Sb. Math. 196, 1745–1799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Jiang is supported in part by the National Basic Research Program (Grant Nos. 2014CB745000, 2011CB309705), NSFC (Grant Nos. 11229101, 11371065), and Beijing Center for Mathematics and Information Interdisciplinary Sciences. Ju is supported by NSFC (Grant Nos. 11171035, 11571046, 11471028), the National Basic Research Program (Grant No. 2014CB745000) and BJNSF (Grant No. 1142001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Jiang, S., Ju, Q. (2016). Symmetric Solutions to the Viscous Gas Equations. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics